
Survey of Research on Software Clones

Rainer Koschke1

Universität Bremen, Germany

Summary. This report summarizes my overview talk on software clone detection
research. It first discusses the notion of software redundancy, cloning, duplication,
and similarity. Then, it describes various categorizations of clone types, empirical
studies on the root causes for cloning, current opinions and wisdom of consequences
of cloning, empirical studies on the evolution of clones, ways to remove, to avoid,
and to detect them, empirical evaluations of existing automatic clone detector per-
formance (such as recall, precision, time and space consumption) and their fitness
for a particular purpose, benchmarks for clone detector evaluations, presentation
issues, and last but not least application of clone detection in other related fields.

After each summary of a subarea, I am listing open research questions.

1 Software Redundancy, Code Cloning, and Code

Duplication

There are different forms of redundancy in software. Software comprises both
programs and data. In the data base community, there is a clear notion of
redundancy that has lead to various levels of normal forms. A similar theory
does not yet exist for computer programs.

In computer programs, we can also have different types of redundancy.
We should note that not every type of redundancy is harmful. For instance,
programming languages use redundant declarations so that a compiler is able
to check consistency between declarations and their uses. Also, at the archi-
tectural level, n-version programming is a strategy in which redundancy is
purposefully and consciously used to implement reliable systems.

Sometimes redundant is used also in the sense of superflous in the software
engineering literature. For instance, Xie and Engler show that superflous (they
call them redundant) operations such as idempotent operations, assignments
that are never read, dead code, conditional branches that are never taken, and
redundant NULL-checks can pinpoint potential errors [1, 2, 3].

Redundant code is also often misleadingly called cloned code in the
literature—although that implies that one piece of code is derived from the

Dagstuhl Seminar Proceedings 06301
Duplication, Redundancy, and Similarity in Software
http://drops.dagstuhl.de/opus/volltexte/2007/962

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62912341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Rainer Koschke

other one in the original sense of this word. According to the Merriam-Webster
dictionary, a clone is one that appears to be a copy of an original form. It is
a synonym to duplicate. Although cloning leads to redundant code, not every
redundant code is a clone. There may be cases in which two code segments
that are no copy of each other just happen to be similar or even identical by
accident. Also, there may be redundant code that is semantically equivalent
but has a completely different implementation.

There is no agreement in the research community on the exact notion
of redundancy and cloning. Ira Baxter’s definition of clones expresses this
vagueness:

Clones are segments of code that are similar according to some defi-
nition of similarity. —Ira Baxter, 2002

According to this definition, there can be different notions of similarity.
They can be based on text, lexical or syntactic structure, or semantics. They
can even be similar if they follow the same pattern, that is, the same building
plan. Instances of design patterns and idioms are similar in that they follow
a similar structure to implement a solution to a similar problem.

Semantic difference relates to the observable behavior. A piece of code,
A, is semantically similar to another piece of code, B, if B subsumes the
functionality of A, in other words, they have “similar” pre and post conditions.

Unfortunately, detecting such semantic redundancy is undecidable in gen-
eral although it would be worthwhile as you can often estimate the number
of developers of a large software system by the number of hash table or list
implementations you find.

Another definition of redundancy considers the program text: Two code
fragments form a redundancy if their program text is similar. The two code
fragments may or may not be equivalent semantically. These pieces are re-
dundant because one fragment may need to be adjusted if the other one is
changed. If the code fragments are executable code, their behavior is not
necessarily equivalent or subsumed at the concrete level, but only at a more
abstract level. For instance, two code pieces may be identical at the textual
level including all variable names that occur within but the variable names are
bound to different declarations in the different contexts. Then, the execution
of the code changes different variables. Figure 1 shows two textually identical
segments in the line range of 4–6 and 10–12, respectively. The semantic dif-
ference is that the first segment sets a global variable whereas the second one
a local variable. The common abstract behavior of the two code segments is
to iterate over a data structure and to increase a variable in each step.

Program-text redundancy is most often the result of copy&paste; that
is, the programmer selects a code fragment and copies it to another location.
Sometimes, these programmers are forced to copy because of limitations of the
programming language. In other cases, they intend to reuse code. Sometimes
these clones are modified slightly to adapt them to their new environment or

Survey of Research on Software Clones 3

1 int sum = 0 ;
2
3 void foo (I t e r a t o r i t e r){
4 for (item = f i r s t (i t e r) ; has more (i t e r) ; item = next (i t e r)){
5 sum = sum + value (item) ;
6 }
7 }
8 int bar (I t e r a t o r i t e r){
9 int sum = 0 ;

10 for (item = f i r s t (i t e r) ; has more (i t e r) ; item = next (i t e r)){
11 sum = sum + value (item) ;
12 }
13 }

Fig. 1. Example of code clones.

purpose. Several authors report on 7-23% code duplication [4, 5, 6]; in one
extreme case even 59% [7].

Clearly, the definition of redundancy, similarity, and cloning in software is
still an open issue. There is little consensus in this matter. A study by Walen-
stein et al. [8], for instance, reports on differences among different human
raters for clone candidates. In this study, clones were to be identified that
ought to be removed and Walenstein et al. gave guidelines towards clones
worthwhile being removed. The human raters of the clones proposed by au-
tomated tools did rarely agree upon what constitutes a clone worth to be
removed. While the sources of inter-rater difference could be the insufficient
similarity among clones or the appraisal of the need for removal, the study still
highlights that there is no clear consensus yet, even for task-specific definitions
of clones.

Our community should try to develop a general notion of redundancy,
similarity, and cloning, and then identify more task-oriented categorizations
of clones. Other research areas have similar difficulties in defining their funda-
mental terms. For instance, the architecture community debates the notion of
architecture and the community of object-oriented programming the notion
of object. Typically, these heated discussions cool down after a while when
no consensus can be reached and no new arguments can be made. So, should
we just stop discussing this matter, too? To some extent, these fundamental
terms define the field. So it is important to clarify them. It is difficult, for
instance, to create benchmarks to evaluate automatic clone detectors if it is
unclear what we consider a clone.

4 Rainer Koschke

2 Types of Clones

Program-text clones can be compared on the basis of the program text that
has been copied. We can distinguish the following types of clones accordingly:

• Type 1 is an exact copy without modifications (except for whitespace and
comments).

• Type 2 is a syntactically identical copy; only variable, type, or function
identifiers have been changed.

• Type 3 is a copy with further modifications; statements have been
changed, added, or removed.

Baker further distinguishes so called parameterized clones [9], which are
a subset of type-2 clones. Two code fragments A and B are a parameterized
clone pair if there is a bijective mapping from A’s identifiers onto B’s iden-
tifiers that allows an identifier substitution in A resulting in A

′ and A
′ is a

type-1 clone to B (and vice versa).
While type-1 and type-2 clones are precisely defined and form an equiv-

alence relation, the definition of type-3 clones is inherently vague. Some re-
searchers consider two consecutive type-1 or type-2 clones together forming a
type-3 clone if the gap in between is below a certain threshold of lines [4, 23].
Another precise definition could be based on a threshold for the Levenshtein
Distance, that is, the number of deletions, insertions, or substitutions required
to transform one string into another. There is no consensus on a suitable sim-
ilarity measure for type-3 clones yet.

The above simple classification is still very rough. Balazinska et al. in-
troduced a more refined classification for function clones [10] as described
in Table 1. This classification makes sense for selecting a suitable strategy
for clone removal. For instance, the design pattern TemplateMethod may be
used to factor out differences in the types used in different code fragments or
the design pattern Strategy can be used to factor out algorithmic differences
[11, 12]. Furthermore Balazinska et al. argue that each class is associated with
a different risk in clone removal.

Kasper et al.’s classification is the most elaborated classification to date
[13, 14] (cf. Table 2). The first level is a hint about the distance of clones.
An argument can be made (although there is no empirical study on this hy-
pothesis) that it is likely that clones between files are more problematic than
within the same file as that it is more likely to overlook the former clones
when it comes to consistent changes. The second decision distinguishes which
syntactic units are copied. The third gives the degree of similarity and the
fourth may be used to filter irrelevant or spurious clones.

There are still several open fundamental and terminological questions in
software redundancy as follows:

• What are suitable definitions of similarity for which purpose?

Survey of Research on Software Clones 5

• difference in method attributes (static, private, throws, etc.)
• single-token difference in function body

– further distinction into type of token:
— called method
— parameter type
— literal
— . . .

• token-sequence difference in function body
— one unit (expression or statement) differs in token sequence
— two units
— more than two units

Table 1. Classification by Balazinska et al.

1. At first level, distinguish clones within the same or across dif-
ferent files

2. then, according to type of region:
• functions
• declarations
• macros
• hybrids (in more than one of the above)
• otherwise (among typedefs, variable declarations, function

signatures)
3. then, degree of overlap or containment
4. then, according to type of code sequence:

• initialization clones (first five lines)
• finalization clones (last five lines)
• loop clones (60% overlap of bodies)
• switch and if (60% overlap of branches)
• multiple conditions: several switch and if statements
• partial conditions: branches of switch/if are similar

Table 2. Classification by Kasper et al. [13, 14]

• What other categorizations of clones make sense (e.g., semantics, origins,
risks, etc.)?

• What is the statistical distribution of clone types?
• Are there correlations among orthogonal categories?
• Which strategies of removal and avoidance, risks of removal, potential dam-

ages, root causes, and other factors are associated with these categories?
• Can we create a theory of redundancy similar to normal forms in databases?

6 Rainer Koschke

3 The Root Causes for Code Clones

A recent ethnographic study by Kim and Notkin [15] has shed some light on
why programmers copy and paste code. By observing programmers in their
daily practice they identified the following reasons.

Sometimes programmers are simply forced to duplicate code because of
limitations of the programming language being used. Analyzing these root
causes in more detail could help to improve the language design.

Furthermore, programmers often delay code restructuring until they have
copied and pasted several times. Only then, they are able to identify the vari-
abilities of their code to be factored out. Creating abstract generic solutions in
advance often leads to unnecessarily flexible and hence needlessly complicated
solutions. Moreover, the exact variabilities may be difficult to foresee. Hence,
programmers tend to follow the idea of extreme programming in the small by
not investing too much effort in speculative planning and anticipation.

Systems are modularized based on principles such as information hiding,
minimizing coupling, and maximizing cohesion. In the end—at least for sys-
tems written in ordinary programming languages—the system is composed
of a fixed set of modules. Ideally, if the system needs to be changed, only a
very small number of modules must be adjusted. Yet, there are very different
change scenarios and it is not unlikely that the chosen modularization forces
a change to be repeated for many modules. The triggers for such changes
are called cross-cutting concerns. For instance, logging is typically a feature
that must be implemented by most modules. Another example is parame-
ter checking in defensive programming where every function must check its
parameters before it fulfills its purpose [16]. Then copy&paste dependencies
reflect important underlying design decisions, namely, cross-cutting concerns.

Another important root cause is that programmers often reuse the copied
text as a template and then customize the template in the pasted context.

Kasper et al. have investigated clones in large systems [17]. They found
what they call patterns of cloning where cloning is consciously used as an
implementation strategy. In their case study, they found the following cloning
patterns:

Forking is cloning used to bootstrap development of similar solutions, with
the expectation that evolution of the code will occur somewhat indepen-
dently, at least in the short term. The assumption is that the copied code
takes a separate evolution path independent of the original. In such a case,
changes in the copy may be made that have no side effect on the original
code.

Templating is used as a method to directly copy behavior of existing code but
appropriate abstraction mechanisms are unavailable. It was also identified
as a main driver for cloning in Kim and Notkin’s case study [15]. Tem-
plating is often found when a reused library has a relatively fixed protocol
(that is, a required order of using its interface items) which manifests as

Survey of Research on Software Clones 7

laying out the control flow of the interface items as a fixed pattern. For
instance, the code in Figure 1 uses a fixed iteration scheme for variable
iter.

Customization occurs when currently existing code does not adequately meet
a new set of requirements. The existing code is cloned and tailored to
solve this new problem.

Very likely other more organizational aspects play a role, too. Time pres-
sure, for instance, does not leave much time to search for the best long-term
solution. Unavailable information on the impact of code changes leads pro-
grammers to create copies in which they make the required enhancement; such
changes then are less likely to affect the original code negatively. Inadequate
performance measures of programmers’ productivity in the number of lines of
code they produce neither invite programmers to avoid duplicates.

Although the two studies by Kim and Notkin as well as Kapser and God-
frey are important first contributions, this area certainly requires more similar
studies about root causes for cloning. Other potential reasons should be in-
vestigated:

• insufficient information on global change impact
• badly organized reuse process (type-4 clones)
• questionable productivity measures (LOCs per day)
• time pressure
• educational deficiencies, ignorance, or shortsightedness
• intellectual challenges (e.g., generics)
• professionalism/end-user programming (e.g., HTML, Visual Basic, etc.)
• development process ([18]: XP yields less clones?)
• organizational issues, e.g., distributed development organizations

Identifying the root causes would help us to fight the reasons, not just the
symptoms, for instance, by giving feedback for programming language design.

4 Consequences of Cloning

There are plausible arguments that code cloning increases maintenance effort.
Changes must be made consistently multiple times if the code is redundant.
Often it is not documented where code has been copied. Manual search for
copied code is infeasible for large systems. Furthermore during analysis, the
same code must be read over and over again, then compared to the other code
just to find out that this code has already been analyzed. Only if you make
a detailed comparison, which can be difficult if there are subtle differences
in the code or its environment, you can be sure that the code is indeed the
same. This comparison can be fairly expensive. If the code would have been
implemented only once in a function, this effort could have been completely
avoided.

8 Rainer Koschke

For these reasons, code cloning is number one on the stink parade of bad
smell by Fowler [19]. But there are also counter arguments. In Kapser and
Godfrey’s study [17], code cloning is a purposeful implementation strategy
which may make sense under certain circumstances. Moreover, it is not clear
when you have type-3 clones whether the unifying solution would be easier
to maintain than several copies with small changes. Generic solutions can
become overly complicated. Maintainability can only be defined in a certain
context with controlled parameters. That is, a less sophisticated programmer
may be better off maintaining copied code than a highly parameterized piece
of code. Moreover, there is a risk associated with removing code clones [20].
The removal requires deep semantic analyses and it is difficult to make any
guarantees that the removal does not introduce errors. There may be even
organizational reasons to copy code. Code cloning could, for instance, be used
to disentangle development units [20].

The current debate lacks empirical studies of the costs and benefits of code
cloning. To my knowledge, there is only one empirical study that explores
the interrelationship of code cloning and maintainability. Monden et al. [21]
analyzed a large system consisting of about 2,000 modules written in 1 MLOC
lines of Cobol code over a period of 20 years. They used a token-based clone
detector to find clones that were at least 30 lines long. They searched for
correlations of maximal clone length with change frequency and number of
errors. They found that most errors were reported for modules with clones of
at least 200 lines. They also found still many errors in modules with shorter
clones up to 50 lines. Yet, interestingly enough, they found the lowest error
rate for modules with clones of 50 to 100 lines. Monden et al. have not further
analyzed why these maintainability factors correlate in such a way with code
cloning.

Chou et al. [22] investigated the hypothesis that if a function, file, or
directory has one error, it is more likely that is has others. They found in
their analysis of the Linux and OpenBSD kernels that this phenomenon can
be observed most often where programmer ignorance of interface or system
rules combines with copy-and-paste. They explain the correlation of bugs and
copy-and-paste primarily by programmer ignorance, but they also note that
– in addition to ignorance – the prevalence of copy-and-paste error clustering
among different device drivers and versions suggests that programmers believe
that “working” code is correct code. They note that if the copied code is
incorrect, or its placed into a context it was not intended for, the assumption
of goodness is violated.

Li et al. [23] use clone detection to find bugs when programmers copy code
but rename identifiers in the pasted code inconsistently. On average, 13 % of
the clones flagged as copy-and-paste bugs by their technique turned out to be
real errors for the systems Linux kernel, FreeBSD, Apache, and PostgreSQL.
The false positive rate is 73 % on average, where on average 14 % of the
potential problems are still under analysis by the developers of the analyzed
systems.

Survey of Research on Software Clones 9

The empirical studies described here show interesting results. Most cer-
tainly, more empirical research along these lines should be conducted on the
relation of cloning and quality attributes of software.

5 Clone Evolution

There are a few empirical studies on the evolution of clones, which describe
some interesting observations. Antoniol et al. propose time series derived from
clones over several releases of a system to monitor and predict the evolution
of clones [24]. Their study for the data base system mSQL showed that the
prediction of the average number of clones per function is fairly reliable. In
another case study for the Linux kernel, they found that the scope of cloning
is limited [25]. Only few clones can be found across subsystems; most clones
are completely contained within a subsystem. In the subsystem arch, con-
stituting the hardware architecture abstraction layer, newer hardware archi-
tectures tend to exhibit slightly higher clone rates. The explanation for this
phenomenon is that newer modules are often derived from existing similar
ones. The relative number of clones seems to be rather stable, that is, cloning
does not occur in peaks. This last result was also reported by Godfrey and Tu
who noticed that cloning is common and steady practice in the Linux kernel
[26]. However, the cloning rate does increase steadily over time. Li et al. [23]
observed for the Linux kernel in the period of 1994 to 2004 that the redun-
dancy rate has increased from about 17 % to about 22 %. They observed a
comparable behavior for FreeBSD. Most of the growth of redundancy rate
comes from a few modules, including drivers and arch in Linux and sys in
FreeBSD. The percentage of copy-paste code code increases more rapidly in
those modules than in the entire software suite. They explain this observation
by the fact that Linux supports more and more similar device drivers during
this period.

Kim et al. analyzed the clone genealogy for two open-source Java systems
using historical data from a version control system [27]. A clone genealogy
forms a tree that shows how clones derive in time over multiple versions of a
program from common ancestors. Beyond that, the genealogy contains infor-
mation about the differences among siblings.

Their study showed that many code clones exist in the system for only
a short time. Kim et al. conclude that extensive refactoring of such short-
lived clones may not be worthwhile if they likely diverge from one another
very soon. Moreover, many clones, in particular those with a long lifetime
that have changed consistently with other elements in the same group cannot
easily be avoided because of limitations of the programming language.

Clearly, as already mentioned above, more empirical studies along these
lines are required. These studies should take industrial systems into account,
too, as it is unclear to which extent these current observations can be at-
tributed to the nature of open-source development. It would also be interest-

10 Rainer Koschke

ing to investigate what the degree of cloning tells about the organization or
development process. For instance, a study by Nickell and Smith reports that
the extreme programming projects in their organization produce significantly
fewer clones [18].

These studies should be target at the following questions (among others):

• How do clones evolve in industrial systems?
• What does their evolution tell about the development organization?
• What are reliable predictors?

6 Clone removal

If you do want to remove clones, there are several way to do so. There are even
commercial tools, such as CloneDr1 by Semantics Design to automatically
detect and remove clones. Cloning and automatic abstraction and removal
could even be a suitable implementation approach as hinted by Ira Baxter:

Cloning can be a good strategy if the you have the right tools in place.
Let programmers copy and adjust, and then let tools factor out the
differences with appropriate mechanisms. –Ira Baxter, 2002

In simple cases, you can use functional abstraction to replace equivalent
copied code by a function call to a newly created function that encapsulates
the copied code [28, 29]. In more difficult cases, when the difference is not
just in the variable names that occur in the copied code, one may be able
to replace by macros if the programming languages comes with a preproces-
sor. A preprocessor offers textual transformations to handle more complicated
replacements. If a preprocessor is available, one can also use conditional com-
pilation. As the excessive use of macros and conditional compilation may
introduce many new problems, the solution to the redundancy problem may
be found at the design level. The use of design patterns is an option to avoid
clones by better design [11, 12]. Yet, this approach requires much more hu-
man expertise and, hence, can be less automated. Last but not least, one can
develop code generators for highly repetitive code.

In all approaches, it is a challenge to cut out the right abstractions and
to come up with meaningful names of generated functions or macros. More-
over, it is usually difficult to check the preconditions for these proposed
transformations—be they manual or automated.

Empirical investigations of costs and benefits of clone removal are needed
so that informed refactoring decisions can be made:

• What is the relation of clone types to quality attributes?
• Is there a relevance ranking of clone types for removal?
• How are clone types associated with suitable removal techniques and what

are their benefits, costs and risks?

1 Trademark of Semantic Designs, Inc.

Survey of Research on Software Clones 11

7 Clone Avoidance

Rather than removing clones after the offense, it may be better to avoid them
right from the beginning by integrating clone detection in the normal devel-
opment process. Lague et al. identify two ways to integrate clone detection in
normal development [6].

It can be used as preventive control where the code is checked continuously—
for instance, at each check-in in the version control system or even on the fly
while the code is edited—and the addition of a clone is reported for confirma-
tion.

A complementary integration is problem mining where the code currently
under modification is searched in the rest of the system. The found segments
of code can then be checked whether the change must be repeated in this
segment for consistency.

Lague et al. assessed the benefits of integrating clone detection in normal
development by analyzing the three-year version history of a very large pro-
cedural telecommunication system [6]. In total, 89 million of non-blank lines
(including comments) were analyzed, for an average size of 14.83 million lines
per version. The average number of functions per release was 187,000.

Problem mining is assessed by the number of functions changed that have
clones that were not changed; that is, how often a modification was missed
potentially. Preventive control is assessed by the number of functions added
that were similar to existing functions; that is, the code that could have been
saved.

It is interesting to note, that—contrary to their expectations—they ob-
served a low rate of growth in the number of overall clones in the system, due
to the fact that many clones were actually removed from the system.

They conclude from their data that preventive control would help to lower
the number of clones. Many clones disappeared only long after the day they
came into existence. Early detection of clones could lead to taking this measure
earlier.

They also found that problem mining could have provided programmers
with a significant number of opportunities for correcting problems before end-
user experienced them. The study indicates a potential for improving the
software system quality and customer satisfaction through an effective clone
management strategy.

The open issues are:

• What is the best integration of clone detection in the normal development
process?

• In particular, what are the benefits and costs of possible integrations?
• What are reliable cloning indicators to trigger refactoring actions?
• How can we help organizations that already have many clones? How do

we manage these clones?

12 Rainer Koschke

8 Clone Detection

While there is an ongoing debate as to whether remove clones, there is a
consensus about the importance to at least detect them. Clone avoidance
during normal development, as described in the previous section, as well as
making sure that a change can be made consistently in the presence of clones
requires to know where the clones are. Manual clone detection is infeasible for
large systems, hence, automatic support is necessary.

Automated software clone detection is an active field of research. This sec-
tion summarizes the research in this area. The techniques can be distinguished
at the first level in the type of information their analysis is based on and at
the second level in the used algorithm.

8.1 Textual comparison

The approach by Rieger et al. compares whole lines to each other textually
[7]. To increase performance, lines are partitioned using a hash function for
strings. Only lines in the same partition are compared. The result is visu-
alized as a dotplot, where each dot indicates a pair of cloned lines. Clones
may be found as certain patterns in those dotplots visually. Consecutive lines
can be summarized to larger cloned sequences automatically as uninterrupted
diagonals or displaced diagonals in the dotplot.

Johnson [30, 31] uses the efficient string matching by Karp and Rabin
[32, 33] based on fingerprints.

Marcus et al. [34] compare certain pieces of text, namely, identifiers using
latent semantic indexing, a technique from information retrieval. The idea
here is to identify fragments in which similar names occur as potential clones.

8.2 Token comparison

Baker’s technique is also a line-based comparison. Instead of a string com-
parison, the token sequences of lines are compared efficiently through a suffix
tree. First, each token sequence for a whole line is summarized by a so called
functor that abstracts of concrete values of identifiers and literals [4]. The
functor characterizes this token sequence uniquely. Assigning functors can be
viewed as a perfect hash function. Concrete values of identifiers and literals
are captured as parameters to this functor. An encoding of these parameters
abstracts from their concrete values but not from their order so that code frag-
ments may be detected that differ only in systematic renaming of parameters.
Two lines are clones if they match in their functors and parameter encoding.

The functors and their parameters are summarized in a suffix tree, a trie
that represents all suffixes of the program in a compact fashion. A suffix tree
can be built in time and space linear to the input length [35, 36]. Every branch
in the suffix tree represents program suffixes with common beginnings, hence,
cloned sequences.

Survey of Research on Software Clones 13

Kamiya et al. increase recall for superfluous different, yet equivalent se-
quences by normalizing the token sequences [37].

Because syntax is not taken into account, the found clones may overlap
different syntactic units, which cannot be replaced through functional ab-
straction. Either in a preprocessing [38, 39, 40] or post-processing [41] step,
clones that completely fall in syntactic blocks can be found if block delim-
iters are known. Preprocessing and postprocessing both require some syn-
tactic information—gathered either lightweight by counting tokens opening
and closing syntactic scopes or island grammars [42] or a full-fledged syntax
analysis [40].

8.3 Metric comparison

Merlo et al. gather different metrics for code fragments and compare these
metric vectors instead of comparing code directly [6, 5, 43, 44]. An allowable
distance (for instance, Euclidean distance) for these metric vectors can be
used as a hint for similar code. Specific metric-based techniques were also
proposed for clones in web sites [45, 46].

8.4 Comparison of abstract syntax trees (AST)

Baxter et al. partition subtrees of the abstract syntax tree of a program based
on a hash function and then compare subtrees in the same partition through
tree matching (allowing for some divergences) [47]. A similar approach was
proposed earlier by Yang [48] using dynamic programming to find differences
between two versions of the same file.

Suffix trees—central to token-based techniques following Baker’s idea—can
also be used to detect sequences of identical AST nodes. In the approach by
Koschke et al. [49], the AST nodes are serialized in preorder traversal, a suffix
tree is created for these serialized AST nodes, and the resulting maximally
long AST node sequences are then cut according to their syntactic region so
that only syntactically closed sequences remain.

8.5 Comparison of program dependency graphs

Token-based techniques and syntax-based techniques depend upon the textual
order of the program. If programmers modify the order of the statements in
copied code (for instance, to camouflage plagiarism) or use code cloning as
in the templating implementation strategy (see Section 3), where the basic
skeleton of an algorithm is reused and then certain pieces are adjusted to the
new context, the copied code will not be found.

Yet, the order cannot be changed arbitrarily without changing the mean-
ing of the program. All control and data dependencies must be maintained. A
program dependency graph [50] is a representation of a program that repre-
sents only the control and data dependency among statements. Clones may be

14 Rainer Koschke

identified as isomorphic subgraphs in a program dependency graph [51, 52].
Because this problem is NP hard, the algorithms use approximative solutions.

8.6 Other techniques

Leitao [53] combines syntactic and semantic techniques through a combination
of specialized comparison functions that compare various aspects (similar call
subgraphs, commutative operators, user-defined equivalences, transformations
into canonical syntactic forms). Each comparison function yields an evidence
that is summarized in an evidence-factor model yielding a clone likelihood.
Walter et al. [54] and Li et al. [55] cast the search for similar fragments as a
data mining problem. Statement sequences are summarized to item sets. An
adapted data mining algorithm searches for frequent item sets.

9 Comparison of Clone Detection Algorithms

The abundance of clone detection techniques calls for a thorough comparison
so that we know the strength and weaknesses of these techniques in order to
make an informed decision if we need to select a clone detection technique for
a particular purpose.

Clone detectors can be compared in terms of recall and precision of their
findings as well as suitability for a particular purpose. There are several eval-
uations along these lines based on qualitative and quantitative data.

Bailey and Burd compared three clone and two plagiarism detectors [56].
Among the clone detectors were three of the techniques later evaluated by
the subsequent study by Bellon and Koschke [57], namely, the techniques by
Kamiya [37], Baxter [47], and Merlo [43]. For the latter technique, Bailey
used an own re-implementation; the other tools were original. The plagiarism
detectors were JPlag [58] and Moss [59].

The clone candidates of the techniques were validated by Bailey, and the
accepted clone pairs formed an oracle against which the clone candidates were
compared. Several metrics were proposed to measure various aspects of the
found clones, such as scope (i.e., within the same file or across file boundaries),
and the findings in terms of recall and precision.

The syntax-based technique by Baxter had the highest precision (100%)
and the lowest recall (9%) in this experiment. Kamiya’s technique had the
highest recall and a precision comparable to the other techniques (72%). In-
terestingly, Merlo’s metric-based technique showed the least precision (63%).

Although the case study by Bailey and Burd showed interesting initial
results, it was conducted on only one relatively small system (16 KLOC).
However, because the size was limited, Bailey was able to validate all clone
candidates.

A subsequent larger study was conducted by Bellon and Koschke [60, 57].
Their likewise quantitative comparison of clone detectors was conducted for

Survey of Research on Software Clones 15

4 Java and 4 C systems in the range of totalling almost 850 KLOC. The
participants and their clone detectors evaluated are listed in Table 3.

Participant Tool Comparison

Brenda S. Baker [4] Dup Token
Ira D. Baxter [47] CloneDr AST
Toshihiro Kamiya [37] CCFinder Token
Jens Krinke [51] Duplix PDG
Ettore Merlo [43] CLAN Function Metrics
Matthias Rieger [7] Duploc Text

Table 3. Participating scientists

Table 4 summarizes the findings of Bellon and Koschke’s study. Row clone

type lists the type of clones the respective clone detector finds (for clone types,
see Section 2). The next two rows qualify the tools in terms of their time and
space consumption. The data is reported at an ordinal scale - -, -, +, + +
where - - is worst (the exact measures can be found in the paper to this
study [60, 57]). Recall and precision are determined as in Bailey and Burd’s
study by comparing the clone detectors’ findings to a human oracle. The same
ordinal scale is used to qualify the results; exact data are reported in the paper
[60, 57].

Baker Baxter Kamiya Krinke Merlo Rieger

Clone type 1, 2 1, 2 1, 2, 3 3 1, 2, 3 1, 2, 3
Speed + + - + - - + + ?
RAM + - + + + + ?
Recall + - + - - +
Precision - + - - + -

Table 4. Results from the Bellon and Koschke study.

The difference in precision of Merlo’s approach in this comparison to the
study by Bailey and Burd can be explained by the fact that Merlo compared
not only metrics but also the tokens and their textual images to identify type-1
and type-2 clones in the study by Bellon and Koschke.

While the Bailey/Burd and Bellon/Koschke studies focus on quantitative
evaluation of clone detectors, other authors have evaluated clone detectors for
the fitness for a particular maintenance task. Rysselberghe and Demeyer [61]
have compared text-based [7, 62], token-based [4], and metric-based [43] clone
detectors for refactoring. They compare these techniques in terms of suitability
(can a candidate be manipulated by a refactoring tool?), relevance (is there
a priority which of the matches should be refactored first?), confidence (can

16 Rainer Koschke

one solely rely on the results of the code cloning tool, or is manual inspection
necessary?), and focus (does one have to concentrate on a single class or
is it also possible to assess an entire project?). They assess these criteria
qualitatively based on the clone candidates produced by the tools. Figure 2
summarizes their conclusions.

criterion most suitable technique

suitability metric-based
relevance no difference
confidence text-based
focus no difference

Fig. 2. Assessment by Rysselberghe and Demeyer

Bruntink et al. use clone detection to find cross-cutting concerns in C pro-
grams with homogeneous implementations [63]. In their case study, they used
CCFinder—Kamiya’s [37] tool evaluated in other case studies, too—one of
the Bauhaus2 clone detectors, namely ccdiml, which is a variation of Baxter’s
technique [47], and the PDG-based detector PDG-DUP by Komondoor [52].
The cross-cutting concerns they looked for were error handling, tracing, pre
and post condition checking, and memory error handling. The study showed
that the clone classes obtained by Bauhaus’ ccdiml can provide the best match
with the range checking, null-pointer checking, and error handling concerns.
Null-pointer checking and error handling can be found by CCFinder almost
equally well. Tracing and memory error handling can best be found by PDG-

DUP.
The open issues in evaluation clone detectors is to overcome the following

limitations of current benchmarks:

• single oracle (until recently)
– differences among different human raters for clone candidates [8] when

clones ought to be removed.
• yes/no decision rather than degree of confidence
• clones length measured as lines rather than tokens
• current benchmark insists on contiguous lines/tokens
• current benchmark is based on clone pairs rather than clone classes

There is also an organizational aspect that our community needs to ad-
dress. Once we agreed on a benchmark, benchmarking should become stan-
dard procedure of the community. Every new technique should be compared
against this benchmark prior to publication.

2 http://www.axivion.com

Survey of Research on Software Clones 17

10 Clone Presentation

Because there is typically a huge amount of clones in large systems and these
clones differ in various attributes (type, degree of similarity, length, etc.),
presentation issues of clone information is critical. This huge information space
must be made accessible to a human analyst. The analyst needs a holistic view
that combines source code views and architectural views.

There have been several proposals for clone visualization. Scatter plots
are two-dimensional charts where all software units are listed on both axes
[64, 7, 65]. There is a dot if two software units are similar. The granularity
of software units may differ. It can range from single lines to functions to
classes and files to packages and subsystems. Visual patterns of cloning may
be observed by a human analyst. A problem with this approach is scalability
for many software units and the order of the listed software units as this has an
impact on the visual patterns. While there is a “natural” order for lines (i.e.,
lexical order) within a file, it is not clear how to order more coarse-grained
units such as functions, files, and packages. Lexical order or their names is in
most cases as arbitrary as random order.

Johnson [66] proposes Hasse diagrams for cloning between sets of files so
that one can better see whether code has been copied between files, which
is possibly more critical than cloning within a file. A Hasse diagram (named
after a German mathematician) is used to draw a partial order among sets as
an acyclic graph. Directed arcs connect nodes that are related by the order
relation and for which no other directed path exists.

In Johnson’s context, each match of a block of text identifies a range of
characters (or lines) from two (or more) files. For each subset of files, one can
total the number of characters that the matching process has discovered to
match between the given set of files. A subset of files forms a node, if the
files have non-zero matches. The inclusion between subsets of files yields the
edges.

Rieger et al. [67] propose to use Michele Lanza’s polymetric views [68] to
visualize various aspects of clones in one view. A polymetric view is again
based on the graph metaphor and representation where a node represents a
software unit and an edge a cloning relation. Visually, additional information
can be attached to the graph by the degree of freedom for the position (X/Y
in the two-dimensional space), color of nodes and edges, thickness of edges,
breadth and width of nodes. Propose a fixed set of metrics combinations to be
mapped onto graphical aspects to present the clone information from different
perspective for different tasks.

Beyond polymetric views, Rieger et al. [67] propose a variation of tree maps
to show the degree of cloning along with the system decomposition. Tree maps
display information about entities with a hierarchical relationship in a fixed
space (for instance, the whole system on one screen) where the leaves of the
hierarchy contain a metric to be visualized. Each inner node aggregates the
metric values of its descendants. Each node is represented through a piece of

18 Rainer Koschke

the available space. The space of a descendent node is completely contained
in space of its ancestor. There is no overlap in space for nodes that are not
in an ancestor/descendant relation. This is how the hierarchy is presented.
Essentially the hierarchy is projected into the two dimensional space seen
from the root of the hierarchy. In order to show the hierarchy clearly, the
space of each node appears as rectangle where the direction of subdivision of
nested nodes is alternated horizontally and vertically at each level. The space
of each rectangle is proportional to the metric.

This visualization was originally proposed by Ben Shneiderman in the
early 1990s to show space consumption of a hard disk with a hierarchical file
system. While space is used very efficiently, problems arise when the hierarchy
is deeply nested.

There is a large body of research on information visualization in general
and software visualization in particular that we have not yet explored for clone
visualization. In order to understand which visualization works best for which
purpose, we need more systematic empirical research.

11 Related Fields

Clone detection has applications in other fields and—vice versa—ideas from
related fields can be reused for clone detection.

Bruntink et al. for instance, use clone detectors to search for code that
could be factored out as aspects using an aspect-oriented language [16, 63].
They identify error handling, tracing, pre and post condition checking, and
memory error handling. Although they used classic clone detectors that were
not designed for this particular purpose, the clone detectors appeared to be
helpful. Classic clone detectors try to find similar code—similar in terms of
their program text. The implementations of an aspect, on the other hand, are
often very heterogeneous and are similar only at a more semantic level. For
instance, precondition checking tests each parameter of a function for certain
criteria. At the implementation level, functions differ in the order and type of
parameters so that checks are generally different in the program text.

The code compaction community for that try to minimize the memory
footprint of programs for small devices use very similar algorithms to identify
redundant code that could be compressed [69].

The detection of plagiarism faces similar but even worse problems as clone
detection [59, 58, 70, 71, 72, 73, 74]. In plagiarism cases, people try to cam-
ouflage their copy, which makes it more difficult to detect the plagiarism. In
order to reuse classic clone detectors for plagiarism, we would need to reduce
programs to a normal form for comparison. This normalization, on the other
hand, could lead to false positives.

Another application of clone detection is the comparison of versions or
variants of software systems. While versions derive from each other, variants
have a common ancestor. In both cases, they are very similar. In software

Survey of Research on Software Clones 19

evolution research, where information of software units is observed over time
or versions, respectively, it is necessary to map the software entities of one
version to those of the other version in order to carry over the information.
This problem is called the origin analysis [75]. The same problem needs to
be solved when two software variants are to be compared or merged [76].
Relaying solely on names of these units for this analysis may be misleading if
a refactoring like renaming has taken place [19]. Also, the refactoring extract

method moves statements from one function to create a new function. Clone
detection can help to establish a mapping between two versions or variants of
a program. Several authors have used clone detection techniques or at least a
code similarity measure to determine this mapping [77, 78, 79, 26, 80, 81, 82].

The difference of comparing versions or variants to detecting clones is that
the task here is to map a code entity onto only one or at least a small set
of candidates in the other system, the comparison is only between systems
(clones within the same version or variant are irrelevant), cloning is the rule
rather than the exception as the two versions or variants overlap to a very
high degree, the focus is on the differences rather than the similarities, and the
comparison should tolerate renaming and all refactorings that move entities
around such as pull-up field, move method, etc.

As there are similar related fields, the interesting questions here are “What
can clone detection learn from other fields” and “What can other fields learn
from clone detection?”

References

1. Xie, Y., Engler, D.: Using redundancies to find errors. In: Proceedings of the
10th ACM SIGSOFT symposium on Foundations of software engineering, ACM
Press (2002) 51–60

2. Xie, Y., Engler, D.: Using redundancies to find errors. SIGSOFT Softw. Eng.
Notes 27(6) (2002) 51–60

3. Xie, Y., Engler, D.: Using redundancies to find errors. IEEE Computer Society
Transactions on Software Engineering 29(10) (2003) 915–928

4. Baker, B.S.: On finding duplication and near-duplication in large software sys-
tems. In Wills, L., Newcomb, P., Chikofsky, E., eds.: Second Working Conference
on Reverse Engineering, Los Alamitos, California, IEEE Computer Society Press
(1995) 86–95

5. Kontogiannis, K., Mori, R.D., Merlo, E., Galler, M., Bernstein, M.: Pattern
matching for clone and concept detection. Automated Software Engineering
3(1/2) (1996) 79–108

6. Lague, B., Proulx, D., Mayrand, J., Merlo, E., Hudepohl, J.: Assessing the
benefits of incorporating function clone detection in a development process. In:
International Conference on Software Maintenance. (1997) 314–321

7. Ducasse, S., Rieger, M., Demeyer, S.: A Language Independent Approach for
Detecting Duplicated Code. In: International Conference on Software Mainte-
nance. (1999) 109–118

20 Rainer Koschke

8. Walenstein, A., Jyoti, N., Li, J., Yang, Y., Lakhotia, A.: Problems creating
task-relevant clone detection reference data. In: Working Conference on Reverse
Engineering, IEEE Computer Society Press (2003)

9. Baker, B.S.: A program for identifying duplicated code. In: Computer Science
and Statistics 24: Proceedings of the 24th Symposium on the Interface. (1992)
49–57

10. Balazinska, M., Merlo, E., Dagenais, M., Lague, B., Kontogiannis, K.: Measur-
ing clone based reengineering opportunities. In: IEEE Symposium on Software
Metrics, IEEE Computer Society Press (1999) 292–303

11. Balazinska, M., Merlo, E., Dagenais, M., Lague, B., Kontogiannis, K.: Partial re-
design of java software systems based on clone analysis. In: Working Conference
on Reverse Engineering, IEEE Computer Society Press (1999) 326–336

12. Balazinska, M., Merlo, E., Dagenais, M., Lague, B., Kontogiannis, K.: Advanced
clone-analysis to support object-oriented system refactoring. In: Working Con-
ference on Reverse Engineering, IEEE Computer Society Press (2000) 98–107

13. Kapser, C., Godfrey, M.W.: Toward a taxonomy of clones in source code: A case
study. In: Evolution of Large Scale Industrial Software Architectures. (2003)

14. Kapser, C., Godfrey, M.: A taxonomy of clones in source code: The reengi-
neers most wanted list. In: Working Conference on Reverse Engineering, IEEE
Computer Society Press (2003)

15. Kim, M., Bergman, L., Lau, T., Notkin, D.: An ethnographic study of copy
and paste programming practices in OOPL. In: International Symposium on
Empirical Software Engineering, IEEE Computer Society Press (2004) 83–92

16. Bruntink, M., van Deursen, A., Tourwe, T., van Engelen, R.: An evaluation of
clone detection techniques for crosscutting concerns. In: International Confer-
ence on Software Maintenance. (2004) 200–209

17. Kapser, C., Godfrey, M.W.: ”clones considered harmful” considered harmful.
In: Working Conference on Reverse Engineering. (2006)

18. Nickell, E., Smith, I.: Extreme programming and software clones. In: Working
Conference on Reverse Engineering, IEEE Computer Society Press (2003)

19. Fowler, M.: Refactoring: improving the design of existing code. Addison Wesley
(1999)

20. Cordy, J.: Comprehending reality: Practical challenges to software maintenance
automation. In: International Workshop on Program Comprehension, IEEE
Computer Society Press (2003) 196–206

21. Monden, A., Nakae, D., Kamiya, T., Sato, S., Matsumoto, K.: Software quality
analysis by code clones in industrial legacy software. In: IEEE Symposium on
Software Metrics. (2002) 87–94

22. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.R.: An empirical study
of operating system errors. In: Symposium on Operating Systems Principles.
(2001) 73–88

23. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: Copy-paste and related bugs in large-scale
software code. IEEE Computer Society Transactions on Software Engineering
32(3) (2006) 176–192

24. Antoniol, G., Casazza, G., Penta, M.D., Merlo, E.: Modeling clones evolution
through time series. In: International Conference on Software Maintenance,
IEEE Computer Society Press (2001) 273–280

25. Antoniol, G., Villano, U., Merlo, E., Penta, M.: Analyzing cloning evolution in
the linux kernel. Information and Software Technology 44(13) (2002)

Survey of Research on Software Clones 21

26. Godfrey, M., Tu, Q.: Growth, evolution and structural change in open source
software. In: Workshop on Principles of Software Evolution. (2001)

27. Kim, M., Sazawal, V., Notkin, D., Murphy, G.C.: An empirical study of code
clone genealogies. In: European Software Engineering Conference and Founda-
tions of Software Engineering (ESEC/FSE. (2005)

28. Fanta, R., Rajlich, V.: Removing clones from the code. Journal on Software
Maintenance and Evolution 11(4) (1999) 223–243

29. Komondoor, R., Horwitz, S.: Eliminating duplication in source code via proce-
dure extraction. Technical report 1461, UW-Madison Dept. of Computer Sci-
ences (2002)

30. Johnson, J.H.: Identifying redundancy in source code using fingerprints. In:
Conference of the Centre for Advanced Studies on Collaborative research, IBM
Press (1993) 171–183

31. Johnson, J.H.: Substring matching for clone detection and change tracking.
In: International Conference on Software Maintenance, IEEE Computer Society
Press (1994) 120–126

32. Karp, R.M.: Combinatorics, complexity, and randomness. Communications of
the ACM 29(2) (1986) 98–109

33. Karp, R.M., Rabin, M..: Efficient randomized pattern-matching algorithms.
IBM Journal Research and Development 31(2) (1987) 249–260

34. Marcus, A., Maletic, J.: Identification of high-level concept clones in source
code. In: International Conference on Automated Software Engineering. (2001)
107–114

35. McCreight, E.: A space-economical suffix tree construction algorithm. Journal
of the ACM 32(2) (1976) 262–272

36. Baker, B.S.: Parameterized Pattern Matching: Algorithms and Applications.
Journal Computer System Science 52(1) (1996) 28–42

37. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: A Multi-Linguistic Token-
based Code Clone Detection System for Large Scale Source Code. IEEE Com-
puter Society Transactions on Software Engineering 28(7) (2002) 654–670

38. Synytskyy, N., Cordy, J.R., Dean, T.: Resolution of static clones in dynamic
web pages. In: Workshop on Website Evolution. (2003) 49–56

39. Cordy, J.R., Dean, T.R., Synytskyy, N.: Practical language-independent detec-
tion of near-miss clones. In: Conference of the Centre for Advanced Studies on
Collaborative research, IBM Press (2004) 1–12

40. Gitchell, D., Tran, N.: Sim: a utility for detecting similarity in computer pro-
grams. In: SIGCSE ’99: The proceedings of the thirtieth SIGCSE technical
symposium on Computer science education, ACM Press (1999) 266–270

41. Higo, Y., Ueda, Y., Kamiya, T., Kusumoto, S., Inoue, K.: On software main-
tenance process improvement based on code clone analysis. In: International
Conference on Product Focused Software Process Improvement. Volume 2559
of Lecture Notes In Computer Science., Springer (2002) 185–197

42. Moonen, L.: Generating robust parsers using island grammars. In: Proceedings
of the Working Conference on Reverse Engineering, IEEE Computer Society
Press (2001) 13–22

43. Mayrand, J., Leblanc, C., Merlo, E.: Experiment on the automatic detection of
function clones in a software system using metrics. In: International Conference
on Software Maintenance. (1996) 244–253

22 Rainer Koschke

44. Kontogiannis, K., DeMori, R., Bernstein, M., Galler, M., Merlo, E.: Pattern
matching for design concept localization. In: Working Conference on Reverse
Engineering, IEEE Computer Society Press (1995) 96–103

45. Di Lucca, G., Di Penta, M., Fasolino, A.: An approach to identify duplicated
web pages. In: International Computer Software and Applications Conference.
(2002) 481–486

46. Lanubile, F., Mallardo, T.: Finding function clones in web applications. In:
European Conference on Software Maintenance and Reengineering. (2003) 379–
386

47. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone Detection
Using Abstract Syntax Trees. In Koshgoftaar, T.M., Bennett, K., eds.: Inter-
national Conference on Software Maintenance, IEEE Computer Society Press
(1998) 368–378

48. Yang, W.: Identifying syntactic differences between two programs. Software–
Practice and Experience 21(7) (1991) 739–755

49. Koschke, R., Falke, R., Frenzel, P.: Clone detection using abstract syntax suffix
trees. In: Working Conference on Reverse Engineering, IEEE Computer Society
Press (2006)

50. Ferrante, J., Ottenstein, K., Warren, J.: The program dependence graph and its
use in optimization. ACM Trans. on Prog. Lang. and Sys. 9(3) (1987) 319–349

51. Krinke, J.: Identifying Similar Code with Program Dependence Graphs. In:
Working Conference on Reverse Engineering. (2001) 301–309

52. Komondoor, R., Horwitz, S.: Using slicing to identify duplication in source code.
In: Proc. Int. Symposium on Static Analysis. (2001) 40–56

53. Leitao, A.M.: Detection of redundant code using r2d2. In: Workshop Source
Code Analysis and Manipulation, IEEE Computer Society Press (2003) 183–192

54. Wahler, V., Seipel, D., von Gudenberg, J.W., Fischer, G.: Clone detection in
source code by frequent itemset techniques. In: Workshop Source Code Analysis
and Manipulation. (2004) 128–135

55. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: Cp-miner: A tool for finding copy-paste
and related bugs in operating system code. In: Operating System Design and
Implementation. (2004) 289–302

56. Bailey, J., Burd, E.: Evaluating clone detection tools for use during preventative
maintenance. In: Workshop Source Code Analysis and Manipulation, IEEE
Computer Society Press (2002) 36–43

57. Bellon, S., Koschke, R.: Comparison and evaluation of clone detection tools.
IEEE Computer Society Transactions on Software Engineering (2006) submitted
for publication.

58. Prechelt, L., Malpohl, G., Philippsen, M.: Jplag: Finding plagiarisms among
a set of programs. Technical report, University of Karlsruhe, Department of
Informatics (2000)

59. Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for
document fingerprinting. In: Proceedings of the SIGMOD. (2003) 76–85

60. Bellon, S.: Vergleich von techniken zur erkennung duplizierten quellcodes.
Diploma thesis, no. 1998, University of Stuttgart (Germany), Institute for Soft-
ware Technology (2002)

61. Van Rysselberghe, F., Demeyer, S.: Evaluating clone detection techniques from
a refactoring perspective. In: International Conference on Automated Software
Engineering. (2004)

Survey of Research on Software Clones 23

62. Rieger, M.: Effective Clone Detection Without Language Barriers. Dissertation,
University of Bern, Switzerland (2005)

63. Bruntink, M., van Engelen, R., Tourwe, T.: On the use of clone detection for
identifying crosscutting concern code. IEEE Computer Society Transactions on
Software Engineering 31(10) (2005) 804–818

64. Church, K.W., Helfman, J.I.: Dotplot: A program for exploring self-similarity
in millions of lines for text and code. Journal of American Statistical Associa-
tion, Institute for Mathematical Statistics and Interface Foundations of North
America 2(2) (1993) 153–174

65. Ueda, Y., Kamiya, T., Kusumoto, S., Inoue, K.: Gemini: Maintenance support
environment based on code clone analysis. In: IEEE Symposium on Software
Metrics, IEEE Computer Society Press (2002) 67–76

66. Johnson, J.H.: Visualizing textual redundancy in legacy source. In: Conference
of the Centre for Advanced Studies on Collaborative research, IBM Press (1994)
32

67. Rieger, M., Ducasse, S., Lanza, M.: Insights into system-wide code duplication.
In: Working Conference on Reverse Engineering, IEEE Computer Society Press
(2004) 100–109

68. Lanza, M., Ducasse, S.: Polymetric views - a lightweight visual approach to
reverse engineering. IEEE Computer Society Transactions on Software Engi-
neering 29(9) (2003) 782–795

69. Cooper, K., McIntosh, N.: Enhanced code compression for embedded risc pro-
cessors. In: Proc. ACM Conf. on Programming Language Design and Imple-
mentation, ACM Press (1999) 139–149

70. Flammia, G.: On the internet, software should be milked, not brewed. IEEE
Expert 11(6) (1996) 87–88

71. Manber, U.: Finding similar files in a large file system. In: Proceedings of the
Winter Usenix Technical Conference. (1994) 1–10

72. Jankowitz, H.T.: Detecting plagiarism in student pascal programs. Computer
Journal 1(31) (1988) 1–8

73. Madhavji, N.H.: Compare: a collusion detector for pascal. Techniques et Sciences
Informatiques 4(6) (1985) 489–497

74. Grier, S.: A tool that detects plagiarism in pascal programs. SIGSCE Bulletin
13(1) (1981)

75. Tu, Q.: On navigation and analysis of software architecture evolution. Master’s
thesis, University of Waterloo (1992)

76. Hunt, J.: Extensible, Language Aware Differencing and Merging. Dissertation,
University of Kaiserslautern (2001)

77. Tu, Q., Godfrey, M.W.: An integrated approach for studying architectural evolu-
tion. In: International Workshop on Program Comprehension, IEEE Computer
Society Press (2002) 127–136

78. Zou, L., Godfrey, M.: Detecting merging and splitting using origin analysis.
In: Working Conference on Reverse Engineering, IEEE Computer Society Press
(2003)

79. Godfrey, M., Tu, Q.: Evolution in open source software: A case study. In:
International Conference on Software Maintenance, IEEE Computer Society
Press (2000)

80. Van Rysselberghe, F., Demeyer, S.: Reconstruction of successful software evolu-
tion using clone detection. In: International Workshop on Principles of Software
Evolution. (2003) 126–130

24 Rainer Koschke

81. Xing, Z., Stroulia, E.: Refactoring detection based on umldiff change-facts
queries. In: Working Conference on Reverse Engineering, IEEE Computer So-
ciety Press (2003) 263–274

82. Xing, Z., Stroulia, E.: Analyzing the evolutionary history of the logical design
of object-oriented software. IEEE Computer Society Transactions on Software
Engineering 31(10) (2005) 850–868

