
06172 Abstracts Collection

Directed Model Checking

� Dagstuhl Seminar �

Stefan Edelkamp1, Stefan Leue2, and W. Visser3

1 Univ. of Dortmund, DE
stefan.edelkamp@cs.uni-dortmund.de

2 Univ. of Konstanz, DE
Stefan.leue@uni-konstanz.de

3 NASA, USA
wvisser@ptolemy.arc.nasa.gov

Abstract. From 26.04.06 to 29.04.06, the Dagstuhl Seminar 06172 �Di-
rected Model Checking� was held in the International Conference and
Research Center (IBFI), Schloss Dagstuhl. During the seminar, several
participants presented their current research, and ongoing work and open
problems were discussed. Abstracts of the presentations given during the
seminar as well as abstracts of seminar results and ideas are put together
in this paper. The �rst section describes the seminar topics and goals in
general. Links to extended abstracts or full papers are provided, if avail-
able.

Keywords. Model Checking, Arti�cial Intelligence, AI Plannning, Guided
Traversal, State Explosion Problem

06172 Executive Summary � Directed Model Checking

This is a summary of the Dagstuhl Seminar 06172 Directed Model Checking
that was held 26 - 29 April 2006 at Schloss Dagstuhl, Germany. Directed Model
Checking is a software and hardware veri�cation technique that performs a sys-
tematic, heuristics guided search of the state space of the model to be analyzed.
It hence reconciles classical model checking technology with intelligent, heuris-
tics driven search that has a long tradition in arti�cial intelligence, in particular
in the area of action planning. The bene�ts are short or even optimally short
error trails, in some instances a more e�cient exploration of the state space,
and the applicability of state space search in some application areas in which
unintelligent search would not yield useful results.

The seminar brought together researchers from the system veri�cation and
the arti�cial intelligence domain in order to discuss the current state of the art,
and to elicit and discuss research challenges and future directions.

Keywords: Model checking, heuristics, state space search, software and hard-
ware veri�cation

Dagstuhl Seminar Proceedings 06172
Directed Model Checking
http://drops.dagstuhl.de/opus/volltexte/2007/946

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62912314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 S. Edelkamp, S. Leue, and W. Visser

Joint work of: Edelkamp, Stefan; Leue, Stefan; Visser, Willem

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/944

Directed Search Algorithms for Probabilistic Timed
Reachability

Husain Aljazzar (Universität Konstanz, D)

The inability to provide counterexamples for the violation of probabilistic timed
reachability properties constrains the practical use of stochastic Model Checking,
e.g. CSL Model Checking for continuous time Markov chains (CTMCs). Coun-
terexamples are essential tools in determining the causes of property violations
and are required during debugging. For a given probabilisitc timed property, we
propose the use of explicit state model checking to determine a failure trace, i.e.
a run leading into some property o�ending state.

Since we are interested in �nding counterexamples that carry large amounts
of probability mass we employ directed explicit state model checking technology
to �nd such failure traces using a variety of heuristics guided search algorithms,
such as Best First search and Z*.

The estimates used in computing the heuristics rely on a uniformisation of the
CTMC. We apply this approach to a probabilistic model of the SCSI-2 protocol.

In the context of stochastic Model Checking, one failure trace is, in general,
not enough to show the violation of a given property. Also for debugging, it
makes more sense to look at a reasonable set of failure traces.

Thus, we extend the search algorithms so that a subgraph of the state tran-
sition graph is selected which can be used to show the violation of the given
property.

Hence, This subgraph can be considered as a real counterexample.
We applied the extended approach to a probabilistic model for workstation

cluster for parallel computing.

Keywords: Directed Model Checking, Stochastic Model Checking, Counterex-
ample, Debugging, Heuristic Search Algorithms

Full Paper:
http://www.inf.uni-konstanz.de/soft/research/publications/pdf/formats05

See also: Husain Aljazzar, Holger Hermanns, and Stefan Leue: Counterexam-
ples for Timed Probabilistic Reachability, Proceedings of the 3rd International
Conference on Formal Modelling and Analysis of Timed Systems FORMATS'05,
LNCS 3829, Lecture Notes in Computer Science, Springer Verlag, 2005.

http://drops.dagstuhl.de/opus/volltexte/2007/944
http://www.inf.uni-konstanz.de/soft/research/publications/pdf/formats05

Directed Model Checking 3

A Hybrid of Counterexample-based and Proof-based
Abstraction

Nina Amla (Cadence - Sunnyvale, USA)

Counterexample- and proof-based re�nement are complementary approaches to
iterative abstraction. In the former case, a single abstract counterexample is
eliminated by each re�nement step, while in the latter case, all counterexam-
ples of a given length are eliminated. In counterexample-based abstraction, the
concretization and re�nement problems are relatively easy, but the number of
iterations tends to be large. Proof-based abstraction, on the other hand, puts
a greater burden on the re�nement step, which can then become the perfor-
mance bottleneck. In this talk, we show that counterexample- and proof-based
re�nement are extremes of a continuum, and propose a hybrid approach that
balances the cost and quality of re�nement. In a study of a large number of
industrial veri�cation problems, we �nd that there is a strong relation between
the e�ort applied in the re�nement phase and the number of re�nement iter-
ations. For this reason, proof-based abstraction is substantially more e�cient
than counterexample-based abstraction.

However, a judicious application of the hybrid approach can lessen the re-
�nement e�ort without unduly increasing the number of iterations, yielding a
method that is somewhat more robust overall.

Joint work of: Amla, Nina; McMillan, Ken

Model Checking Networked Applications

Cyrille Artho (National Institute of Informatics - Tokyo, J)

Software model checkers can be applied directly to single-process programs,
which typically are multi-threaded. On the other hand, multiple processes can
usually not be model checked directly. Several approaches to deal with this prob-
lem are possible: Network operations may be replaced with (application-speci�c)
stubs, a special model-checking-aware cache layer may be inserted between the
model checker and the system, or processes may be converted into threads.

This talk covers these possibilities, emphasizing the last solution called "process
centralization". Previous work has not covered all issues regarding centralizing,
most importantly, TCP/IP communication.

Keywords: Software model checking, network, inter-process communication

4 S. Edelkamp, S. Leue, and W. Visser

Do (not) Know Much About the History, Biology (of
Directed Model Checking)

Dragan Bosnacki (TU Eindhoven, NL)

In the �rst part of this presentation I am going to talk about some early forms of
Directed Model Checking which were used in Approver. Approver is probably the
�rst tool for automated veri�cation of communication protocols. It was written
by Jan Hajek in the end of the 70's at the Eindhoven University of Technology.
Besides being interesting from a historical perspective, I hope that the ideas for
fast bug �nding that were used in Approver can be further developed in the
context of Directed Model Checking.

The second part of the talk is devoted to some applications of model checking
for the analysis of biological networks and in particular the possible role of
directed model checking in such applications.

Finally, I will brea�y go over some topics of combining directed model check-
ing with other techniques that I would like to discuss o� line during the seminar.

Keywords: Directed model checking, history of model checking, bioinformatics

E�cient Software Model Checking of Data Structure
Properties

Chandrasekhar Boyapati (Univ. of Michigan - Ann Arbor, USA)

This talk presents novel language and analysis techniques that signi�cantly speed
up software model checking of data structure properties. Consider checking a red-
black tree implementation. Traditional software model checkers systematically
generate all red-black tree state(within some given bounds) and check every
red-black tree operation (such as insert, delete, or lookup) on every red-black
tree state. Our key idea is as follows. As our checker checks a red-black tree
operation o on a red black tree state s, it uses program analysis techniques to
identify other red-black tree states s′

1, s
′
2, ..., s

′
k on which the operation o behaves

similarly. Our analyses guarantee that if o executes correctly on s, then o will
execute correctly on every s′

i. Our checker therefore does not need to check o
on any s′

i once it checks o on s. It thus safely prunes those state transitions
from its search space, while still achieving complete test coverage within the
bounded domain. Our preliminary results show orders of magnitude improvement
over previous approaches. We believe our techniques can make software model
checking signi�cantly faster, and thus enable checking of much larger programs
and complex program properties than currently possible.

Keywords: Software Model Checking, Program Analysis, Linked Data Struc-
tures

Joint work of: Boyapati, Chandrasekhar; Darga, Paul

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/945

http://drops.dagstuhl.de/opus/volltexte/2007/945

Directed Model Checking 5

Directed Model Checking with Distance-Preserving
Abstractions

Klaus Dräger (Universität des Saarlandes, D)

Recent work on pattern databases has shown that abstraction-based heuristics
are useful for directed model checking. The central research question is how to
compute a useful abstraction without hitting the state space explosion problem.

We present a method that automatically computes an abstraction for a given
system such that the distance between each concrete state and the closest er-
ror state in the concrete system is closely approximated by the corresponding
distance in the abstraction. The cost of computing the abstraction (and the
resulting informedness of the heuristic) can be adjusted through a control para-
meter.

Our experiments using these abstractions show a dramatic reduction both in
the number of states explored by the model checker and in the total runtime.

Full Paper:
http://springerlink.com/link.asp?id=1m63183j35474876

See also: K.Dräger and B.Finkbeiner and A. Podelski, Directed Model Checking
with Distance-Preserving Abstractions. In: Proceedings of the 13th International
SPIN Workshop on Model Checking of Software, Lecture Notes in Computer
Science 3925, pages 19-34. Springer, 2006

Controlling Factors in Evaluating Directed Model
Checking Techniques

Matthew Dwyer (University of Nebraska, USA)

Recent advances in directed model checking have made it possible to detect
errors in applications that have been thoroughly tested and are in wide-spread
use.

The ability to �nd errors that have eluded traditional validation methods is
due to the development and combination of sophisticated algorithmic techniques
that are embedded in the implementations of analysis tools.

Evaluating new analysis techniques is typically performed by running an
analysis tool on a collection of subject programs, perhaps enabling and disabling
a given technique in di�erent runs.

While seemingly sensible, this approach runs the risk of attributing improve-
ments in the cost-e�ectiveness of the analysis to the technique under consider-
ation, when those improvements may actually be due to details of analysis tool
implementations that are uncontrolled during evaluation.

In this talk, we report on the results of empirical studies that we have per-
formed that illustrate the existence of several factors that can signi�cantly in�u-
ence the cost of directed model checking. You may not �nd the nature of these

http://springerlink.com/link.asp?id=1m63183j35474876

6 S. Edelkamp, S. Leue, and W. Visser

factors too surprising, but we believe the data on the degree of in�uence of those
factors on analysis cost is signi�cant enough that it will cause you to want to
�think twice� when designing evaluations of future techniques.

We conclude with several recommendations as to how the in�uence of these
factors can be mitigated when evaluating techniques.

Joint work of: Dwyer, Matthew; Person, Suzette; Elbaum, Sebastian

Directed Model Checking: Search Algorithms and
Heuristics

Stefan Edelkamp (Universität Dortmund, D)

In this talk we introduce to state-of-the-art heuristic search algorithms and
heuristics for model checking as a way to mitigate the state explosion problem
in implicit exploration

In the �rst part we address frontier search, breadth-�rst heuristic search,
and variants of the SetA* algorithm. As acceleration techniques we study par-
tial search, incremental hashing, collapse compression and state reconstruction.
Furthermore, study symbolic exploration as well as external and parallel execu-
tion.

In the second part on estimates we distinguish between explanatory and
trail-directed heuristics. In particular, we introduce to pattern databases and
FSM heuristic as well to property-speci�c (e.g. deadlock), formula-based and
tool-inherent (e.g. planning) heuristics,

Keywords: Heuristic Search, Model Checking Planning

See also: Stefan Edelkamp, Stefan Schroedl, Sven Koenig; Heurstic Search:
Theory and Practice, Morgan Kaufmann, To Appear

Abstraction Re�nement of Hybrid Systems

Ansgar Fehnker (National ICT Australia Ltd. - Sydney, AU)

In this talk I will present the basic ideas of counterexample guided abstraction
re�nement for hybrid systems, using set of fragments. It wil focus in particular
on how to select a suitable set of fragments that will be checked, explored, and
if necessary re�ned in the current iteration for the current abstraction.

Keywords: Abstraction re�nement, hybrid systems, cut sets

Directed Model Checking 7

Potential Applications of Directed Model Checking in
Testing

Wolfgang Grieskamp (Microsoft Research, USA)

The talk gives an overview over the vitual execution environment (or software
model-checker) XRT developed at Microsoft Research. It then digs into applica-
tions of XRT in testing, and how directed search is used today and may be used
in the future for improvements.

Keywords: Software-model checking, model-based testing, unit testing

External Memory Directed Model Checking

Shahid Jabbar (Universität Dortmund, D)

Practical model checking is still hurdled by the amount of internal memory
available. Virtual memory, might seem useful at a �rst glance, can in fact slows
down the performance of the algorthm due to accesssive page faults.

We will discuss algorithms that utilize hard-disk during model checking.
Starting from a simple external breadth-�rst search, we will develop Exter-

nal Memory algorithms for "Directed model checking". Both safety and liveness
checking for LTL properties will be discussed. The performance of external mem-
ory algorithms is measured in the number of Input/Output operations performed
on the hard-disk. We will evaluate our algorithms on this new model and prove
their optimality and correctness.

External memory algorithms have a large potential to evolve into distributed
algorithms. One such extension will be presented.

Related Literature:
=>Stefan Edelkamp, Shahid Jabbar, and Stefan Schroedl, External A*.
In KI 2004: Advances in Arti�cial Intelligence (German Conference on AI)

by Biundo et. al (eds.). Lecture Notes in Arti�cial Intelligence (LNAI), volume
3238, pages 226 - 240, Springer-Verlag, Ulm, Germany, 2004.

=>Shahid Jabbar, Stefan Edelkamp, I/O E�cient Directed Model Checking.
In Veri�cation, Model Checking and Abstract Interpretation (VMCAI'05)

by Cousot(Ed.). Lecture Notes in Computer Science (LNCS), volume 3385,
Springer-Verlag, pages 313-329, Paris, France, 2005.

=>Shahid Jabbar and Stefan Edelkamp, Parallel External Directed Model
Checking With Linear I/O. In Veri�cation, Model Checking and Abstract Inter-
pretation (VMCAI'06) by E. A. Emerson and K. S. Namjoshi (Eds.).

Lecture Notes in Computer Science (LNCS), volume 3855, Springer-Verlag,
pages 237-251, Charleston, South Carolina, USA, Jan. 2006.

=>Stefan Edelkamp and Shahid Jabbar, Large Scale External Directed Live-
ness Checking. In 13th International SPIN Workshop on Model Checking of
Software (SPIN 2006) by Valmari (Ed.). Lecture Notes in Computer Science
(LNCS), volume 3925, pages 1-18, Springer, Vienna, Austria, Mar. 2006.

8 S. Edelkamp, S. Leue, and W. Visser

Challenges and Applications of Assembly-Level Software
Model Checking

Tilman Mehler (Universität Dortmund, D)

Recent approaches in software model checking rely on investigating the actual
source code of the a program rather than a formal model. There are several
challenges that need to be overcome to build such a model checker. First, the
tool must be capable to handle the full semantics of the underlying programming
language. This implies a considerable amount of additional work unless the in-
terpretation of the program is done by some existing infrastructure. The second
challenge lies in the increased memory requirements needed to memorize entire
program con�gurations. This additionally aggravates the problem of large state
spaces that every model checker faces anyway.

In this talk, we present the experimental C++ model checker StEAM, de-
veloped in the course of the authors PhD thesis. Unlike tools such as the the
second generation of the Java model checker JPF, StEAM does not implement
its own virtual machine, but rather ties the model checking algorithm to an
existing virtual machine. To address the problem of large program states, we
call attention to the fact that most transitions in a program only change small
fractions of the entire program state. Based on this observation, we devise an in-
cremental storing of states which considerably lowers the memory requirements
of program exploration. To further alleviate the per-state memory requirement,
we apply state reconstruction, where states are no longer memorized explicitly
but through their generating path. Another problem that results from the large
state description of a program lies in the computational e�ort of hashing, which
is exceptionally high for the used approach.

Based on the same observation as used for the incremental storing of states,
we propose an incremental hash function which only needs to process the changed
parts of the program's state.

Keywords: Software model checking, memory reduction, heuristics, hashing

Using the runtime stack and static calling context to
improve distance heuristics in directed model checking

Eric Mercer (Brigham Young Univ. - Provo, USA)

State exploration in directed software model checking is guided using a heuristic
function to move states near errors to the front of the search queue. Distance
heuristic functions rank states based on the number of transitions needed to move
the current program state into an error location. Inlining functions at call-sites in
the control �ow graph to capture calling context in the distance heuristic function
leads to exponential growth in the computation. We present a new algorithm that
implicitly inlines functions at call sites to compute distance data with unbounded

Directed Model Checking 9

calling context that is polynomial in the number of nodes in the control �ow
graph. The new algorithm propagates distance data through call sites during a
depth-�rst traversal of the program. We show in a series of benchmark examples
that the new heuristic function with unbounded distance data is more e�cient
than the same heuristic function using data from an bounded control full graph
that inlines functions at their call sites.

Keywords: Directed model checking distance heuristic CFG FSM runtime stack

Joint work of: Rungta, Neha; Mercer, Eric

Guided Simulation of Autonomous Controllers

Charles Pecheur (Univ. cath. de Louvain, B)

AI software is often used as a means for providing greater autonomy to auto-
mated systems, capable of coping with harsh and unpredictable environments.
Due in part to the enormous space of possible situations that they aim to ad-
dress, autonomous systems pose a serious challenge to traditional test-based ver-
i�cation approaches. We describe an approach to the veri�cation of autonomous
control software based on guided execution of the actual program. This approach
is the basis of the Livingstone PathFinder (LPF) tool. LPF applies state space
exploration algorithms to an instrumented testbed, consisting of the controller
embedded in a simulated operating environment. Although LPF has focused on
NASA's Livingstone model-based diagnosis system applications, the architecture
is modular and adaptable to other systems. We present di�erent facets of LPF
and experimental results from applying the software to a Livingstone model of
the main propulsion feed subsystem for a prototype space vehicle.

Keywords: Simulation, veri�cation, autonomy, diagnosis, guided search

Joint work of: Pecheur, Charles; Lindsey, Tony

Full Paper:
http://www.info.ucl.ac.be/∼pecheur/publi/lpf-tacas04.pdf

See also: Tony Lindsey and Charles Pecheur. Simulation-Based Veri�cation of
Autonomous Controllers with Livingstone PathFinder. In: TACAS'04, Lecture
Notes in Computer Science, vol. 2988, Springer Verlag, 2004.

Branch and Bound with SPIN

Theo Ruys (University of Twente, NL)

The use of model checkers to solve discrete optimization problems is appealing.
A model checker can �rst be used to verify that the model of the problem is
correct.

http://www.info.ucl.ac.be/~pecheur/publi/lpf-tacas04.pdf

10 S. Edelkamp, S. Leue, and W. Visser

Subsequently, the same model can be used to �nd an optimal solution for the
problem.

In this talk we show how to use the SPIN model checker to search for the
optimal solution using SPIN's default depth �rst search (DFS) order.

We use Promela's embedded C features � which were introduced in SPIN
version 4 � to elegantly include search variables into the Promela model in order
to improve the search. We show how Branch-and-Bound techniques can be added
to the LTL property that is used to �nd the solution. This LTL property is then
dynamically changed during the veri�cation. We also show how the syntactical
reordering of statements and/or processes in the Promela model can improve
the e�ciency of the search even further.

The talk is partly based on the SPIN 2003 paper by the author.

Keywords: SPIN, Promela, optimization problem, branch and bound

Liveness Checking as Safety Checking to Find Shortest
Counterexamples

Viktor Schuppan (München, D)

While veri�cation of ω-regular properties requires detection of fair repeated
reachability, simple reachability is su�cient to check safety properties. We present
an e�cient translation from checking fair repeated reachability to reachability
for �nite state systems. As reachability is amenable to BFS, we obtain a practical
method to �nd shortest fair lasso-shaped paths. Whether a shortest fair lasso in
the product of a model and an automaton representing the speci�cation indeed
represents a shortest counterexample in the model depends on the translation
of the speci�cation into a Büchi automaton. We discuss requirements on Büchi
automata that ensure that this is the case. Experimental results indicate that
the di�erence in counterexample length that is due to using di�erent algorithms
to �nd a fair cycle is larger than the di�erence that stems from using di�erent
Büchi automata to encode the speci�cation.

Keywords: Model checking, liveness, safety, Büchi automata, shortest coun-
terexamples

Joint work of: Schuppan, Viktor; Biere, Armin

Heuristics for Model Checking CCS processes

Maria Luisa Villani (Univ. of Sannio - Benevento, I)

Model Checking su�ers from the state explosion problem due to the exponential
increase in the size of a �nite state model as the number of system components
grows.

Directed Model Checking 11

Directed model checking can be a solution to this problem if suitable heuris-
tics are used to avoid the construction of the complete system's model in order
to deduce the satisfaction or not of the property at hand.

In this line, we propose structure-based heuristic functions operating on
processes described in the Calculus of Communicating Systems (CCS) that can
be used with informed search strategies like A*, IDA* and Greedy. In particu-
lar, we de�ned admissible and non-admissible heuristics speci�cally for deadlock
detection and one admissible heuristic for the veri�cation of any other formula
expressed in the Selective Hennessy-Milner logic.

The results of some experiments we have conducted to evaluate the method
will be shown.

Keywords: Heuristics, CCS

Joint work of: Gradara, Sara; Santone, Antonella; Villani, Maria Luisa

Solving Scheduling Problems by Untimed Model Checking

Anton Wijs (CWI - Amsterdam, NL)

We show how scheduling problems can be modelled in untimed process algebra,
by using special tick actions. A minimal-time trace leading to a particular ac-
tion, is one that minimizes the number of tick steps. As a result, we can use
any (timed or untimed) model checking tool to �nd shortest schedules. Instanti-
ating this scheme to µCRL, we pro�t from a richer speci�cation language than
timed model checkers usually o�er. Also, we can pro�t from e�cient distributed
state space generators. We propose a variant of breadth-�rst search that visits
all states between consecutive tick steps, before moving to the next time slice.
We experimented with a sequential and a distributed implementation of this
algorithm. We also experimented with beam search, which visits only parts of
the search space, to �nd near-optimal solutions. Our approach is applied to �nd
optimal schedules for test batches of a realistic clinical chemical analyser, which
performs several kinds of tests on patient samples.

Keywords: Process algebra, scheduling, search algorithms, untimed model
checking

Joint work of: Wijs, Anton; Pol, Jaco van de; Bortnik, Elena

See also: A.J. Wijs, J.C. van de Pol, and E. Bortnik. Solving Scheduling Prob-
lems by Untimed Model Checking, The Clinical Chemical Analyser Case Study.
In Proc. 10th International Workshop on Formal Methods for Industrial Critical
Systems (FMICS'05), pages 54-61. ACM Press, 2005

	06172 Abstracts Collection Directed Model Checking --- Dagstuhl Seminar ---
	 Stefan Edelkamp, Stefan Leue, and W. Visser

