
ASG—Techniques of Adaptivity?

Harald Meyer and Dominik Kuropka and Peter Tröger

Hasso-Plattner-Institute for IT-Systems-Engineering at the University of Potsdam
Prof.-Dr.-Helmert-Strasse 2-3, 14482 Potsdam, Germany

{harald.meyer|dominik.kuropka|peter.troeger}@hpi.uni-potsdam.de

Abstract. The introduction of service-orientation leads to significant
improvements regarding flexibility in the choice of business partners and
IT-systems. This requires an increased adaptability of enterprise soft-
ware landscapes as the environment is more dynamic than the ones in
traditional approaches. In this paper we present different types of adap-
tation scenarios for service compositions and their implementation in a
service provision platform. Based on experiences from the Adaptive Ser-
vices Grid (ASG) project, we show how dynamic adaptation strategies
are able to support an automated selection, composition and binding of
services during run-time.

Keywords: adaptive service provision, service selection, automated
service composition, service recovery

1 Introduction

With the proliferation of service-enabled business, building on top of service-
oriented architectures, the adaptivity of business processes, implemented by ser-
vice compositions, attracts more and more attention. Adaptivity allows for pro-
cess instances to deviate from the standard behavior in order to better serve
the customer or handle errors and unforeseen events. In service-oriented ap-
proaches this becomes increasingly important as the environment is more dy-
namic than the one in traditional approaches. Services ease the integration of
internal and external functionalities towards new value chains by composing
services to new functionalities. However, this also means that the interdepen-
dencies between partners increase. This can have negative effects on the imple-
mented value chains, since having dependencies to many partners increases the
probability for a failure of the whole system. Furthermore, the recovery from
failures—especially if external partners are involved—is a complex task. A pos-
sible solution is to have multiple partners providing equivalent services to select
a different one if the current service is not working. Using manual composition
and selection, this approach leads to increased development and maintenance
? This paper presents results of the Adaptive Services Grid (ASG) project (contract

number 004617, call identifier FP6-2003-IST-2) funded by the Sixth Framework Pro-
gram of the European Commission.

Dagstuhl Seminar Proceedings 07061
Autonomous and Adaptive Web Services
http://drops.dagstuhl.de/opus/volltexte/2007/1036

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62912487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

costs. In this paper, we present adaptation scenarios (e.g. unavailable services)
and respective solution strategies (e.g. late-binding of selected services) realized
in the Adaptive Services Grid1 (ASG) project.

The goal of the ASG project was to develop an adaptive service provision
platform, which supports automated on-demand selection and composition of
services and the automated recovery in case of failures. ASG was an integrated
project funded by the European Commission as a part of the 6th Framework
Programme. It consisted of 24 partners from six European countries and Aus-
tralia. The project started in September 2004 and was successfully finished in
February 2007.

In the remaining part of this section, we will give an overview of related
work and presented the schema used to describe the solution strategies. In the
sections 2 to 6 we then present the adaptation scenarios the ASG platform
can handle. Subsequently, we will also introduce five solution strategies. The
adaptation scenarios and their solution strategies were motivated by use case
scenarios provided by industry partners of the ASG project. In Section 7 we will
present the two scenarios that were implemented using the platform to show the
adaptation scenarios and solution strategies map to them. How all the features
are put together is shown in Section 8. The paper closes with a summary in
Section 9.

1.1 Related Work

The Web Service Execution Environment (WSMX) [1] is a software system that
enables the creation and execution of se mantic Web services based on the Web
Service Modeling Ontology (WSMO). Providers use WSMX to register and offer
their services, while requesters dynamically discover, mediate and invoke Web
services. In contrast to ASG, the current WSMX does not support automated
service composition. But it implements late binding as a strategy for adapta-
tion. It uses its own matchmaking component for the discovery of appropriate
services. Early versions of WSMX used a string-based matchmaking mechanism
for this task. Support for manual composition of services is currently under con-
sideration.

A prominent example for adaptivity in service-oriented architectures is the
Meteor-S project [2]. Meteor-S is a framework for semantic Web services support-
ing semantic annotation, discovery, and composition of services. It allows for the
manual composition of services using semantic operation templates. These tem-
plates describe the functionality of an operation at each step of the composition.
Meteor-S supports a late binding mechanism to discover and bind proper services
at run-time for each operation of the composition. Non-functional service prop-
erties and composition constraints are taken into account by the implemented
discovery and binding mechanisms. Furthermore, the framework supports re-
binding of individual services at run-time to solve service failures. However,

1 http://asg-platform.org

2

automated composition of services and negotiation of non-functional properties
is not supported.

1.2 Solution Strategies

Within the following sections, we will describe several challenging situations in a
service-oriented environment, where adaptation can provide the only, or at least
a better than usual solution for the particular issue. All presented strategies
foster adaptation as a primary aspect. Even though some of the strategies are
applicable in different situations, we will describe each solution strategy only
once, according to the following schema:

– Summary : Describes the scenario briefly.
– Applicability : Describes the situation in which this pattern can be used.
– Consequences: Lists the implications and side-effects.
– Implementation Sketch: Shows how the solution strategy is realized in ASG.

2 Changing service landscape

A service landscape is the set of services that makes up the available functionality
of the whole service-oriented system. Typical changes to a service landscape are
the addition of new services, the removal of existing services, and changes to
the functionality or interface of existing services. The two latter problems are
most critical ones. If a service gets removed or changed and it is already used in
service compositions, the composition will no longer function. If the modification
to the service landscape is just the addition of a new service, all existing service
compositions will continue to function as before. Anyway, the new service might
allow simpler service compositions (replacing several existing services) or a better
service composition regarding its non-functional properties.

An example from one of the ASG use case scenarios is a dynamic supply
chain for web hosting products. A set of services for domain availability checking,
credit card authorization and charging, domain registration, and storage reserva-
tion is combined to a service composition. This composition is represented by a
customer-friendly front-end, which supports the composition enactment through
the acquisition of relevant input data. Due to fluctuating contracts with busi-
ness partners in the IT hosting world, several service landscape changes might
happen:

– A cheaper payment partner is contracted, which leads to the availability of
a new service with similar functionality, but different non-functional prop-
erties.

– The domain check service for ”.de” domains breaks during runtime, but an-
other (slower) domain check service for all top-level domains is still available.

– The service for combined credit card checking and payment breaks or gets too
slow, but two separate services for both functionalities from other providers
are available.

3

In existing service provision platforms, the adaptation to such a changing
service landscape needs to be performed manually. This involves the following
steps:

– Detect service landscape change
– Determine affected service composition
– Modify service compositions

The required steps to perform manual adaptation are quite cumbersome.
Especially, determining affected service compositions can be tricky. Nevertheless,
automating adaptation to service landscape changes is only an option if these
changes are frequent or if adaptation should not yield extensive downtime. Both
of these conditions hold in service-oriented applications

A first idea for an automated solution might be to automate the process
described above. This means detecting service landscape changes, determining
affected service compositions, and modifying these compositions would be auto-
mated. However, this is not the approach used in ASG since this approach does
not exploit the full potential of automation. Automation was also needed in ASG
to deal with goal variations. Goal variations will be described in more detail in
the next section. But in principle, goal variations mean that customers often
have slightly different goals they want to attain. To cope with this, individual
processes for each customer are required. The solution strategy to adapt here is
Automated Service Composition. This solution strategy, together with another
solution strategy, called Late Binding can actually be used to deal with both
goal variations and changing service landscapes.

2.1 Solution Strategy: Late Binding

Summary: Using abstract service compositions and binding them to concrete
services prior to enactment is a common approach in service-oriented architec-
tures. Instead of describing the exact service that should be executed, only the
type of the service is described.

Applicability: Late binding allows to adapt to changes of the service landscape.
It can be used when these changes are frequent. An additional requirement is
that changes can be managed by replacing just one service. Late binding does not
allow for changes to the process structure. If for example, the landscape change
is the deletion of a service, late binding allows us to use other services providing
the same functionality. If no such service is available, but the service can be
replaced by the composition of two existing services, this cannot be performed
with late binding. The same applies to newly added services. The new service
can be used to replace one service with the same functionality, but it cannot be
used to replace several services in the same composition even though it provides
their combined functionality.

Another requirement is the knowledge about equivalent services. In the sim-
plest case, equivalent services implement the same interface. But this is clearly

4

a limited approach, since different service providers usually do not implement
the same interfaces for the same functionality. Extended approaches model ser-
vice equivalence explicitly through service types or implicitly through semantic
service specifications.

Consequences: Service compositions need to be abstract. This has two implica-
tions: we need a format to specify abstract service compositions, and we need to
model the according services abstractly. As no standardized format to model ab-
stract service compositions2 exists today, an own format needs to be implemented
or an existing service composition format must be adapted. The second impli-
cation is quite interesting. If service compositions are to be modeled abstractly,
how can we do that? More precisely: How do we choose the right granularity for
the used services? If we model the composition too fine-granular or too coarse-
granular, we might be unable to find matching services. Therefore, we need to
know how the service landscape looks like and whether a required functionality
is realized in one or more than one service. As this can be difficult in large (and
changing) service landscapes, another approach is more feasible: Service compo-
sitions are modeled using concrete services and only abstracted afterwards, in
order to allow for different bindings of the used services. This approach results in
a tighter coupling of the modeled composition to the current service landscape,
which leads to an reduced adaptability if the landscape changes.

Requestor Process
Engine Provider

Broker

Fig. 1. Process-oriented SOA

Using late binding has also architectural consequences in a process-oriented
SOA (see Figure 1). If late binding is used, the process engine is no longer only
responsible for enacting compositions, but it has to perform binding prior to
enactment. As we will see in the implementation sketch, the required extensions
can be substantial.

Finally, another consequence of using late binding to adapt to a changing
service landscape is that adaptation is not always possible. In the simplest case,
if a service is removed and no equivalent service exists, service compositions
2 WS-BPEL allows for business protocols but practice showed they are rather ill-suited

for our requirements.

5

using the service will no longer work. More interesting is another problem: What
happens to service compositions that are running during the removal? Service
landscape changes after the binding was performed cannot be resolved using late
binding. The composition might therefore no longer work (if a selected service is
deleted or changed) or work optimal (if a better service was added). Late binding
therefore only reduces the frequency of such problems. If services in compositions
are bound very early, several weeks, months, or even years can be between the
selection of the service and its usage. With late binding, the time span is reduced
to seconds or minutes. If the service landscape changes after late binding time,
another solution strategy called re-binding (Section 4.1) can be used.

Implementation Sketch: For the implementation of late service binding in a
service composition, three decisions have to be made:

– How is service equivalence determined?
– How do abstract service compositions look like?
– How does the architecture of the solution looks like?

In ASG, we used semantic service specifications to determine service equiv-
alence. Instead of referencing concrete service endpoints or WSDL descriptions,
semantic preconditions and effects are specified for all services. Service discov-
ery can used these descriptions to find suitable services. To model the resulting
abstract service compositions, we extended WS-BPEL to allow for semantic web
service activities. These do not reference a specific WSDL interface, but refer to
the expected functionality by a semantic description. We decided to integrate the
semantic specification based on WSML [3] directly into the WS-BPEL process.
Another approach would be to reference for example semantic templates.

F
a
c
a
d
e

Service Binder

Process
Engine

Semantic
Service

Discovery

Fig. 2. Extended Process Engine for Late Binding

Finally, the usage of semantic service specifications leads to some architec-
tural requirements. Figure 2 shows how the process engine needs to look like
to realize the ASG approach of late binding. Before the composition can be
enacted, the Service Binder needs to bind the services in the abstract service
composition to concrete services. In ASG, it uses the semantic service discovery
engine to perform this task.

6

2.2 Solution Strategy: Automated Service Composition

Summary: Instead of modeling service compositions upfront and manually, they
are created on-demand, based on the specific requirements of the current request.
To achieve this, the goal of the request is expressed declaratively and the services
are selected and bound together to adhere to the goal.

Applicability: As for late binding, automated service composition makes sense
if service landscape changes are frequent or if adaptation to goal variations (see
Section 3) is required. Service landscape changes can be arbitrary (no limitation
to the exchange of just one service like for late binding) as long as all the required
functionality is still available.

Consequences: The first consequence of using automated service composition
is the necessity to specify a service request formally in a way that matches
the specification of service functionality. In reality this can be tricky. Most of
the time we cannot expect service users to specify formally what the composed
service should achieve. In such a case other, e.g. template-based approaches
are necessary. We also need formats to semantically specify request goals and
service functionality. We already discussed briefly that the request goals need to
be specified. This is required for each particular service invocation. Therefore
the users need to specify their requirements, or we need a template into which
users only have to fill in parameter values.

Additionally, using automated service composition has architectural conse-
quences on the standard process-oriented SOA as displayed in Figure 1. Two
components (Figure 3) are required to perform automated service composition:
the component creating the composition and a semantic service discovery that
assists the composer in creating the compositions. The responsibility of the dis-
covery component is here not to find exactly matching services, but only to find
services executable in a given state. Therefore discovery is only done on the pre-
conditions, ignoring the effects. The according selection of services (considering
the effects as well) is performed by the composer.

F
a
c
a
d
e

Dynamic
Service

Composition

Process
Engine

Semantic
Service

Discovery

[htbp]

Fig. 3. Extended Process Engine for Automated Service Composition

Automated service composition can also affect enactment time negatively.
Our experiences from ASG showed that the creation time for the composition

7

can be much longer than the actual enactment time. While some of these per-
formance problems resulted from the prototypical implementation, composition
creation time cannot be ignored. Especially in an environment where adherence
to service level agreements is required, the usage of automated service com-
position needs to be investigated critically. Automated service composition can
ensure adaptation to service landscape changes and to goal variations, and there-
fore reduces downtime and ensures better service provision to customers. But,
the additional service delivery time can be contra-indicative.

Late binding and automated service composition can also be combined. This
combination is quite promising. If automated service composition is used, most
of the required functionality to perform late binding is already in place. The
advantage of using both strategies in combination is that automated service
composition only needs to be used if adaptation using late binding is not possible.
Created service compositions are cached and if a suitable composition for a
request is found, it is used and bound to concrete services. Minor changes to
the service landscape can be overcome using late binding. Only if this approach
is not successful, the cache is invalidated and new compositions are created.
Automated service composition is still used to adapt to varying request goals.

As for late binding, adaptation for running service composition instances is
not provided. If this is necessary, service re-composition (Section 4.2) can be
used.

Implementation Sketch: To specify services and service request we used WSML [3]
in the ASG project. As we can not expect end-users to model service requests
in WSML, we used a template-based approach. A request template defines the
basic requirements and the possible configurations. The template is then filled
using values specified by the end-users in their actual service request.

Our approach for automatically created service compositions is based on ex-
isting work on automated planning. We are using an extended version of the
enforced hill-climbing approach [4, 5] that allows for the composition of paral-
lel and alternative control flows and the creation of objects [6]. Enforced hill-
climbing is a search algorithm through state space that uses a heuristic for goal
distance estimations in order to find a composition. Other approaches for auto-
mated service composition use approaches like model checking [7] or hierarchical
task network planning [8].

3 Goal variations

The distinction between service landscape changes and goal variations is often
blurred. This is due to the fact that similar solution strategies can be applied
to both. Goal variations mean that different consumer requests demand service
compositions with similar functionality but minor differences. The two classical
solutions are to provide just one composition and users have to adapt their needs,
or to provide individual compositions for each customer. While the first solution
does not satisfy customers, the latter one increases provisioning costs. All vari-
ations need to be modeled and maintained. If the service landscape changes,

8

potentially all variations are affected. They need to be reviewed and modified if
required.

A better approach is to not model all variations explicitly. In ASG, we used
automated service composition (see Section 2.2) to handle goal variations. All
variants are modeled declaratively. Instead of specifying which services needs to
be invoked in what order, just the goal is defined. Introducing a new variant now
does not require modeling a new process but just the service request. Managing
variants has also become easier: if the service landscape changes, all variants
adapt automatically. Often several variants can be merged into one request tem-
plate. Each variant is then represented by another assignment of concrete values
to the template.

Goal variations in ASG did not require an additional solution strategy. But
other solution strategies are possible and can make sense if adaptation to service
landscape changes is not required. In such a scenario, new developments to apply
the product line approach to the management of process variations [9] can be
used.

4 Service Failures

If not only own services are used, but also services by suppliers are integrated,
dealing with service failures becomes important. As the external services are
outside of our control, we can not guarantee that they are always available.
But what should we do if a service fails? We could propagate the failure to
the customer and compensate already invoked services. But this can be quite
costly as well as unsatisfying for the customer. Instead we should try to adapt to
the failed service by replacing it with another service or changing the structure
of the composition. These two possible solution strategies are re-binding and
re-composition.

4.1 Solution Strategy: Re-binding

Summary: If the invocation of a service fails, we halt the execution of the com-
position and replace the failed service with another service with equivalent func-
tionality.

Applicability: Implementing re-binding makes sense if failures are frequent and
we need to deal with them automatically without aborting the complete com-
position. As re-binding can be seen as delayed late binding operation, this func-
tionality must be available. Hence, the same applicability constraints as for late
binding (see Section 2.1) hold also here: it must be possible to determine ser-
vice equivalence and the necessary adaptation must be limited to just the failed
service. The approach additionally demands some failure detection mechanisms,
which typically restricts the supported fault model to crash faults [10].

9

Consequences: As a consequence of using re-binding, we must be able to stop the
execution of running compositions, change them, and restart them from the point
we stopped it. Stopping a running composition has several implications: Does
the enactment engine actually support stopping and restarting of compositions?
How can we change a composition and feed the changes back into the engine?
What do we do with running activities? Do we abort them or wait for their
termination?

Another consequence is that we need to ensure that the failed service is not
selected again. Re-selection of the same service is highly-probable as it previously
was the optimal choice. But here it is counter-productive. The invocation will
fail again, and we will perform re-binding until the service becomes available
again (or forever).

F
a
c
a
d
e

Service Binder

Process
Engine

Semantic
Service

Discovery

Service
Re-Binder

Fig. 4. Extended Process Engine for Re-binding

As Figure 4 shows, re-binding also requires an additional component. This
component has the duty to find a suitable replacement if the invocation failed.
As it has quite similar functionality like the service binder, both components are
often merged. The interaction in case of a failure is like this: The process engine
detects the failure and stops the enactment of the composition. It returns the
current status of the composition to the facade, which in turn calls the re-binder
to find a replacement. Afterwards the re-binder returns the updated composition
to the facade. As the final step the facade hands the composition back to the
process engine for re-enactment.

Implementation Sketch: How the different aspects of re-binding are implemented
in ASG is quite similar to the implementation of late-binding. The only addition
is a workflow engine that can stop the execution of a composition if the invocation
of a service fails. Running service invocations are kept running and the changes
are merged back into the running composition.

10

4.2 Solution Strategy: Re-composition

Summary: If the invocation of a service fails and re-binding is not possible, n
the current state of the composition is used to create a new composition which
is still able to reach the goal.

Applicability: Re-binding and re-composition make sense if frequent service in-
vocation failures should be automatically handled. They are only applicable if
automated service composition is available and if it is possible to determine
the current state of an enacted composition. The latter means that given the
knowledge about already executed services, their effects and the initial states
are combined to form the initial state for the new composition.

Consequences: As automated service composition is used to perform re-composition,
the same consequences apply here. Additionally, we must be able to stop the ex-
ecution of running compositions, change them, and restart them from the point
we stopped it. We also must prevent the usage of the failed service(s) in the new
composition as it would otherwise fail again.

F
a
c
a
d
e

Dynamic
Service

Composition

Process Engine

Semantic
Service

Discovery

Mediated
Re-composition

Fig. 5. Extended Process Engine for Re-composition

Figure 5 shows the architectural consequences of using re-composition. The
main difference is an additional component: mediated re-composition. Mediated
re-composition receives the stopped service composition and calculates the new
initial state using the semantic service discovery and matchmaker. Afterwards
the new request is given to the composer to create the updated service compo-
sition, which is finally enacted by the process engine.

Implementation Sketch: The implementation of re-composition in ASG mainly
follows the implementation for automated service composition described earlier.
Running service invocations are kept running but for the sake of automated
service composition assumed to be finished. This ensures that no running invo-
cations are removed from the updated compositions. The details of the approach
are described in [11].

11

5 Dynamic QoS Requirements

Quality of Service (QoS) properties capture properties of services beyond their
functionality. This includes for example service execution costs or execution du-
ration demands. Service level agreements (SLA) are contracts between a service
consumer and a service provider about concrete values of service quality prop-
erties. Consumer can have differing QoS requirements that are specified as part
of their service request. The provider has to ensure that the provided service
adheres to these requirements. If the provided service is a service composition,
its QoS properties need to be deduced from the QoS properties of contained
services.

If the QoS properties of services are known, QoS requirements by service
consumers can be taken into account by late binding (Section 2.1) and/or au-
tomated service composition (Section 2.2) strategies. Services are selected and
composed according to the QoS requirements. Another approach is to not store
QoS properties of services as part of the service specifications, but to ask service
providers dynamically. Going one step further, this allows us to negotiate with
service providers about concrete values of several properties based on our current
requirements and the providers offers.

5.1 Solution Strategy: Negotiation

Summary: Negotiating with service providers about concrete values of QoS prop-
erties allows for service level agreements (SLA) which are in line with the current
requirements of the consumer and the provider’s abilities. To perform negotia-
tion, protocols like the iterated contract net interaction protocol [12] are usable.

Applicability: Obviously, the negotiation of QoS properties only makes sense if
such requirements with regard to the service composition exist. They can either
be explicitly specified by consumers in their request, or can be defined by the
provider of the service composition. In the first case, negotiation allows for the
adaptation to differing QoS requirements. In the second case, the adaptation to
differing QoS properties of service providers is possible. Therefore, the second
requirement for the negotiation strategy is the availability of QoS properties for
services.

Consequences: Both the consumer of a service and the service provider need to
provide negotiation functionality for this strategy. For the service provider, this
means that each service needs to provide an additional interface just for nego-
tiation. In addition, the service consumer needs to support similar functionality
on his side to perform the negotiation. Components to perform the negotiation
and to store and supervise the SLAs need to be established (see Figure 6). Nego-
tiation is typically performed by an extended service binder. The SLA manager
component stores all SLAs and monitors (in cooperation with the enactment en-
gine) whether they are fulfilled or not. As a part of their interface, the protocol
and data formats for negotiation and the format for SLA needs to be defined.

12

This must be seen as a non-trivial task, since the contract content data formats
must be standardized between all participating parties.

F
a
c
a
d
e

Negotiation
Manager /

Service Binder

Process Engine

Semantic
Service

Discovery

SLA Manager

Fig. 6. Extended Process Engine for Negotiation

While late-binding can be used without negotiation, it is often used in com-
bination with late binding (see Section 2.1), to ensure that we get the best
SLAs from our partners. Which such a setup, we can negotiate with different
providers of the same functionality and select among them the one with the best
QoS properties.

One important aspect of negotiation is the machine-to-machine communi-
cation between different organizational domains. Each partner is interested in
getting the best possible results out of these negotiations. Hence, partners might
exploit weaknesses in the negotiation strategy of their counterpart. Detecting
and avoiding such situations is very complicated and requires human involve-
ment. This situation is quite similar to the search engine optimization (SEO)
problem with which large search engine providers like Google, Yahoo!, and Mi-
crosoft are currently fighting. SEO is about modifying and extending Web pages
in a way to ensure a higher ranking in these search engines resulting to attract
more visitors and hence gain more revenue. To our knowledge, no general strat-
egy to overcome these problems exists today. With negotiation, the problem is
even more critical: If someone exploits a weakness in our negotiation strategy,
we are not just ’visiting the wrong web page’, but loosing money because of non-
optimal contracts. We therefore argue that all negotiation requires some kind of
frame contract among the negotiation parties, in order to ensure well-behaving
and to give some bounds for negotiation values. In such an environment, the goal
of negotiation is not to ensure the best possible results for oneself, but to find a
satisfying mapping between the negotiation partners requirements and abilities.

As mentioned above, supervision of SLA fulfillment is crucial. Without it, the
contracting of SLAs would be of limited use, as it is not known whether or not
providers adhere to the contracted SLA. Hence, we need to constantly monitor
concrete values and compare them to contracted values. In case of a violation,
we need to react, which will be described in the next section.

13

Implementation Sketch: Negotiation in ASG was agent-based [13]. Both the
service provider and the ASG platform implemented negotiation agents, who
negotiated QoS properties implementing the iterated contract net interaction
protocol.

6 Composition SLA violations

In ASG, two kinds of SLA occur: SLA for individual services and SLA for service
compositions. SLA for individual services are contracted between the ASG plat-
form as a service user and the provider of the individual service. Composition
SLA are contracted between the end user and the ASG platform as the service
provider. The ASG platform needs to monitor the fulfillment of individual ser-
vice SLA in order to ensure the fulfillment of its own SLA with the end user.
Hence, an important first step is the ability to actually monitor QoS properties.

The question is, what should happen if a service violates the contracted SLA?
The simplest solution is to just propagate the violation to the end-user. But this
can mean that we violate our SLA, too. Therefore other strategies are necessary
if we want to customer confidence. For example, re-binding (Section 4.1) or re-
composition (Section 4.2) can be extended to exchange services in case of a QoS
violation.

7 Adaptation in ASG Scenarios

Scenarios in an EU-funded integrated project have to serve two different pur-
poses. Industry partners are interested to find solutions for their concrete prob-
lems. On the other hand, scenarios should also demonstrate and motivate the
research conducted in the project. Especially in large projects, there is not al-
ways a perfect match. With more than 10 industry partners and more than 10
research partners, this applied especially for ASG. Altogether, industry partners
in the project provided 7 different scenarios from their daily work and indus-
trial research interests. Two of them proved to be well suited as demonstration
scenarios, since they show the applicability of nearly all research results and
explain resulting benefits for the industry partners. We there now describe both
scenarios in the context of the discussed solution strategies.

7.1 Attraction Booking

The idea behind the attraction booking scenario is to provide location-based
services for mobile users in a telecommunication environment. The implemented
functionality enables users to find attractions (e.g. events, theaters) based on
their current position, to book tickets for them, and to find a route from their
current location to the attraction. The service can be provided either by the
mobile telephone provider or by a third party. Either way, it will depend on
several external services:

14

– Localization services (internal for the mobile telephone provider)
– Attraction information services
– Attraction booking services
– Route planning services

Looking at the different scenarios of adaptation, we see that most of them fit
to this scenario. The service provider will frequently integrate new attraction in-
formation and booking services. Hence, service landscape changes are typical. As
external service are integrated, failures of services and violations of SLA are pos-
sible. Goal variations are not an issue here. All users consume the same service.
Users of the attraction booking service also do not provide QoS requirements
themselves, even though static QoS properties are considered for a minimal user
experience.

7.2 Supply Chain Management for ISP

The second scenario was developed by an internet service provisioning (ISP)
company. It provides domain registration and web space services to their cus-
tomers, not only to end users, but also to resellers such as newspaper companies.
The provided services are actually compositions of atomic internal and external
services. The external services are:

– Domain checking services
– Domain registration services
– Payment services

To enter new markets, new services in all three categories need to be inte-
grated in a quick and error-prone manner. Service landscape changes are quite
frequent in this business environment. As the resulting service is not only pro-
vided to end users but also to resellers, goal variations occur with each new
customer. Each reseller might have slightly different conditions (e.g. providing
only an e-mail account) and preferences (e.g. a certain payment proceeding). The
restrictions do not only apply to functional criteria, but also to QoS properties.
This leads to dynamic QoS requirements for the overall service composition. As
external service from third party providers (like Denic) are integrated, failures
of services and violations of SLA are possible.

Table 1 gives an overview of the occurrence of the different adaptation scenar-
ios on both ASG use cases. Most of the discussed cases can be observed in both
scenarios, but the second scenario showed to be better suited to demonstrate
ASG features, since all kinds of adaptation occur in it.

8 Implementation Remarks

The reference implementation of the Adaptive Service Grid platform was devel-
oped during the 30 months of project runtime, and is available as an open-source

15

Adaptation Scenario Attraction Booking Dynamic Supply Chain

Changing service landscape yes yes

Goal variations no yes

Service failures yes yes

Dynamic QoS requirements no yes

Composition SLA violations yes yes
Table 1. Adaptation scenarios and their impact on ASG scenarios

project3 for public usage. Multiple demonstrations for both industry people and
interested research partners showed that the practical implementation of our
adaptation strategies works also in real scenarios.

Fig. 7. ASG Reference Architecture

The platform implements all five solution strategies. It therefore contains
components for dynamic service composition, semantic service discovery, service
binding, negotiation, SLA management, re-binding and mediated re-composition.
Figure 7 shows the architecture of the system. Service binding, re-binding and
negotiation are all unified into the Negotiation Manager component. The com-
ponents dealing with the enactment of compositions are all grouped into the
Adaptive Process Management component.

The Facade component receives semantic requests for an application goal.
This request is typically formulated by a front end application, which relies on
ASG for the provision of a complex business functionality. The semantic request

3 http://asg-platform.org/cgi-bin/twiki/view/Public/PrototypeDemo

16

is forwarded to the Dynamic Service Composition component, which collaborates
with the Semantic Service Discovery to detect and combine feasible service can-
didates for a composition, based on semantic service descriptions. This is an
application of the automated service composition solution strategy. Equivalent
atomic services map to a similar semantic service description, making both of
them an acceptable candidate for the later binding step. The abstract service
composition is formulated in WS-BPEL with some enhancements to allow for
the specification of semantically described services. The finalized composition
is handed to the Adaptive Process Management (APM), which binds matching
specific service from the current service landscape. The enactment of the result-
ing service composition is based on a Service Infrastructure which unifies the
access and monitoring of services available in the service landscape.

In case of a service failure during enactment, ASG triggers a multi-stage
recovery process based on the presented solution strategies. If the failure cannot
be handled by the Service Infrastructure, the APM tries to perform a re-binding
of another service fulfilling the same semantic sub-goal. In case of non-fatal errors
like a SLA violation, the APM can also try to re-negotiate existing contracts
about non-functional aspects. If this is also not possible, a re-composition is
triggered in the higher level of the Dynamic Service Composition component.
Here, ASG tries to find ’another way’ using different services for reaching the
aimed application.

9 Conclusion

In this paper we summarized adaptation strategies and scenarios considered and
implemented in the ASG project. We identified five basic adaptation scenarios,
namely service landscape changes, goal variations, service failures, dynamic QoS
requirements, and composition SLA violations. We also introduced five solution
strategies to deal with these scenarios. Late binding handles changes in the
service landscape. Automated service composition handles changes in the service
landscape as well as goal variations. Re-binding and re-composition both deal
with service failures and composition SLA violations. And finally, negotiation
handles dynamic QoS requirements. Figure 8 displays these relations graphically.

The adaptation scenarios and the according solution strategies were moti-
vated in the project by two real world scenarios of the participating industry
partners. The attraction booking scenario allows end users to find and book at-
tractions. Especially the open service landscape led to the applicability of many
of solution strategies. The dynamic supply chain for internet service providers
scenario reflects the business of a company allowing its customers to register
domain names and order web space. Here the open service landscape and the
requirement to provide the service not only to end users but also to resellers lead
to the applicability of all solution strategies.

The ASG project proposed a reference architecture that shows how all solu-
tion strategies can be combined into a coherent view. An implementation of this
reference architecture was then used to demonstrate the actual applicability of

17

service
landscape
changes

service
failures

goal
variations

dynamic
QoS

require-
ments

compos-
ition SLA
violations

automated
service

composition
late binding

re-
composition

re-bindingnegotiation

Agenda:

adapts depends on

Fig. 8. Relations between adaptation scenarios and solution strategies

the solution strategies in the scenarios. This implementation is now released as
open source and can be downloaded from the ASG project page.

Due to time constraints, ASG could not provide a quantitative analysis of the
solution strategies. Questions about costs and overhead of the solution strate-
gies (e.g. how high are upfront investments?) and about concrete benefits (e.g.
are upfront investments at least balanced out by cost savings?) had to remain
unanswered, and will be part of future research efforts.

References

1. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: Wsmx—a semantic
service-oriented architecture. In: Proceedings of the International Conference on
Web Service (ICWS 2005), Orlando, Florida (2005)

2. Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The meteor-s approach
for configuring and executing dynamic web processes. Technical report, LSDIS
LAB, University of Georgia, Athens, Georgia (2005)

3. de Bruijn, J., Lausen, H., Krummenacher, R., Polleres, A., Predoiu, L., Kifer, M.,
Fensel, D.: D16.1v0.21 web service modeling language (wsml) (2005)

4. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14 (2001) 253 – 302

5. Hoffmann, J., Brafman, R.: Contingent planning via heuristic forward search with
implicit belief states. In: Proceedings of the 15th International Conference on
Automated Planning and Scheduling (ICAPS-05), Morgan-Kaufmann (2005)

6. Meyer, H., Weske, M.: Automated service composition using heuristic search. In
Dustdar, S., Fiadeiro, J.L., Sheth, A., eds.: Business Process Management (BPM

18

2006). Volume 4102 of Lecture Notes In Computer Science., Heidelberg, Springer
(2006) 81–96

7. Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and mon-
itoring web service composition. In: Workshop on Planning and Scheduling for Web
and Grid Services (held in conjunction with The 14th International Conference on
Automated Planning and Scheduling. (2004) 70 – 71

8. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service
composition using shop2. Journal of Web Semantics 1 (2004) 377–396

9. Schnieders, A., Puhlmann, F.: Variability modeling and product derivation in
e-business process families. In: Technologies for Information Systems, Springer
(2007) 63–74

10. Jean-Claude Laprie and Brian Randell anf Carl Landwehr: Basic Concepts and
Taxonomy of Dependable and Secure Computing. IEEE Transactions On Depend-
able And Secure Computing 1 (2004)

11. Gajewski, M., Meyer, H., Momotko, M., Schuschel, H., Weske, M.: Dynamic failure
recovery of generated workflows. In: DEXA Workshops, IEEE Computer Society
Press (2005) 982–986

12. Foundation for Intelligent Physical Agents (FIPA): FIPA Iterated Contract Net
Interaction Protocol Specification. (2002)

13. Momotko, M., Gajewski, M., Ludwig, A., Kowalczyk, R., Kowalkiewicz, M., Zhang,
J.Y.: Towards adaptive management of qos-aware service compositions. nterna-
tional Journal on Multiagent and Grid Systems 4294 (2007) 637–650

19

