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ABSTRACT
This paper describes simulations designed to test the rela-
tive efficiency of two different sequential auction mechanisms
for allocating compute resources between users in a shared
data-center. Specifically we model the environment of a data
center dedicated to CGI rendering in which animators dele-
gate responsibility for acquiring adequate compute resources
to bidding agents that automously bid on their behalf. For
each of two possible auction types we apply a genetic algo-
rithm to a broad class of bidding strategies to determine a
near-optimal bidding strategy for a specified auction type,
and use statistics of the performance of these strategies to
determine the most suitable auction type for this domain.

Categories and Subject Descriptors
I.6.3 [Simulation and Modelling]: Applications—Eco-
nomics; I.2.1 [Artificial Intelligence]: Applications and
Expert Systems

1. INTRODUCTION
This paper describes simulations designed to test the rela-
tive efficiency of two different sequential auction mechanisms
for allocating compute resources between users in a shared
data-center. Specifically we model the environment of a data
center dedicated to CGI rendering in which animators dele-
gate responsibility for acquiring adequate compute resources
to bidding agents that automously bid on their behalf. For
each of two possible auction types we apply a genetic algo-
rithm to a broad class of bidding strategies to determine a
near-optimal bidding strategy for a specified auction type,
and use statistics of the performance of these strategies to
determine the most suitable auction type for this domain.

The business scenario we address is an Inter-business sce-
nario of resource contention – in which the market mediates
between different businesses that want access to the same
underlying resources – as opposed to an intra-business
scenario, in which a corporation uses “the market” as an

organizing principle for the allocaiton of resources between
competing groups within its own organization.

This paper is an attempt to assess the pros and cons of two
different market mechanisms relative to a fair-share bench-
mark for the inter-business scenario1, from the perspective
of simulation. Specifically, we simulate a resource utility
used by several competing agents, each of which has a col-
lection of CGI frames to render within a certain time period
and within a certain budget. To ground the simulations, we
have based the model on the SE3D project [6], in which a
select group of up-and-coming film-makers was given access
to a state-of-the-art CGI rendering utility owned by HP,
and were forced to acquire resources via markets. Section
3 describes the simulations in detail, including the model
used for the rendering jobs on which the agents work, and
the market mechanisms used. In Section 4 we describe the
space of bidding strategies studied, and the optimization
process applied to them (which depends upon the business
scenario). Section 5 lays out the results of the various sim-
ulation and GA runs; Section 2 describes the relevance of
this work to past work in the area of markets for compute
resources, and we conclude in Section 6.

The main contribution of this paper is an analysis of how
the operational properties of each of the market mechanisms
studied affects the performance of the system as a whole,
and how that relationship is affected by the design of model
parameters such as the size and number of render jobs that
agents have to complete.

2. RELATED WORK
The work of Ferguson et al on distributed markets for com-
pute resources [5] is some of the earliest. Like [12], [4], [13]
and [7], among others, allocation in Ferguson’s system is
done at the level of the individual server, in order to manage
distributed resources. The benefit of this approach is that by
distributing the mechanism a central point of control (and
hence potential failure) is eliminated. The downside of a
distributed mechanism is that allocations might be far from
optimal, and might have unstable dynamics, depending on
the coordination mechanisms used to migrate a job between
nodes on the basis of pricing2. In any case, since this paper
concerns a datacenter in which all compute resources are

1Further work will address the other business scenario and
comparisons between the two.
2Ferguson gets around this problem by charging jobs to mi-
grate, so that budget limitations damp migration.
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centrally hosted, there is no benefit to using a distributed
mechanism.

The other important reason for introducing markets (cited
in, for example, [10], [3], [2]) is to ensure value driven qual-
ity of service. The utility of introducing a market for the
resources allocation problem is thus to drive the selection of
which jobs get scarce resources from an assessment of which
jobs are most valuable (or, equivalently, least costly). The
implicit design goal is therefore to maximize the aggregate
utility of the user community, as expressed via their will-
ingness to part with (or conserve) hard cash. This is the
motivation behind SE3D [6].

The purpose of these simulation studies was to look beyond
markets in which people bid directly to an environment in
which agents act on users behalf to bid for resources. There
is a large body of work in the agent systems community that
deals with issues of this sort. A good example is the Trading
Agent Competition [11], run each year since 2002 as a forum
for investigating different autonomous agent strategies in a
complex e-commerce task. See also [2], [8].

A variety of auction mechanisms have been tried as the basis
for a market-based resource allocation system. In particu-
lar the Proportional Share and Generalized Vickrey mecha-
nisms we use here have both been used before – for example
PS in [4] and [7], GV in [12] and [13]. In addition other
mechanisms have been used such as an ascending N th price
mechanism (in [9]) similar to GV but in which the price
paid is the same for all winners and equal to the highest
losing bid; and a first price mechanism in [5], [10]. Almost
all the work cited evaluates a particular mechanism rather
than comparing alternative market mechanisms3.

3. RENDER UTILITY SIMULATOR
3.1 Infrastructure Model
The compute cluster is abstracted as a set of servers that
are centrally allocated, identical with respect to capability,
and resource constrained only with respect to the rate at
which they can do work. We are not concerned here with
memory, storage, network connectivity or physical location.
For security reasons, servers in SE3D are not shared between
animators, who have exclusive access to any server they have
been allocated. The implication of this for the simulation
is that the number of servers allocated to each agent is an
integer.

3.2 Rendering Model
To simulate the challenges that an agent might be expected
to face we have to simulate the operational details of the ren-
dering application acting on a “realistic” payload. The basic
unit of rendering is a frame, which is defined by its intrin-
sic work content, measured in server milliseconds. When a
frame is assigned to a server, work begins on the frame, and
proceeds either until the relevant number of milliseconds has
elapsed, or until rendering on the frame is terminated. To

3The aparent exception, [5] is misleading because a first-
price sealed-bid auction and a Dutch auction are economi-
cally equivalent. The difference in performance observed in
[5] is due to the sub-optimality of the bidding algorithms.

be faithful to the SE3D environment the rendering simulator
obeys the following constraints:

1. Work already done on a frame cannot be check-pointed,
so that if rendering on a frame is terminated before the
frame is complete, all work so far done on the frame is
lost, and must be done again.

2. A frame is not parallelizable at all, so that for a single
frame two servers would take the same amount of time
as one.

The combination of these two properties makes performance
non-linear with respect to resource levels, especially if frame
workloads are large compared to the timescale of the auc-
tions.

The task that each agent has to work on is a render job,
consisting of a set of frames and constraints on how those
frames can be rendered. For there to be any benefit from
parallelization it must be possible to render more than one
frame concurrently; for simplicity we assume total indepen-
dence of frames so that frames may be rendered in any order,
and any subset of frames may be rendered simultaneously
on different servers. The constraints under which the set of
frames must be rendered are:

1. Rendering may not commence before a specified start
time (e.g. the time at which render source code is
uploaded to the utility).

2. Rendering stops when a specified deadline is reached,
and any frames in progress are terminated.

3. Resources for rendering must be purchased within a
budget. Agents cannot spend more than their budget,
and cease activity when their money runs out.

3.3 Auction Models
In SE3D, resources were sold on a rolling basis both for
immediate use and in advance of later use. In these simula-
tions we restricted attention to auctions for resources avail-
able immediately; further work will examine the extension
to reservation markets, for which reasoning procedures will
necessarily have to be more complex. Thus time is divided
into “rounds”. In each round there are three steps: first
bids are gathered from each agents; then an auction is run
to determine resource allocations until the next round; then
work is done on each job with the resulting number of re-
sources, according to the rendering model described above
in Section 3.2.

There were two auction mechanisms tested in the SE3D
project, and these were faithfully reproduced in the sim-
ulation.

3.3.1 Proportional Share Auction
In a Proportional Share (PS) auction for N servers, each
agent submits a bid ba; the number of resources allocated
to each agent a is as close as possible to the share

Na
lim = N

ba

P
a′ b

a′ . (1)
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Since this number is not in general an integer, we cannot
in general give exactly Na

lim servers (which are indivisible).
Therefore the actual number Na allocated is determined in a
time-dependent way such that |Na−Na

lim| ≤ 1 and such that
if all bids remain the same for multiple successive rounds in
the auction, then the average allocation 〈Na〉 will converge4

on Na
lim. Before processing, bids are truncated to lie in

[0, Ba], where Ba is agent a’s total remaining balance.

3.3.2 Generalized Vickrey Auction
In a Generalized Vickrey (GV) auction for N servers, each
agent submits a vector of bids, (ba(1), ba(2), . . . , ba(N)). The
number ba(j) represents the maximum amount of money
that agent a would be willing to pay to secure exactly j re-
sources. The resource allocation Na to each agent is calcu-
lated so as to maximize the sum of maximum prices S(N) =P

a ba(Na). The price paid by each agent is set to be the
negative impact that the presence of that agent has on this
total as calculated over the other agents: with agent a re-

moved we calculate the allocation Na′
−a for the other agents

a′ that maximizes S−a(N−a) =
P

a′ 6=a ba′(Na′
−a). The price

paid by agent a is

S−a(N−a)− (S(N)− ba(Aa)) =
X

a′ 6=a

ba′(Na′
−a)− ba′(Na′).

(2)
If there are several allocations that give rise to the same
maximal total S(N), we cycle between those that minimize
the difference between allocations to different agents. For
example, if two agents bid (10, 20, 30) for a total of 3 re-
sources, any allocation of all the resources has value 30, the
two allocations that minimize the difference between agents
are (1, 2) and (2, 1) and so we cycle between these. The
period of this cycle in time steps is a parameter of the allo-
cation mechanism4. As with the PS auction, bids ba(n) are
set to zero when they are negative and to Ba when greater
than the agent’s remaining funds.

The GV mechanism is obviously more complicated to under-
stand (as a bidder) than the proportional share mechanism.
Its potential benefit is that it is known to have desirable
game-theoretic properties: In a one-shot auction the GV
mechanism is incentive compatible – i.e. a rational agent’s
best strategy is to truthfully reveal their demand for each
given number of resources. GV should allocate resources to
those agents who truly need the resources most, maximis-
ing the total utility of all agents combined. Of course in
common with most humans, animators are not likely to be
“rational” in the sense that economists intend it, and from
either a human or bidding agent standpoint, the calculation
of the marginal value of resources in a single auction round
is extremely complex since it depends on expected success
in future rounds.

In SE3D, to simplify bidding in the GV auction so that
bidders were not compelled to enter a complete vector of bids
for each time step, we constrained them to use bid vectors
from a 3-parameter family, parameterized by the maximum
number of units for which they wanted to bid (Nmax), a total
price for all units (bmax = ba(Nmax)), and a risk factor (r)

4In practice, extra resources cycled around once every three
time steps, to avoid too much “thrashing”

in [−1, 1] which determines the rate of decrease of marginal
demand ba(n) − ba(n − 1). For a full description of the
bidding functions see [1].

4. BIDDING STRATEGIES
4.1 Measuring Bidding Strategy Performance
The performance of a bidding strategy can only be mea-
sured indirectly from the performance of an agent using it
to render a particular sequence of frames against opposing
agents with their own jobs to work on. There are three core
metrics for measuring an agent’s performance on a job:

1. The number of frames remaining to be rendered when
the deadline was reached;

2. The amount of money remaining when the agents dead-
line was reached; and

3. The amount of work remaining when the agents dead-
line was reached.

An agent’s performance depends on its bidding strategy, the
job it has to complete (some jobs are intrinsically easier
than others), the number of resources available, and the
agents against which it is competing for resources – both
their strategies and their jobs. Except in trivial cases the
set of all possible jobs with which an agent might be faced is
too large to enumerate exhaustively. To evaluate the perfor-
mance of a bidding strategy we therefore run a large number
of simulations with jobs for all participants selected at ran-
dom from some suitable distribution. From this we infer the
average performance of a bidding strategy in the context
of a collection of opposing strategies. Two strategies can
be compared to one another by running the above process
twice – once for each strategy – in which case we use the
same sequence of jobs for each, so as to reduce the variance
of the comparison with respect to random job selection.

4.2 Restricting the space of strategies
In its most general form, an agent’s bid depends on the cur-
rent state of its job, the list of past bids it has made and
resulting allocations and prices, and any accumulated his-
tory of previous runs. In cases of interesting scale the space
of strategies is therefore far too large to enumerate. How-
ever, we can make the problem of identifying good strategies
tractable by only considering agents that use some of the in-
formation available, and by constraining them to use it in
certain ways.

When choosing their bid functions, we only allow agents to
consider static job description data such as the job’s bud-
get, start time, deadline and number of frames, and dynamic
job progress data such as the current time, the number of
frames completed and workload in each, and the total funds
remaining. Agents were carried no knowledge over from one
run to another, except that when no frames had been com-
pleted, agents based their predictions on a fixed parameter,
whose calibration can be seen as inter-run learning. The job
workload prediction algorithm was simple: each frame left
to render was expected to have work content equal to the
average work content in all frames rendered to date.
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4.3 PS Polynomial Family of Strategies
Agents operating in the PS market used a strategy whose
bid value was determined as a rational polynomial function
of the current time and time to complete (t, d). Specifically

ba/Ba = (ca
1/d + ca

2 + ca
3 .d + ca

4 .d2)× (1 + ca
5 .t + ca

6 .t2), (3)

where Ba is agent a’s remaining funds at the time of bid-
ding. A given strategy within this family is determined
by specifying the 6 values above. The default strategy was
ba/Ba = 2/d, which allocates an equal amount of remaining
budget over all remaining auction rounds.

4.4 GV Polynomial Family of Strategies
Agents operating in the GV auction bid using the same con-
strained family of bid functions with which animators were
confronted. They used a strategy whose parameters (Nmax,
bmax, r) were determined as rational polynomial functions
of the current time and time to complete (t, d). Specifically

Nmax/N = (cN
1 /d + cN

2 + cN
3 .d + cN

4 .d2)
×(1 + cN

5 .t + cN
6 .t2),

bmax/Ba = (cb
1/d + cb

2 + cb
3.d + cb

4.d
2)

×(1 + cb
5.t + cb

6.t
2),

r = (cr
1/d + cr

2 + cr
3.d + cr

4.d
2)

×(1 + cr
5.t + cr

6.t
2),

(4)

where N is the total number of resources available in the
auction. As with PS strategies, the data are truncated to
their appropriate ranges. A given strategy within this fam-
ily is determined by specifying the 18 values above. The
default strategy was Nmax/N = 1, bmax/Ba = 1/d, r = 0,
spreading the total budget evenly over the time interval as
before.

It is clear that even within the restricted families described
above we have no hope of finding any equilibria analytically.
When confronted with this situation, different researchers
have taken different approaches. We chose to apply a genetic
algorithm to the sets of parameter values in (3) and (4), in
order to evolve appropriate strategies.

5. RESULTS
The standard simulation environment consists of 6 agents,
15 resources, job start time from U [0, 10], job durations from
U [20, 40], number of frames from U [10, 20], and budget per
frame from N(0.8, 0.2) – the normal distribution with mean
0.8 and standard deviation 0.2; these parameters are chosen
to maximise the difference in performance between the bid-
ding algorithms, by avoiding scenarios that are either too
easy or too hard.

A benchmark resource allocation mechanism is “fair share”
(FS) in which each “active” agent is simply given an equal
share4 of the resources; agents are active if the start time
of their job has been reached, the deadline has not been
reached, and the job is not complete.

5.1 Evolved Polynomial Bid Functions
The pattern is clear: the evolved GV strategy commits far
more resources to short-deadline late-in-the-day states than

the default strategy. One possible reason for this is that if
the deadline is large then it is probable that the agent’s job
will outlast the opposition anyway, and by bidding less early
on, other agents with tighter deadlines (who are willing to
spend more) will get their jobs done in time to allow later
processing at lower cost. Note that the values are far above
1, showing that agents bid at a potentially unsustainable
level. However, in the GV mechanism agents usually do not
pay their full bid amount, so the high level of bmax can also
be interpretted as an implicit calculation of likely payments
for given bid data.

Other parameters from the GV bid function are not shown,
to save space, but are also interesting. The trend is towards
risk aversion as deadlines approach, and towards bidding for
more units (up to 3 times as many) as are available in the
auction! Clearly the bid function is using the parameters to
discover bid vector shapes that were not anticipated in the
design of the parameter space.

The evolved PS agent is much closer to its default value, with
neither function significantly different from (in the sense
that 1 lies within the population envelope).

5.2 Performance data
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Figure 1: Distribution of number of incomplete
frames.

Figure 1 shows the distribution of the number of frames that
have not been rendered by the time of the jobs deadline.
Although FS has the greatest frequency of runs in which all
frames are completed 25.7%, it has a higher proportion of
cases in which a large number of frames is incomplete than
PS. This is reflected in the standard deviation of frames
complete – 5.54 for FS as opposed to 3.85 for PS. In fact
PS has both the lowest variance and the lowest mean: 3.85
for PS as opposed to 4.90 for FS. GV has the highest mean
6.38 and the highest standard deviation 7.43.

To try to analyse why mechanisms might give the perfor-
mance metrics they do, we can examine the statistics of
resource allocation.

Figure 2 shows allocation distributions for each allocation
mechanism at time step 15. As can be seen, Fair share
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Figure 2: Distribution of resource allocation for PS
and GV markets at time 15.

has the most predictable distribution of allocations at this
time. By time 15 all agents’ jobs have started and none have
ended, so all agents are active. Since there are 6 agents and
15 resources, each agent gets either 2 or 3 with 50% proba-
bility. For PS, and GV, the range of possible allocations at
this time is wider, resulting not only from the fact that job
priority, as represented via budget, is taken into account,
but also from the intrinsic volatility of each mechanism it-
self. In this respect PS is seen to be lead to a lower spread
of resource allocations (for the same set of jobs) than GV.

The data in figure 2 indicates that the three mechanisms
lead to quite different degrees of variability of allocation.
However, it only speaks directly to variability between runs
at a given time, rather than variability for a single run over
the lifetime of a job. For this we should look at the distri-
bution of all absolute changes to resource allocation.

The standard deviations of allocation change are 1.12, 1.14
and 1.24 for PS, FS and GV respectively, showing that al-
though the allocations generated by FS have markedly lower
variance than the other mechanisms at time 15, over the
lifetime of a job FS gives a similar although slightly higher
level of variability to PS. Interestingly PS is far ahead when
it comes to the number of time steps in which allocation did
not change at all: 75%, as opposed to 66% and 67% for GV
and FS respectively.

6. CONCLUSION
Markets as an organizing principal for large compute clusters
have been proposed for several reasons. In distributed sys-
tems with no central resource allocation mechanism they are
a natural fit for the problem of incenting self-interested par-
ticipants to behave well. In this paper we examine a different
scenario, in which the provider of a centralized compute re-
source uses markets to mediate the conflicting needs of a
variety of users having access to a shared resource. While
it might seem that the choice of mechanism for such a mar-
ket is arbitrary on the grounds that supply and demand
should lead to the same equilibrium, in fact we find that
when supply and demand fluctuate and are uncertain, and

when allocation changes are costly, the precise dynamics of a
mechanism can greatly affect the efficiency of the whole sys-
tem. An inappropriate mechanism – GV in this case – can
be worse than simply sharing the resources equally among
participants irrespective of need; an appropriate mechanism
however can consistently do better for the community as a
whole.
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