
Generic modeling of code clones

Simon Giesecke∗

January 18, 2006

Abstract

Code clones, i.e. instances of duplicated code, can be found in many
software systems. They adversely affect the software systems’ quality,
in particular their maintainability and comprehensibility. Thus, this as-
pect is particularly important to consider in software maintenance and re-
engineering. Many different algorithms detecting code clones have been
developed. For various reasons, it is difficult to compare the results of
different algorithms. Most notable among these reasons is that there is
no conceptual model allowing description of code clones determined by
different algorithms. Much more, each algorithm uses its specific concept
of code clones, which is rarely made explicit.

To overcome these problems, we have developed a generic model for
describing clones. The model is generic in that it is independent of the pro-
gramming language examined and of the clone detection algorithm used.
It is flexible enough to facilitate various granularities of artifacts employed
for selection and comparison, including inexact clones. The model allows
separation of concerns between clone detection, description and manage-
ment, which reduces the effort for the implementation of tools supporting
these activities. On the basis of the model, we have implemented a pro-
totype tool supporting these activities, tightly integrated into the Eclipse
environment.

1 Introduction

One important goal of software engineering efforts is dealing with the inherent
complexity of software systems, and the reduction of this complexity. Software
systems can be made free of redundancy in theory. This is in contrast to other
engineering products where repeated elements are commonly seen [Bro87], e.g.
many occurrences of one particular screw in a machine. Muchmore it is desirable
to avoid duplications in software systems to improve maintainability.

Looking at real industrial software systems, however, one can find that be-
tween 5% and 50% of the source code lines are duplicates [BYM+98,DPML02,
MLH96]. There are many causes of this phenomenon. But one cannot expect a
reduction in code duplication ratios, unless the duplication problem is explicitly
focused during the development process. We consider two aspects important to
the solution of the duplication problem: Firstly, there are algorithms that per-
form automatic clone detection, and, for another thing, there are modifications

∗Carl von Ossietzky University of Oldenburg, Software Engineering Group, 26111 Olden-
burg, Germany, simon.giesecke@acm.org

1
Dagstuhl Seminar Proceedings 06301
Duplication, Redundancy, and Similarity in Software
http://drops.dagstuhl.de/opus/volltexte/2007/960

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62912337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
simon.giesecke@acm.org

of the software development process which enable practical use of the results of
a clone detection algorithm. The first aspect is more of technical nature, the
second of organizational nature. It is desirable for a software developer to have
tool support at hand supporting both dimensions.

It is currently unclear if any of the currently available clone detection algo-
rithms is superior [Bel02], much less if there is a particular granularity on which
clones are considered that is universally adequate. For these reasons, it should
be possible to choose from a variety of clone detection algorithms within one
tool. However, prior work in the area of code clones is either directly concerned
with a new detection algorithm, or presents work based on one such particular
algorithm. Due to the lack of uniformity in concepts and implementations of
clone detection algorithms, it is impossible to easily apply the results described
to a different clone detection algorithm. This slows down scientific progress
without necessity, since it is rarely the case that the concepts really depend on
specific characteristics of the chosen algorithms.

The contributions of this paper are

• that a model for describing clones is made explicit,

• that an approach to clone description that is uniformly applicable, regard-
less of the clone detection algorithm used and of the level of granularity
examined, incorporating represenation of inexact clones,

• that an application of the clone model is presented, providing a frame-
work for developing clone management tools, thereby enabling effective
separation of concerns regarding clone detection, clone description and
clone management.

A prototype tool implementation has been developed which provides elementary
clone management facilities for the Eclipse Java Development Tools IDE.

The paper is structured as follows: First, in section 2, we explain our un-
derstanding of the notion of code clones. In section 4 we propose a model to
represent code clones in a generic way, i.e. the model is independent of the
programming languages and clone detection algorithms used, and illustrate the
model using a concrete code example. Then, possible uses of the model are dis-
cussed and our tool prototype is briefly presented (section 5). Finally, related
work is discussed in section 6 and conclusions are drawn in section 7.

2 Notion of code clones

Simply put, a clone is a manifestation of redundancy in a representation of a
software system. By cloning we refer to the—intentional or unintentional—
process leading to the emergence of clones.

Of particular interest to us are clones in those representations which are
under direct control of the developers. Among these are concept and archi-
tecture diagrams as well as the source code. In the latter case, we speak of
code clones. A concept clone, in general, is a clone already apparent in a more
abstract representation of the system than that under inspection, which may
propagate into duplicated artifacts in the inspected representation. However,
such a propagation of clones is not imperative: Let us consider documenting

2

requirements by a set of use cases, each of which is annotated by multiple sce-
narios. If these scenarios are written down independently of each other, partial
redundancies between scenarios are inevitable. These redundancies, however,
will not commonly cause redundancies in the system’s architecture.

We are interested in detecting function clones, so we focus on a special
case. In general, it is impossible to automatically detect arbitrary function
clones as an implication of Rice’s theorem [Ric53]. Thus, we regard functional
specifications as concepts, and their implementations as lower-level artifacts.
While two identical source code fragments will most probably refer to the same
functional concept, one concept may be implemented in arbitrarily deviating
ways. In practice, however, this problem will not be as hard, since a finite
set of developers will follow a similar style and is therefore likely to adhere
to a small number of implementation variants of each concept. Summarizing
this discussion, we assume, that functional similarity often results in structural
similarity of the source code.

While a central concern of software analysis and design is the systematic
avoidance of redundancies, this is not the case in the implementation phase.
Probably, one reason for this is that the lower the level of abstraction of a
software system’s representation is, the greater is the representation’s size and
complexity. When no single person knows all the code of the project, no one
can determine if a specific fragment might be a clone.

2.1 Effects of cloning on software qualities

We now consider the effects that cloning has on the qualities of a software
system, i.e. the difference of the qualities of the software system f containing
clones and those of a supposed equivalent software system f̄ differing from f
only in that f̄ contains no clones.

First of all, clones will directly affect software metrics like lines of code,
number of statements and size of executable code, making the system f larger
than f̄ . Kontogiannis et al. [KDM+96] found that cloning negatively affects
maintainability and comprehensibility. Comprehensibility is affected primarily
because the principle of locality of functionality is violated, i.e. one specific
aspect of functionality is implemented by each instance of a clone.

Maintainability is related to comprehensibility [Ghe03], in that better com-
prehensibility increases maintainability (and vice versa). In addition, a problem
affecting maintainability more specifically is introduced by cloning: When a de-
veloper modifies one clone instance, probably the changes must be propagated
into the other clone instances—at least they should verify if this is necessary.
However, a check for propagation is only possible if they know that a code frag-
ment being modified is a clone instance at all. Even if this is the case, it is
possible that only a subset of all instances is known. Furthermore, the prop-
agation may be performed erroneously. This poses a particular problem if the
clones are not exact, since it may not be obvious if and how a change has to be
propagated. A systematic approach to clone management, involving detection
and analysis of clones and the handling of resulting information, is required to
overcome these problems.

In contrast to silently avoiding clone introduction during development, clone
analysis provides an opportunity in itself: Cloning of the implementation of a
certain functionality indicates that this functionality might provide a candidate

3

for a unit of reuse [KDM+96]. Clone analysis may be used to identify such
functionality and trigger transformation into explicit units of reuse (modules,
components, etc.), consequently increasing reusability.

2.2 Emergence of code clones

There is a variety of circumstances under which code clones may emerge. We
will analyze these circumstances with respect to the technical means that are
used to create clones, and to the reasons for which developers create clones.
These dimensions are not always clearly separable.

2.2.1 Technical means of clone creation

To start with, we consider which technical means are used to create clones.
Later, in section 2.3, we will turn back to these techniques and analyze how
they relate to the degree of exactness of the resulting clones. We call a clone
exact if its instances are textually identical; several degrees of lesser exactness
will be considered.

The most obvious technique that leads to duplicated code is to simply copy
certain code fragments (“copy and paste programming”).

Certain idioms (also “mental macros” [BYM+98]) specific to a programming
language or framework, which are used as a matter of routine, may also lead
to clones. An idiomatic programming style certainly has its own right, since it
makes code easier to read and understand. But if such idioms are used at too
large a scale, they might better be replaced by more explicit abstractions.

When merging two software systems, it is clear that certain functionality
will be duplicated among the constituting systems. The amount of duplicated
functionality will differ depending on the similarity of the overall purpose of the
merged systems.

Finally, there might be no technical relation between clone instance, apart
from their intrinsic relation of implementing similar functions.

2.2.2 Reasons leading to the emergence of clones

Every single clone apparent in a software system will have been created at some
point in time during the software development process. The reasons leading
to the creation of clones may be of technical, psychological or organizational
nature. Some of these reasons apply only to specific means discussed in section
2.2.1, others are more general.

Developers may introduce clones out of laziness. At first sight, it may appear
to them that cloning by copying or implementation as a matter of routine takes
less time than to proceed under avoidance of cloning. When a developer clones
by copying, obviously at least one other clone instance is known to them. This
might not even be the case when they repeatedly implement an idiom as a
matter of routine.

Cloning may also be done expressly and intentiously with a similar rationale.
If a certain code fragment is known to work well, developers might intent to
reduce the risk of breaking it by copying it and adapting only the copy for
use in a different context. In the light of change propagation problems it is
questionable if this really reduces risks of overall errors.

4

Thus, besides blaming the developers for not putting enough effort into
avoiding clones, we have to consider deficiencies in knowledge about the soft-
ware system. The larger the subject software system is, the less probably the
developers know in detail which functions may have been implemented by oth-
ers. Then, communication deficiencies form another aspect of the same problem.
Each single developer might not even know what they have implemented. This
is most notably a problem for artifacts too fine-grained to be reflected on the
architectural level.

A code clone may result from too strict an adherence to the waterfall model
of software development [PC86]: Before it is known in full which functionality is
needed by which parts of a software system, an architecture is defined without
the intent to be subjected to later modification. Since dependencies between
modules are fixed at the architectural level in an early phase of development, it
may become necessary to reimplement functionality of one module in another
if they are not declared to depend on each other. The easiest way to overcome
this problem is to copy the concerned code. Of course, this problem may also
be the result of intentional architectural decisions after weighing advantages
and disadvantages. Another reason leading to similar problems is the use of a
framework which requires or recommends a certain architectural style that can
or should not be changed.

One specific intention for introducing clones which is not related to struc-
tural issues is explicitly cloning for performance reasons during an optimization
phase. In spite of tremendous advances in available computing power, this is still
relevant today, particularly in the development of embedded real-time systems.

Clones caused by using idioms might be a consequence of a lack of abstrac-
tion mechanisms of the language—or poor use of such mechanisms. In the Java
language, up to version 1.4, such a typical idiom is the iteration of a collec-
tion, during which certain actions were performed on the individual elements
(cf. figure 1). A more general example—applicable to most object-oriented
languages—usually considered bad style in itself is the use of conditional con-
structs based on dynamic type checks [DDN02, ch. 10].

2.3 Exactness of clones

In this section we will consider the question of exactness of clones. In particular,
we will analyze how the circumstances of clone creation relate to whether a clone
will be exact or inexact. We will show that it is not sufficient to restrict clone
management to the consideration of exact clones.

2.3.1 Degrees of exactness

The exactness of the clone property of a pair of code fragments may be con-
sidered in different terms. Considering the code itself, textual identity may be
viewed as the most apparent notion of exactness. Considering the code’s func-
tion, behavioral equivalence might be the ideal notion of exactness. Obviously,
these notions are not equivalent, but related: in an informal sense, textual iden-
tity will imply behavioral equivalence, but not vice versa. Various other degrees
of equivalence can be defined between these two extremes, including lexical and
structural equivalence.

5

No matter which notion of equivalence one chooses to use, maximal ex-
actly cloned code fragments are surrounded by code differing from instance
to instance: considering an exact clone relation ≡, given code fragments A =
concat(a1, a2, a3) and B = concat(b1, b2, b3) where a2 ≡ b2 but a1 6≡ b1∧a3 6≡ b3,
A and B form a clone which is partially exact with respect to ≡.

2.3.2 Relation to clone creation

Copy-and-paste-programming results in code clones that are exact in the be-
ginning. However, modifications are often performed afterwards to adapt the
copied code fragment to a new context, finally resulting in arbitrarily inexact
clones. This reflects the fact that cloning is an informal mode of reuse, in
contrast to formal reuse of functionality properly encapsulated in a component.

The degree of exactness of clones created through the use of idioms may
vary depending on the strictness of style guidelines, number of developers and
similar organizational parameters.

Considering the merging of systems, if the developers of the merged systems
are distinct, a lower grade of similarity between implementations of similar
functions may be expected.

Finally, for clones whose creation was technically unrelated, no assumption
may be made about their exactness, despite that the more similar the imple-
mented functions the more exact the resulting clones will be.

2.3.3 Risks

In addition to the effects of clones on a software system described in section 2.1,
the inexactness of clones introduces further risks to the software system. Inexact
clones may violate the principle of regularity, which means that interfaces and
behavior of similar functions within one software system should vary as little
as possible. Violations of this principle may include deviations in the order of
parameter lists, handling of borderline cases and of error conditions.

2.3.4 Detection

Unfortunately, inexact clones do not only pose additional risks, but they are
harder to detect as well. This applies to both manual and automatic clone
detection. Especially for the latter, the problems are

• to define in a generic way which differences between potential clone in-
stances should be allowed,

• to construct decidable criteria or algorithms based on this definition,

• and to evaluate such criteria.

In principle, these problems have to be considered for manual detection as well,
but they may be neglected more easily without apparent consequences.

Based on the differences between instances of inexact clones, an additional
classification of clones may be useful [BMD+99a,Bel02,LPM+97,MLM96].

6

2.4 Avoiding and handling clones

Now, after having discussed why clones should be avoided and where they result
from, we focus on the question of how to avoid clones. The first distinction to be
made in this context is between clones that are explicitly created by a developer
and those that come into existence only implicitly.

It is desirable to inhibit the creation of clones before or at the time they
come into existence by technical means. Unfortunately, this is only possible for
explicitly created clones, and even for those this is not feasible in practice. One
possible means were to monitor editor actions for copy-and-paste operations.
One could simply inhibit copy-and-paste operations. Such an editor would not
be accepted by developers as long as their reasons for using copy-and-paste pro-
gramming in the first place remain. Another possibility were to allow copy-and-
paste operations and monitor what happens to the pasted section afterwards.
One advantage over an ex-post-analysis is that, no matter how much editing is
done to such a clone instance, the information, that it has been cloned initially,
will not get lost. But this poses another problem, as too many fragments will
probably be marked as clones. In any case, copy-and-paste-monitoring is not
sufficient since clones are created by other means as well.

Implicitly created clones cannot be addressed by such an inhibition mecha-
nism at all. One could think of tool support not inhibiting clone creation but
supporting an attentive developer by providing them with some means that
avoid a course of actions leading into cloning in the future. This might be
done by providing means for writing more general code. But, as pointed out by
Fowler [Fow99], it is very difficult—and often turns out not to be feasible—to
prematurely synthesize a useful generalization of a code fragment from only one
or two instances.

For these reasons, we think such a solution to avoid clones is required, that
relies on developer cooperation to a greater extent. Instead of inhibiting their
creation, handling of clones soon after their creation is desirable. The aim
of this approach is to avoid independent evolution of clone instances. In this
context by independent evolution we understand such modifications to single
clone instances that do not fundamentally remove the functional similarity of
the clone instances, but destroy their structural similarity.

2.5 Summary

In this section we first discussed why the presence of clones in software systems
is problematic. Then, we dicussed why and how clones come emerge within
software. Afterwards, we explained why it is not sufficient to constrain to ex-
act clones. We concluded the discussion by motivating that a systematic ap-
proach to clone management is necessary to overcome the problems introduced
by clones. In the next section, we present our approach to modeling clones.

3 Integrated clone management

In this section, we will present one possibility to integrate clone management
into the development process. First, three aspects of clone management are
introduced, to which clone management activities can be attributed. Then,

7

scenarios for clone management which are closely related to the necessary tool
support, will be discussed.

3.1 Aspects of clone management

Clone management summarizes all process activities which are targeted at de-
tecting, avoiding or removing clones. All clone management activities can be
associated with one or more of three groups, depending on their relation to the
“life cycle” of the clones which they refer to. Corrective clone management
deals with the removal of existing clones from the software system, preventive
clone management deals with the avoidance of the introduction of clones into
a software system, and compensatory clone management deals with avoiding
negative consequences of existing clones in a software system. 1

This classification was inspired by Mayrand et al. [MLH96] who proposed
two concrete activities dealing with clones, which they call problem mining and
preventive control. They may be grouped into compensatory and preventive
clone management, respectively. They do not regard corrective clone manage-
ment activities. In contrast, most work on clone detection tools exclusively
consider corrective clone management as an application area.

3.2 Clone management scenarios

We identified five dimensions of clone management scenarios which are relevant
to the support by software tools. These dimensions deal with the central or
decentral character of the tools or measures, the locality of the data used, the
question of what an individual clone management activity is triggered by, the
scope of the activities with regard to the subject system and their relation to
the development process as a whole. Each dimension will be explained in detail.

3.2.1 Centralization of clone management tools

The implementation of most software systems is created in teams whose mem-
bers collaborate working on different, possibly overlapping parts of the system.
The technical environment their work relies on can be characterized as a dis-
tributed system with local, decentralized programming environments or editors
and a central repository which often provides configuration and version man-
agement functionalities.

In such an environment, clone management functionality may be imple-
mented either at the central repository (centralized CM) or the local program-
ming environments (decentralized CM). While a decentralized implementation
may be done with neither regard to nor impact upon the central repository, due
to the client/server architecture, a centralized implementation will affect both
the repository and the local programming environments. With a decentralized
scenario, every developer might use different tools, and some might not use CM
at all. Thus, centralized CM requires greater effort and offers less flexibility
than decentralized CM.

The concrete meaning of “introduction” of a clone into a software system
is affected by this dimension. When using centralized CM, the introduction
is performed when checking in a modified version of a file into the repository,

1name concrete activities?

8

whereas with decentralized CM, a clone may already be seen as introduced when
it is typed.

3.2.2 Locality of clone management data

Staying with the scenario introduced in the previous section, the data building
the foundation of the clone management may be used locally only or globally, i.e.
it is shared between the developers. When clone management data is exclusively
generated automatically2, this dimensions only affects the efficiency of the im-
plementation. However, when manually entered information is integrated into
the clone management data, this dimension also affects whether communication
between developers is supported by clone management tools.

Using a centralized implementation, the natural way—i.e. that which re-
quires least effort—will be to share the data, while in a decentralized implemen-
tation a local-only use of the data will be easier to implement. However, both
local and global solutions are possible for both forms of implementation.

3.2.3 Triggering of clone management activities

An individual instance of a clone management activity may be scheduled in
advance as part of a larger plan of process activities, in which case a certain
periodicity of clone management activities’ instances may be assumed. In this
case, the subject who triggers such an instance is not the developer herself (pos-
sibly in person, but not in role). This may be contrasted by an ad-hoc triggering
of each clone management activity instance by the developer. A metaphor help-
ful in this context is that of the “bad smells” [BF00]: Upon notice of a bad
smell presumably caused by code duplication, the developer initiates a clone
management activity. Finally, an instance of a clone management activity may
be triggered as a side-effect of another activity. This kind of trigger may be
particularly useful for compensatory clone management activities. Of course, a
combination of these approaches is conceivable.

3.2.4 Scope of clone management activities

An instance of a clone management activity may focus on a single specific clone
and its instances, which we call a clone-focused activity, or deal with all clones
in the subject system or one of its parts, which we call a system-focused activity.

3.2.5 Relation to development activities

Clone management activities may be considered part of regular code-centered
development activities, and may then be called development-accompanying.
When using agile development processes, this view suggests itself. On the other
hand, clone management activities may be considered an element of the soft-
ware process on the same level as code-centered development, which we will call
development-external3.

Development-external clone management is in some sense always a scheduled
activity, as it is considered in the whole-scale process schedule. This variant

2introduce distinction between automatic generation and manual editing somewhere (as
another dimension?)

3find a better term

9

will suggest to be system-focused, due to the greater overhead of each activity
instance.

3.2.6 Discussion

The selection of a scenario for our work was driven by the question whether the
scenario asks for a specialized, proprietary environment or it can be realized in
a commonly used environment with low overhead. The scenario proposed and
analyzed in [LPM+97] can be characterized as a centralized, global-data, side-
effect-triggered, clone-focused, and development-accompanying scenario. Due to
its centralized, client-server architecture, it requires special tool support both
on the client and server sides, and use of a special configuration repository.

The scenario chosen in our approach can be characterized as decentralized,
local-data, developer/side-effect-triggered and development-accompanying.

4 Generic modeling of code clones

In this section, we present the generic clone model we have developed. Firstly,
in section 4.1 an introduction to clone detection techniques in general and their
implicit models of code clones is given. We propose how candidates for clone
instances are chosen in section 4.2, and how inexact clones are handled in section
4.3. We illustrate the concepts by a concrete example in section 4.4. Then, an
overview of the elements of our clone model is presented in section 4.5.

4.1 Clone detection techniques at a glance

The overall goal of a clone detection technique is to determine a binary relation
representing the clone property on some set of code artifacts A, i.e. ' ⊂ A×A.
Such a relation is called a clone relation. In the description of most clone
detection techniques, the set A is only implicitly characterized. We will discuss
this point in detail in section 4.2. To start with, we evaluate the characteristics
of the output of clone detection methods, i.e. how the clone relation is presented
to the user.

Bellon [Bel02] found that the majority of clone detection tools produce a list
of pairs of clone instances, which can be seen as the natural representation of a
binary relation. Exceptions to this rule are the algorithms described by Baxter
et al. [BYM+98] and Mayrand et al. [MLM96], which produce a list of clone
sets without and with distinguished elements, respectively. However, looking
closely at these two exceptions reveals that they also share the notion of an
underlying binary clone relation and only form the deviating representations
during post-processing. It may be concluded, that the post-processing is not
a direct implication of the clone detection method but of the intended mode
of use of its result. In fact, this kind of post-processing is independent of the
actual clone detection algorithm, but it depends on the characteristics of the
clone relation. We consider clone relations to be reflexive and symmetrical.
In case non-exact clones are considered, a clone relation cannot be generally
transitive [Bel02].

10

4.2 Candidates for clone instances

In order to discuss the definition of the base set of the clone relation, we will first
consider clones only as being partially exact at one specific level of granularity.
This means, we ignore the details of differences below that level. In a second
step, we look at how the model must be amended to fully support inexact
clones in section 4.3. We propose to use as such the set of distinct artifacts
in some structure derived statically from the source code of the subject system
at a well-defined level of detail, which we call the selection granularity. The
individual artifacts are called selection units. Each selection unit may or may
not correspond directly with a syntactical element of the programming language
concerned.

This definition leaves plentiful possibilities, so we consider several additional
criteria in selecting a concrete granularity. However, we believe that different
choices may be adequate, depending on the specific situation. The former three
criteria refer to selection units as system artifacts, the latter two to selection
units as clone constituents. Of course, the criteria are not mutually independent.
Particularly, the latter two are closely related. The criteria are presented with
a brief rationale:

coverage The set of all selection units should cover all relevant aspects of the
software system, which most importantly include aspects determining its
behavior.

significance of individual units A developer should be able to gain under-
standing of every individual selection unit with little effort. A proper
naming scheme will help to achieve this goal.

distinction of multiple units A developer should be able to distinguish sev-
eral selection units without having to explicitly consider their context. A
proper naming scheme will similarly help to achieve this goal at a coarse-
grained level.

significance of clone property The attribution of the clone property to a
set of selection units should be reasonably significant. Particularly, this
requires that the criterion used to decide on the property is easily com-
prehensible and selective. Selectiveness we must take care of the fact that
the details of partially exact clones are ignored. It is not helpful if only
such criteria can be established which attribute the clone property either
to nearly all or to virtually no pairs of selection units.

probability of informal reuse The selection units should feature a high
probability to be informally reused. Informal reuse in this context is to be
understood as any means resulting in duplicated functionality other than
rigorous reuse techniques. The most apparent among the possibilities of
informal reuse is copying the relevant source code.

If artifacts are informally reused only on a level below the chosen selection
granularity, it is difficult to find a selective clone criterion on this level: either few
similar sub-artifacts suffice to make the selection units a clone, which delivers
too many clones, or too many cloned sub-artifacts are overseen.

Considering software implemented in the Java programming language, sev-
eral possibilities are apparent to choose the selection granularity from. We will

11

assess the fulfillment of the criteria for three possible choices of selection gran-
ularity:

classes/interfaces Every source code fragment besides certain comments,
package declarations and import statements (which are considered not
to contain information relevant to cloning) is contained in a class or inter-
face declaration. Thus, the coverage is nearly complete in this case. The
significance attributed to classes is generally well-defined, but may be too
complex to comprehend instantly. It is possible to distinguish classes on
a coarse-grained level by their names.

It is unlikely that whole classes are informally reused, as more rigorous
concepts like inheritance and delegation are well-known for this purpose.
Since the elements of a class are not ordered, comparison of classes is
difficult to achieve, unless their members’ names can be matched.

methods Not all behavioral aspects are contained in methods, e.g. static, in-
stance or member initializers. However, we assume that such aspects may
be neglected: it is unlikely that they alone contain relevant duplicated
code, without correlating with duplications in method code. Methods
are relatively constrained artifacts4. Developers usually attribute some
meaning to methods that is well-defined at least in a subjective manner.
Certainly, methods are less complex than classes, and are thus easier to
compare. A coarse-grained distinction is easy by using the methods’ qual-
ified names.

Methods are likely to be informally reused, as there is no easy rigorous
way to reuse methods from another context. On the other hand, it is
likely that, when a functionality has already been considered a candidate
for isolation in a method of its own once, this will be the case again in a
different context.

statements Using a similar argument as before, statements do not feature
perfect, but good enough coverage of a software system, though slightly
worse than methods. A single statement is typically not very complex,
but its meaning is incomprehensible without consideration of its context.
Two identical statements may have completely different functions when
used in different contexts.

The informal reuse of short statement sequences, and thus of single state-
ments, is very likely, since they may be too small or too variable to be
factored out into a method without much effort.

We conclude that, commonly, the choice of methods as selection units will
be most adequate: it provides good-enough coverage, good significance, easy
distinction and high probability of informal reuse. However, in case of a non-
standard programming style—possibly resulting from an automated language
conversion—, a different choice may be better. To make a proper decision for
a given software system, a quantitative evaluation might be adequate. In this
paper, we will constrain to giving an example in section 4.4.

4Here, issues arising with the use of anonymous or local classes are neglected.

12

4.3 Modeling inexact clones

A binary relation on a set of selection units suffices to describe exact clones. But,
as reasoned in section 2.3, the majority of clones in general, and the majority of
clones of greatest interest to developers in particular, are not exact. Thereupon,
the question arises how the details of inexact clones may be described on the
basis of the model just introduced. A simple possibility to extend the model
to support the handling of inexact clones is to annotate each clone pair with
some measure of the degree of difference or similarity. For two reasons, such
an approach is not sufficient. Firstly, when trying to evaluate different clone
detection algorithms, the results of two algorithms are difficult to compare: it
is not transparent which structural elements below the selection granularity
contributed to the decision to consider a pair selection units a clone. Secondly,
if the result of the clone detection process is considered to be used for clone
removal, such details of clone instance differences are required for selecting and
applying removal strategies (see, e.g., [BMD+99b]).

Therefore, entities on a level of detail below the selection granularity are
incorporated into the model, which we call comparison units. The following
constraints are imposed upon comparison units:

1. Each comparison unit must be unambiguously attributable to an enclosing
selection unit. Thus, the comparison granularity must be finer or as fine
as the selection granularity.

2. The comparison units within a selection unit must be arranged as a se-
quence or as a tree-like hierarchy.

An enumeration function determines the linear sequence of comparison units
contained in a selection unit. In the case of hierarchically organized comparison
units, the pre-order linearization of the tree is used for this purpose.

An induction function relates cloned pairs of comparison units to a clone pair
at selection granularity, and decides whether the selection units are sufficiently
covered by cloned pairs of comparison units to be considered a clone. Basically,
arbitrary cover, total cover and threshold cover may be considered.

Taking the Java language as an example again, when we fix the selection
granularity at method level, the comparison granularity may be chosen such
that the comparison units of one selection unit are the whole method body, the
sequence of lines contained in the method body, or the hierarchy of subtrees of
the AST of the method body. These choices will be illustrated by the example
in section 4.4.

Given a specific choice of selection and comparison granularity, a language-
specific classification of clone pairs based on the nature of their instances’ dif-
ferences can be sensible (cf. [BMD+99a]).

4.4 Example

We will now apply the model described before to a small example written in the
Java programming language. Consider a class MyDictionary partially presented
in figure 1. The class encapsulates a dictionary data structure, which maps keys
to values. MyDictionary adds two alternative access methods getValue and

13

class MyDictionary {
 Dictionary properties;
 //...
 String getValue(String searchKey)
 {

Enumeration enum =
properties.keys();

while (enum.hasMoreElements())
 {

String currentKey =
(String)enum.nextElement();

if (currentKey.startsWith
(searchKey))

return (String)
properties.get(currentKey);

}
return null;

}

String getValueIgnoreCase(String key)
 {

Enumeration keyEnum =
properties.keys();

while (keyEnum.hasMoreElements())
 {

String currentKey =
(String)keyEnum.nextElement();

if (currentKey.equalsIgnoreCase
(key))

return (String)
properties.get(currentKey);

}
return null;

}
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Figure 1: Example: two similar methods

14

getValueIgnoreCase which search for keys in a certain manner5. In the two
methods, differences are marked by bold typeface. Most differences consist
only in the names of identifiers, the one exception is additionally marked by
underlining.

We will now consider three alternatives for representing clone relationships
between the methods within our model. Due to space limitations, only a fraction
of each representation is shown.

Lines as selection units First, we will consider using code lines as selection
units, without subordinate finer-grained comparison units. This is equivalent
to choosing the comparison granularity at the same level as the selection gran-
ularity. The situation is visualized in figure 2.

Clone
set

Clone pair
SelectionUnit

l.5
SelectionUnit

l.22

Clone
set

Clone pair
SelectionUnit

l.7
SelectionUnit

l.24

.

.

.

Figure 2: Example: lines as selection units

On the top level of the clone artifacts we find a clone set. A clone set consists
of a set of clone pairs and a reference element. In our example, however, we
will always find a one-to-one relationship between clone sets and pairs. There
is a clone set and clone pair for each matching pair of code line. The first two
of those are shown in the diagram. Lines 6 and 23 do not match in a line-level
based comparison, since we considered only textually exact matches here.

Comparison units are not visualized in the diagram as there is necessarily
a one-to-one relationship between selection units and comparison units when
their granularity is the same. In a tool realization, the explicit recognition of
comparison units may be sensible. It is then possible to uniformly perform
comparisons only on comparison unit level. Consequently, the tool design is
simplified.

5The two methods are not implemented very efficiently, but it is certainly conceivable that
such implementations abound in real systems.

15

The presented result is only one possible outcome of a clone detection al-
gorithm operating at the chosen comparison granularity. The concrete results
depend on how the comparison of lines is performed, e.g. if and how a normal-
ization of code lines is applied, which was not done in this example.

Reasoning about clones at this level is very difficult, since the information
carried by one clone set is too constrained to be meaningful, and no relation
between different selection units is made explicit. In principle, this problem
could be solved by regarding line sequences as selection units, but this would
pose the problem that selection units may overlap. An alternative solution, that
is more natural in an object-oriented, imperative language, is to choose methods
as selection units.

Methods as selection units, . . .

. . . lines as comparison units Using methods as selection units, there are
still several possibilities of how to choose the comparison granularity. We will
first regard code lines as selection units, which allows direct comparison with
the previous example. Again, only exact matches are considered. The resulting
situation is visualized in figure 3.

SelectionUnit
getValue

SelectionUnit
getValueIgnoreCase

l.5

l.6

l.7

l.22

l.23

l.24

.

.

.

.

.

.

Clone
set

Clone pair

.

.

.

Figure 3: Example: lines as comparison units

In contrast to figure 2, the code lines, which were previously unordered, have
been transformed into an ordered sequence of comparison units below the en-
closing method as selection unit. In addition, the clone pairs of the previous
example can be found as clone pairs at comparison granularity in this represen-
tation. These are depicted by a double triangle symbol which carries references
to the corresponding comparison units. The clone pairs at comparison granu-
larity enrich the information carried by the clone pair at selection granularity.

. . . AST subtrees as comparison units Finally, we consider the most struc-
tured of our example representations, using AST subtrees as comparison units.

16

The situation is depicted in figure 4.

SelectionUnit
getValue

SelectionUnit
getValueIgnoreCase

.
.
.

Clone
set

Clone pair

Block
(l.5-19)

LocalVariable
Declaration

(l.6-7)

WhileLoop
(l.8-17)

Type
Enum.

Identifier
enum

Expression
...

.
.
.

Block
(l.22-36)

LocalVariable
Declaration

(l.23-24)

WhileLoop
(l.25-34)

Type
Enum.

Identifier
keyEnum

Expression
...

1.0 1.01.0

1.0

0.9

0.92

.
.
.

Figure 4: Example: AST subtrees as comparison units

The comparison units within each selection unit correspond to the nodes of
the AST of the methods’ bodies. In contrast to figure 3, they are hierarchi-
cally, not linearly structured. This attributes to the clone pairs at comparison
granularity as well. In addition, the latter are annotated by a number denoting
the degree of similarity of the participating units. Atomic similarity values are
determined at the leafs, and are propagated towards the root using a weighting
algorithm. In the previous examples no similarity values were shown. Since only
exact matches were considered, all similarity values were equal to 1.0, rendering
this information redundant.

While lines 6 and 23 were not considered clones in the previous examples,
the variable declarations as a whole are considered a perfect match, since they
differ only in the identifiers’ names. However, in the loop which is not shown
in detail, there is a significant difference (the method called on currentKey in
lines 13 resp. 30), resulting in a similarity value below 1.0 on the loop and block
level.

Various clone detection algorithms work directly on AST representations
(e.g. [BYM+98]) or even more sophisticated representations based on the AST
(e.g. [KH01, Kri01]). The AST is the representation which can be considered
the most sophisticated common denominator of the representations that are
used or conceivable. Therefore, this representation is likely to retain as much
information as possible while minimizing the effort necessary to compare results.

17

project
instance

clone set (SG)

clone pair (SG)

clone pair (CG)

selection unit

comparison
unit

*

*

*

*

2 *

*
2 *

*

*

selection
function

enumeration
function

comparison
algorithm

induction
function

presentation
function

{ {system artifacts clone data

Figure 5: Overview of the generic clone model

4.5 Summary

An overview of the elements of the clone model is given in figure 5, which
summarizes the previous discussion. Firstly, there are elements directly corre-
sponding to system artifacts. Secondly, there are artifacts representing parts of
the clone data which is generated by a clone detection algorithm on the basis
of the system artifacts.

The top-level artifact representing the whole system is called project instance
pi from some base set PI. An instance is structured into selection units and
comparison units, through a selection function Sel and an enumeration function
Comp, respectively. Given PI, we define SU(PI) and CU(PI) as the base sets
of selection and comparison units, respectively. The clone data is aggregated
on the top level in clone sets, which contains clone pairs. Clone pairs exist in
two granularities, that of the selection units (SG) and of the comparison units
(CG).

A plain clone detection algorithm, which neglects the level of detail of the
comparison granularity, is a mapping Alg : PI → CR, where CR is the set of all
binary, symmetric and reflexive (clone) relations over SU(PI). Alg must obey

∀pi ∈ PI: Alg(pi) ⊆ Sel(pi)× Sel(pi)

and a partial mapping g : P(SU) → CR must exist such that Alg = g ◦ Sel.
Clone pairs are grouped into clone sets by a presentation function. The clone

sets used here are sets with a distinguished reference element, i.e. the basic set
of clone sets is determined by

{(x, {(x, y) | x ' y}) | x ∈ SU ∧ (∃ y : x ' y)}

This set is further restricted to reduce redundancy. Given a clone set C :=
(x, C̄), the elements of

{
y | ∃(x′, y′) ∈ C̄ : y = y′} are called the elements of C.

Because of its definition, a clone set C makes no assumption about the
clone relations among its elements, only about the clone relation between its

18

distinguished element and its other elements. Plain sets with a cardinality larger
than two cannot be used to represent the clone relation, if the clone relation is
not transitive [Bel02].

5 Uses of the model

Of course, the question arises what the representations within the model can
be used for. Considering the underlying example code fragment (fig. 1) again,
one might come to the conclusion that the duplication can be removed by fac-
toring out the common parts and parameterizing it using the Strategy pat-
tern [GHJV95]. In fact, a similar approach has been undertaken as described
in [BMD+99b,BMD+00].

An advantage of having a generic clone model in this context is that it is
possible to separate concerns regarding clone detection, clone description and
clone management, including clone removal. Previous approaches to clone de-
tection do not address clone description explicitly. As a consequence, approaches
to clone removal have to address clone detection and clone description without
clearly separating these issues from the primary goal of clone removal techniques.

Tool support

In order to effectively realize this separation of concerns, tool support for the
three aspects is required. We have developed an implementation framework for
such tools and a prototype tool on top of that.

Besides the clone model, we have also developed concepts for clone manage-
ment as part of our research. These concepts are independent of the program-
ming language considered and the tool platform used. Our approach to clone
management can be characterized as decentralized, using local data. Clone man-
agement activities are triggered by the developer as tool user and as side-effects
of other actions. Both system-focused and clone-focused scopes of actions are
supported, with an emphasis on the latter. The primary mode of operation is
development-accompanying. Details on the characteristics of our approach will
have to be subject to another paper.

Since code clones can be found in systems of any kind and size, we see a
need for tools supporting clone management within a widely-used IDE. Based
on the generic clone model and the clone management concepts as a founda-
tion, we have developed a framework on top of the open source tool platform
Eclipse. The framework minimizes the effort necessary to implement new clone
detection algorithms. To enable tight integration into the development process
and particularly immediate display of detected clones, incremental operation is
supported.

A prototype implementation offering this functionality is available under
[Gie03]. A screen-shot of the prototype is shown in figure 6.

6 Related work

Beginning in the early 1990s several algorithms for automatically identi-
fying duplicated source code fragments (code clones) have been developed
[Bak92,BYM+98,DRD99,KH01,KDM+96,Kri01,MLM96]. Recent efforts are

19

Figure 6: Tool screen-shot

targeted at evaluating the quality of these algorithms [Bel02] and defining com-
mon terminology for clones. The latter is a prerequisite to defining bench-
marks [LLWY03].

The aspect of tool support for clone management has only slightly been
approached. Many tools were created as part of the work on methods for clone
detection (see above) and removal (part. [BMD+99b,BMD+00,BYM+98]). But
this work was driven by the operational aspects of detection and removal, and
was not done from a tool-centered perspective. Among the notable exceptions
are Ariadne [KDM+96], integrated into a reverse engineering environment, and
Gemini [HUK+02]. But, thoughts about separation of concerns were not made
explicit, resulting in little systematic reuse. Much more, to our knowledge there
has been no concept or tool allowing use of different clone detection algorithms
within one conceptual or implementation framework. Some work has been done
on clone visualization techniques [DRD99], which were not considered directly
in our work, but may be realized on top of the tool framework.

Regarding the integration into the software development process, concrete
clone management activities have been proposed earlier [MLH96], and their po-
tential effect has been evaluated using historical data, i.e. several versions of a
large software system. Technical foundation of this approach is a central reposi-
tory which conducted the clone detection, together with special clients perform-
ing corresponding user interaction. This scenario requires a proprietary, special-
ized environment which is suitable for development of large software systems,
but not for small to medium-sized projects where off-the-shelf IDEs are used.
No tool based on this scenario has been actually realized according to [MLH96].

The concepts of selection granularity and comparison granularity were in-
troduced by [KDM+96], but were not further developed therein.

20

7 Conclusion

In this paper, we have analyzed the notion of code clones, with respect to their
effects on software qualities, the circumstances of their emergence in software
systems, the particularities of inexact clones and general thoughts about clone
avoidance. Then, we have defined the notions of selection granularity and com-
parison granularity. On this basis, we have defined a generic clone model, which
is independent of programming languages, and is uniformly applicable indepen-
dent of the choice of selection and comparison granularities. We have discussed
issues to be considered in such a choice. In subsequence, we have illustrated the
use of the model using a concrete example in the Java programming language.
Finally, we have discussed possible uses of the model, and presented a frame-
work and prototype implementation allowing implementation of tools adhering
to the model.

Future work

Concerning the model itself it should be evaluated if the existing approaches
to code clone detection can be adequately mapped to the proposed model. On
the other hand, it should be studied in practice if the abstractions of the model
are helpful to software engineers trying to develop and/or restructure a software
system.

To allow technically effective separation of concerns which is independent
of the tool implementation used, an open language for exchanging clone data
between tools should be defined based on the generic clone model. This also
enables shared distributed use of one clone data basis.

The basic tool currently available [Gie03] can be used as a starting point for
making clone data described using the model available to software developers
in a common environment. It is clear that, apart from the suitability of the
model, the adequateness of the tool support is a dimension worth to be studied
on its own. As already mentioned, the inclusion of clone management into the
development process has not been studied in depth yet; neither has appropriate
tool support for resulting process activities. Apart from that, an appropriate
tool can be used for assessing the usefulness of the results produced by different
clone detection algorithms in daily developers’ work.

References

[Bak92] Brenda S. Baker. A Program for Identifying Duplicated Code.
Computing Science and Statistics, 24:49–57, 1992.

[Bel02] Stefan Bellon. Vergleich von Techniken zur Erkennung duplizierten
Quellcodes. Diploma thesis, Universität Stuttgart, September
2002.

[BF00] Kent Beck and Martin Fowler. Extreme Programming Explained:
Embrace Change, chapter Bad Smells in Code. Addison-Wesley,
2000.

21

[BMD+99a] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno
Lague, and Kostas Kontogiannis. Measuring clone based reengi-
neering opportunities. In Proc. 6th Intl. Symp. on Software Met-
rics, pages 292–303. IEEE, IEEE Comp. Soc. Pr., 1999.

[BMD+99b] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno
Lague, and Kostas Kontogiannis. Partial redesign of Java software
systems based on clone analysis. In Proc. 6th Working Conf. on
Reverse Engineering (WCRE), pages 326–336, Atlanta, Georgia,
October 1999. IEEE, IEEE Comp. Soc. Pr.

[BMD+00] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno
Lague, and Kostas Kontogiannis. Advanced clone-analysis to sup-
port object-oriented system refactoring. In Proc. 7th Working
Conf. on Reverse Engineering (WCRE), pages 98–107, Brisbane,
Australia, Nov 2000. IEEE, IEEE Comp. Soc. Pr.

[Bro87] Frederic L. Brooks. No silver bullet: Essence and accidents of
software engineering. IEEE Computer, 20(4):10–19, April 1987.

[BYM+98] Ira D. Baxter, Andrew Yahin, Leonardo M. De Moura, Marcelo
Sant’Anna, and Lorraine Bier. Clone detection using abstract syn-
tax trees. In Proc. 20th Intl. Conf. on Softw. Maintenance, pages
368–377. IEEE, IEEE Comp. Soc. Pr., 1998.

[DDN02] Serge Demeyer, Stphane Ducasse, and Oscar Nierstrasz. Object
Oriented Reengineering Patterns. Morgan Kaufman Publishers,
2002.

[DPML02] M. Dagenais, J. F. Patenaude, E. Merlo, and B. Lague. Clones oc-
currence in Java and Modula-3 software systems. In Hakan Erdog-
mus and Oryal Tanir, editors, Advances in Software Engineering,
chapter 5, pages 95–110. Springer, 2002.

[DRD99] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A lan-
guage independent approach for detecting duplicated code. In
Hongji Yang and Lee White, editors, Proc. Intl. Conf. on Softw.
Maintenance, pages 109–118. IEEE, 1999.

[Fow99] Martin Fowler. Refactoring: Improving the design of existing code.
Addison-Wesley Longman, 1999.

[Ghe03] Carlo Ghezzi. Fundamentals of Software Engineering. Prentice
Hall/Pearson, 2. edition, 2003.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design patterns: elements of reusable object-oriented soft-
ware. Addison-Wesley Longman Publishing Co., Inc., 1995.

[Gie03] Simon Giesecke. Eclipse duplication management framework
project page, 2003. http://dupman.sf.net/.

22

[HUK+02] Yoshiki Higo, Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto,
and Katsuro Inoue. On software maintenance process improve-
ment based on code clone analysis. In Markku Oivo and Seija
Komi-Sirviö, editors, Proc. Product Focused Software Process Im-
provement (PROFES 2002), volume 2559 of Lect. Notes in Comp.
Sc. Springer, 2002.

[KDM+96] K. A. Kontogiannis, R. Demori, E. Merlo, M. Galler, and M. Bern-
stein. Pattern matching for clone and concept detection. Autom.
Softw. Eng., 3(1–2):77–108, 1996.

[KH01] Raghavan Komondoor and Susan Horwitz. Using slicing to iden-
tify duplication in source code. In P. Cousot, editor, Proc. Static
Analysis Symp. (SAS), volume 2126 of Lect. Notes in Comp. Sc.,
pages 40–56. Springer, 2001.

[Kri01] Jens Krinke. Identifying similar code with program dependence
graphs. In Proc. 8th Working Conf. on Reverse Engineering
(WCRE), pages 301–309, 2001.

[LLWY03] Arun Lakhotia, Junwei Li, Andrew Walenstein, and Yun Yang.
Towards a clone detection benchmark suite and results archive. In
Proc. 11th Intl. Workshop on Program Comprehension (IWPC),
Portland, Oregon, May 2003. IEEE, IEEE Comp. Soc. Pr.

[LPM+97] Bruno Laguë, Daniel Proulx, Ettore M. Merlo, Jean Mayrand, and
John Hudepohl. Assessing the benefits of incorporating function
clone detection in a development process. In Proc. Intl. Conf. on
Softw. Maintenance, pages 314–321. IEEE Computer Society Press,
1997.

[MLH96] Jean Mayrand, Bruno Laguë, and John Hudepohl. Evaluating the
benefits of clone detection in the software maintenance activities
in large scale systems. In Proc. Workshop on Empirical Software
Studies, Monterey, California, USA, November 1996.

[MLM96] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the auto-
matic detection of function clones in a software system using met-
rics. In Proc. Intl. Conf. on Softw. Maintenance, pages 244–253.
IEEE, IEEE Comp. Soc. Pr., 1996.

[PC86] David L. Parnas and P. C. Clements. A rational design process:
how and why to fake it. IEEE Trans. Softw. Eng., 12(2):251–257,
February 1986.

[Ric53] H. G. Rice. Classes of recursively enumerable sets and their decision
problems. Trans. Amer. Math. Soc., 74:358–366, 1953.

23

	Introduction
	Notion of code clones
	Effects of cloning on software qualities
	Emergence of code clones
	Technical means of clone creation
	Reasons leading to the emergence of clones

	Exactness of clones
	Degrees of exactness
	Relation to clone creation
	Risks
	Detection

	Avoiding and handling clones
	Summary

	Integrated clone management
	Aspects of clone management
	Clone management scenarios
	Centralization of clone management tools
	Locality of clone management data
	Triggering of clone management activities
	Scope of clone management activities
	Relation to development activities
	Discussion

	Generic modeling of code clones
	Clone detection techniques at a glance
	Candidates for clone instances
	Modeling inexact clones
	Example
	Summary

	Uses of the model
	Related work
	Conclusion

