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Abstract. In this paper, we consider how an unknown constant within
a state update function or output function a�ects biases of linear ap-
proximations. This allows us to obtain information from an unknown
constant within a T-function. We use this knowledge for mounting an at-
tack against stream cipher SOBER-128 where we gain information from
the key dependent secret constant using multiple linear approximations.
One to four bits of information can be obtained from 2113:5 to 2124:6

keystream words, respectively. More bits can be covered by increasing
the number of linear approximations used.

Keywords: linear approximations, correlation, linear cryptanalysis, key-
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1 Introduction

Stream ciphers are important cryptographic primitives and have many advan-
tages over block ciphers due to their speed and �exibility in practical imple-
mentations. Therefore, they are widely used in practise and many proprietary
designs are known. Unfortunately, many of them have severe weaknesses and
are not suitable for general applications. Traditionally, cryptographic research
of stream ciphers has been restricted to speci�c features such as period, linear
complexity and correlation attacks. Only recently more general analysis methods
originally developed for block cipher analysis have been used to analyze stream
ciphers. Also new and di�erent stream cipher constructions are being presented
[1], which use a wide range of building blocks. In addition to traditional lin-
ear feedback shift registers (LFSRs) and correlation immune Boolean functions,
stream cipher constructions often involve S-boxes, borrowed from block ciphers,
algebraic operations and modular arithmetic.

In this paper, the focus is on linear cryptanalysis method. Linear cryptanal-
ysis makes use of approximate linear relations over nonlinear components of the
cipher and has been successfully applied to stream ciphers to distinguish the
output keystream from a truly random sequence [2�5]. In this paper, we show
that if the output function involves a secret constant, it is possible to get infor-
mation of the constant using linear cryptanalysis in a similar manner than one
gets information about round keys using linear cryptanalysis on block ciphers.
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We will apply our technique on SOBER-128 [6], which is a keystream gen-
erator for a stream cipher proposed by P. Hawkes and G.G. Rose. Originally,
it had also integrity functionality, which was later removed due to discovered
weaknesses in it [7]. The best known attack on SOBER-128 is due to J.Y. Cho
and J. Pieprzyk [5]. It uses an application of linear cryptanalysis for LFSR based
stream ciphers as was presented by D. Coppersmith, et al., in [2]. First, linear
approximate relations over nonlinear functions are derived which involve terms
from the LFSR state variables and key stream. Then a linear recursive relation
originating from the LFSR feedback relation is used to cancel the internal LFSR
state variables to obtain an approximate linear equation involving key stream
variables only. The linear recursive relation involving six LFSR state variables
used by Cho and Pieprzcyk in [5] is due to T. Johansson and P. Ekdahl [8]. The
resulting linear distinguishing attack requires 2103:6 terms of the keystream.

In our analysis, we use the original 32-bit feedback recursion of the LFSR
of SOBER-128. The middle part of the nonlinear �lter function of SOBER-128
has two subsequent additions modulo 232 with a key dependent secret constant
xored to the data between the additions. The main observation our analysis
is based on is that the biases of linear approximations over the middle part
depend on the secret constant. We derive approximate linear relations over the
�lter function and show how the resulting approximate linear relation of the
key stream variables can be used, not only to distinguish the output key stream
from a purely random sequence but also to determine one bit of information
of the secret constant. However, it seems that the complexity increases slightly
compared to [5]. To our current estimates it takes on the average 2113:5 terms
of the keystream to get one bit of information of the secret constant, and 2124:6

terms to get four bits of the secret constant.
The cryptanalysis technique developed in this paper is not speci�c to SOBER-

128. It can be applied when ever linear approximations are taken over crypto-
graphic functions involving secret constants. One linear approximation divides
the constants upto three classes depending on whether the bias of the keystream
relation is zero, positive or negative. We will also see that such a division into
classes is not necessarily determined by a linear equation as is typically the case
in linear cryptanalysis, for example, in the seminal work of M. Matsui in [9].

2 Preliminaries

In this section, we introduce the de�nitions and notation that are used through-
out the paper. The terminology follows closely to the one used in [4], since it
serves our purpose to examine linear approximations of functions that are com-
posed of arithmetic and Boolean operations. We denote by x the n-bit vector
(x0; : : : ; xn�1) in IFn

2 . The integers in f0; : : : ; 2n � 1g are identi�ed with the

vectors in IFn
2 using the natural correspondence x$

Pn�1
j=0 xj2

j .
Linear cryptanalysis [9] exploits correlations between certain linear combina-

tions of the input and output bits of the components of the cipher. Let n and m
be positive integers. In this paper, we consider a component of the cipher to be
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a mapping f : IFm�n
2 ! IFn

2 , i.e., a mapping that takes m n-bit input words and
maps them to a single n-bit output word. The following terminology is used to
discuss linear approximations of components throughout the paper.

A constant vector or matrix that is used to select what input (output) bits
will be used in a linear approximate relation of a function is called a linear input
(output) mask of the function. Let m and n be positive integers. For vectors
x 2 IFn

2 and y 2 IFn
2 , let x�y denote the standard inner product x�y = x0y0�� � ��

xn�1yn�1. A linear approximation of a functional dependency f : IFm�n
2 ! IFn

2

is an approximate relation of the form

� � f(X) =
m�1M
i=0

�(i) � x(i) ;

where the row vectors �(0); : : : ; �(m�1) 2 IFn
2 are the linear input masks for the

input words and � 2 IFn
2 is the linear output mask. The linear input mask for

f is the matrix � = (�i;j) 2 IFm�n
2 with �(0); : : : ; �(m�1) as the rows. The

e�ciency of a linear approximation of f is measured by its correlation

corf (� ;�) = 2Pr

"
� � f(X) =

m�1M
i=0

�(i) � x(i)

#
� 1 ;

which is the probability that � � f(X) =
Lm�1

i=0 �(i) � x(i) taken over X and
scaled between [�1; 1]. We use �f (� ;�) = corf (� ;�)=2 to denote the bias of a
linear approximation of f . The linear approximation of f with the input mask
� and the output mask � may be denoted by (� ;�) or by stating the input
masks for each input word explicitly (� ;�(0); : : : ; �(m�1)). A semicolon is used
for separating the output mask to the left and the input mask(s) to the right.
Given a linear mask � 2 IFn

2 and an element � 2 IFn
2 , we denote by �� the

linear mask, which satis�es the equality

�� � x = � � �x for all x 2 IFn
2 ;

where the product �x is taken in IF2n .

3 The Stream Cipher SOBER-128

SOBER-128 [6] is a synchronous stream cipher that generates a keystream of
32-bit words based on a 128-bit secret key. Originally, it also contained message
authentication functionality, but it has been removed recently due to vulnerabili-
ties to forgery attacks [6]. The structure of the SOBER-128 keystream generator
is a traditional combination of a linear feedback shift register (LFSR) and a
nonlinear �lter (NLF). An illustration of this structure is depicted in Fig. 1.

The LFSR consists of 17 registers, each containing a 32-bit word. We use the
vector (st; : : : ; st+16) to de�ne the state of the LFSR at time t. The new state
at time t+ 1 is determined with the characteristic polynomial

x17 + x15 + x4 +  2 IF232 [x] ; (1)
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Fig. 1. The keystream generator SOBER-128
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where  2 IF232 is a constant. The �eld IF232 is realized using the isomorphic
representation IF(28)4 . If we denote the polynomials in IF28 with their coe�cients
in a hexadecimal number, the constant  is de�ned as 0x01x in IF(28)4 . The NLF
is a nonlinear function of the LFSR states and a key-dependent constant K 2
IF32

2 . In this paper, however, we do not consider the constant as an argument but
as an internal part of the NLF. At time t the NLF produces a 32-bit keystream
word zt as follows

zt = fNLF(st; st+1; st+6; st+13; st+16)

= S((((S(st � st+16)o 8)� st+1)�K)� st+6)� st+13 :

The function S : IF32
2 ! IF32

2 is de�ned as S(x) = S1(x31;:::;24) k (S2(x31;:::;24) �
x23;:::;0), where k denotes concatenation and S1 and S2 are used to denote the
Skipjack S-box [10] and a tailor-designed ISRC S-box [11] respectively. Again,
we de�ne fK : IF3�n

2 ! IFn
2 as fK(X) = ((x(0)�x(1))�K)�x(2) and set n = 32.

For a more detailed speci�cation of SOBER-128, refer to [6].

4 Linear Masking of SOBER-128

The linear masking method for stream ciphers is generally based on �nding
linear approximations with high bias over nonlinear components of the cipher.
These approximations are then applied multiple times using a linear relation in
the keystream generator, which results into an approximation consisting only of
output words. The bias of this approximation can be calculated using the piling-
up lemma [9]. We apply linear masking as usual to the SOBER-128 keystream
generator. Our purpose is, however, to search multiple approximations that par-
tition the constant K 2 IF32

2 into di�erent classes based on the correlation. This
would allow us to gain information from K using independent distinguishers as
described in Sect. 3. We are especially interested in how the constants partition
based on the sign of the correlation, since it is possible to get larger correlation
di�erences between constant classes. We will discuss (i) how linear approxima-
tions of fK partition constants K based on their correlation, (ii) what distin-
guishers were found, (iii) what heuristic was used for searching linear masks, and
(iv) how does the constant  in (1) a�ect attacks based on linear masking.

Let � and � denote the output and input mask of a linear approximation
of fNLF respectively. The characteristic polynomial (1) for the LFSR yields the
linear relation

st+17 � st+15 � st+4 � st = 0 ;

which can be used for forming the main distinguishing equation that consists of
output words from the keystream generator. To form this distinguishing equa-
tion, we use a linear approximation of fNLF four times: three times with the
masks �;� at times t+ 4; t+ 15; t+ 17 and one time with the masks � ; � at
time t. This results in the following equation:

�zt+17 � �zt+15 � �zt+4 � �zt = 0 : (2)
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We let �NLF(� ;�) denote the bias of a linear approximation (� ;�) of fNLF.
Hence, the total bias �(�; �) of the distinguishing equation is

�(�; �) = 8�NLF(� ;�)3�NLF(� ;�) :

4.1 Linear Approximations of fK

Consider the function fK : IF3�n
2 ! IFn

2 given as fK(X) = ((x(0) � x(1))�K)�
x(2), where K 2 IFn

2 is a constant. We can compute corfK (� ;�) using similar
methods as those used in [4]. Suppose that a linear approximation (� ;�) of fK
is �xed. It is now possible to determine the exact correlation corfK (� ;�) for a
given constant K 2 IFn

2 . Intuitively, it is clear that the correlation corfK (� ;�)
might change, if the constant in fK is changed.

To show that constants really do partition into several classes with some lin-
ear approximations, we consider correlations of fK with two linear approxima-
tions for 5-bit words. Tables of the constant classes for these cases are presented
in Appendix A. Since it is possible to classify constants into certain classes based
on their correlation, we have an obvious way for gaining information from an
unknown constant from some T-functions based on one or more linear approx-
imations. For stream ciphers, it means that if an unknown constant is applied
within a T-function in the nonlinear function of the keystream generator, we can
use linear distinguishers for determining possible values for the constant. One
suitable stream cipher is SOBER-128, which we will examine in the following
sections.

We examine linear approximations of the nonlinear function fK with two
purposes: (i) to �nd out the average, minimum, and maximum of jcorfK (� ;�)j
when (� ;�) is �xed, and (ii) to to �nd out how the constants K 2 IF32

2 parti-
tion into classes based on the sign of the correlation when (� ;�) is �xed. We
try to �nd linear approximations for which the average of jcorfK (� ;�)j (over all
K 2 IF32

2 ) is the highest, since experimentation shows that sign of the correlation
varies often. Hence, this approach gives a large correlation di�erence between the
constant classes that correspond to negative and positive correlations. Another
approach would be to ignore the sign of the correlation and search those approx-
imations whose constant classes have large correlation di�erence between their
absolute values. This approach can also be used in cases, when it is not possible
to examine sign of the correlation as is observed in Sect. 4.4. We compute average
correlations by considering the constant K as a uniformly distributed random
variable. In this case, the additions modulo 232 are completely independent of
each other. Using the piling-up lemma, the average correlation can be de�ned
by simply multiplying the correlations of independent additions together. For
computing corfK (� ;�) with a certain K we need to consider fK as a single
function. Therefore, we can determine the maximum and minimum values for
jcorfK (� ;�)j by enumerating 232 constants at maximum. The constant classes
can be formed at the same time when constants are enumerated. So far we have
not been able to �nd an analytic method to de�ne the constant classes.
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4.2 Our Results

We determined four linearly independent linear approximations for the NLF.
The algorithm that was used to search the chain of approximations for the NLF
is given in the next section. Each linear approximation partitions the constants
K 2 IF32

2 into two classes of the same size based on the sign of the correlation.
Hence, each distinguisher allows extracting one bit of information fromK. These
constant classes are also pairwise orthogonal, which means that we get 16 con-
stant classes of the same size, that is, four bits of information of the secret con-
stant. The approximations are presented in Table 1 with their maximum, mini-
mum, and average biases, and the relations on the constantK = (k0; k1; : : : ; k31)
which determine the splittings into classes. All four splitting relations in Table 1
are linear. However, this is not necessarily the case in general. An example of a
nonlinear division relation is given in the Appendix.

Table 1. Distinguishers and their biases.

� �
j�(�; �)j

constant class with bias > 0
max avg min

0x01980000 0x00011000 2�53:288 2�56:735 2�62:001 k12 + k16 + k19 + k20 + k23 + k24 = 0
0x00000181 0x24000001 2�55:385 2�58:290 2�62:385 k2 + k3 + k13 + k14 + k22 + k26 + k27 = 0
0x0040000c 0x08006000 2�57:701 2�61:155 2�66:112 k7 + k8 + k24 + k30 = 0
0x000000c0 0x21000000 2�58:959 2�62:279 2�66:638 k6 + k7 + k22 + k29 + k31 = 0

4.3 Mask Search Methods

We searched for the linear masks using similar techniques as in [4]. In particular
we took advantage of the possibility to generate all linear masks with a given
correlation for one addition modulo 232. In this section, the term correlation is
used to refer to the absolute value of correlation unless otherwise speci�ed. We
split the NLF into components that can reasonably be assumed to be indepen-
dent. Then an approximation is created for one nonlinear component at a time.
We progress to the next component, when we have found an approximation with
correlation that is higher than the preset limits. During this process, we keep
track of the total correlation using the piling-up lemma. Used masks are depicted
in Fig. 1. The subscript  is used to denote masks that work when each input si
from the LFSR has been multiplied with . We start by generating masks for the
addition with st+1 as an input. All masks �st+1 ; �; and � are generated with
a correlation � 2�3. For each �s1, we generate � and � with a correlation
� 2�4. The three least signi�cant bytes of � and � are also the three least
signi�cant bytes of � and � . Previous experiences show that large correlations
are achieved with masks that have a low Hamming weight [12, 3]. Hence, we
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iterate all values with a Hamming weight � 4 for the most signi�cant byte of �
and generate �st and �st+16 with a correlation � 2�3. We continue with masks
that have a nonzero correlation over S. For the input masks �st and �st+16,
we iterate all values with a Hamming weight � 4 for the most signi�cant byte of
� and compute the correlation for the addition and S. We continue with masks
that have a correlation � 2�6 over the addition and a nonzero correlation over
S. We continue from the addition with st+6 as an input. Using � we generate
all masks �st+6 and 	 with a correlation � 2�3. For each �st+6 and � , we
generate 	 with a correlation � 2�4. These approximations �x the three least
signi�cant bytes of 
 and 
 . We iterate all values for the most signi�cant byte
with a Hamming weight � 4 and generate �st+13 and � with a correlation� 2�3.
For the �st+13, we generate � with a correlation � 2�4 by iterating again all
values with a Hamming weight � 4 for the most signi�cant byte of 
 . A chain
of approximations for the NLF has now been created.

4.4 E�ect of  in the Characteristic Polynomial

Without  in the characteristic polynomial (1), the distinguishing equation (2)
is formed using the same linear approximation (� ;�) four times. Hence, we get
the same equation as (2) but with � replaced with � . The bias is determined
as

�(� ) = 8�NLF(� ;�)4 :

In this case, the sign of �NLF(� ;�) would cancel out, which makes it harder to
�nd constant classes that have large correlation di�erences. On the other hand, a
stronger distinguishing attack could be launched. The best linear mask we found
was � = 0x03000001 with (average) bias �(� ) = 2�36:771.

4.5 Data Complexity

Using the best linear approximation on the NLF of SOBER-128, one bit of
information of K can be obtained using 2113:5 keystream words on average.
For obtaining two bits of information, another mask is needed. Therefore, we
need 2116:6 keystream words on average for gaining two bits of information.
This is a conservative estimate assuming that the two linear approximations are
statistically independent.

Previously, Kaliski and Robshaw [13] and Biryukov et al. [14] have inves-
tigated the data complexity when multiple linear approximations are used. In
both papers it is assumed that the linear approximations are statistically inde-
pendent. However, this is very unlikely to be the case in reality, when statistical
dependencies, while being diluted, appear almost everywhere.

A more accurate estimate of the bias is achieved by considering the joint
statistical distribution of multiple linear approximative relations. We have not
computed joint distributions for the linear approximations of SOBER-128, yet.
It is left for future work. For each constant, the theoretical statistical distri-
bution must be derived. It is expected that many constants are going to have
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the same distribution and are, in this sense, equivalent. The correct equivalence
class is then found by comparing the empirical distribution with the theoretical
distributions.

5 Conclusions

We have proposed new techniques how to analyze secret constants in key stream
generators using linear approximations. It turns out that the value of the corre-
lation depends on the constant. In this manner the constants are divided into up
to three classes depending on whether the resulting correlation is zero, positive
or negative. Given su�cient amount of observed data computed using this func-
tion, one to two bits of information of the secret constant can be obtained. As the
constant occurs between mutually dependent functions the piling-up lemma by
Matsui in [9] cannot be used. For the same reason, division of the constants into
classes is not always determined by linear relations. We applied this technique
to stream cipher SOBER-128 which involves a secret, key-dependent constant
in its output �lter function. We presented a linear cryptanalysis method using
which a number of bits can be recovered from the secret constant.
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A Examples of Constant Partitions for fK

We give two examples of how the constants K 2 IFn
2 partition into classes with a

�xed linear approximation (� ;�) of fK . The partitions are presented in Tables
2 and 3, where the constants under certain correlation belong to the same class.
For clarity, we denote the elements in IFn

2 as binary numbers.
The constants are divided into classes according to the following relations.

In Table 2, the constants belong to a class with a zero or nonzero correlation
depending on whether k0 = 0 or 1. Furthermore, depending on whether k1 =
0 or 1, the constants belong to the class with a negative or positive correlation. In
Table 3, the constants belong to the class with a zero correlation if the nonlinear
relation k1�k3�k1k2�k0k1k2�k1k2k3�k0k1k2k3 = 0 applies. The rest of the
constants belong to the class with a negative or positive correlation depending
whether k0 � k1 � k2 � k3 � k4 = 1 or 0. Hence, the classes are not always
determined by linear relations, when the constant is within a T-function.

Table 2. The constant classes for the linear approximation with masks � = 00011,
�(0) = 00011, �(1) = 00011, �(2) = 00011 of fK when n = 5.

corfK �2�1 0 2�1

K

00001 00000, 10000 00011
00101 00010, 10010 00111
01001 00100, 10100 01011
01101 00110, 10110 01111
10001 01000, 11000 10011
10101 01010, 11010 10111
11001 01100, 11100 11011
11101 01110, 11110 11111

Table 3. The constant classes for the linear approximation with masks � = 11101,
�(0) = 10111, �(1) = 11110, �(2) = 11101 of fK when n = 5.

corfK �2�4 0 2�4

K

00010 00000, 10000 00011
00111 00001, 10001 00110
01000 00100, 10100 01001
01101 00101, 10101 01100
10011 01010, 11010 10010
10110 01011, 11011 10111
11001 01110, 11110 11000
11100 01111, 11111 11101
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