
Agents, Norms and Forest Cleaning

Jan Odelstad

Department of Mathematics, Natural and Computer Sciences, University of Gävle,
SE-801 76 Gävle, Sweden,

jod@hig.se

Abstract. The automation of forest cleaning presupposes principles for
choosing those trees that ought to be taken away and those that shall be
left standing. In this paper, which is a report on a work in progress, the
question is raised whether those principles can be structured as a combi-
nation of a normative system and a utility function. Of special interest
is the possibility that the agent system can evaluate the e¢ ciency of
the normative system and the utility function and, furthermore, suggest
improvements of them. Earlier works on norms and norm-regulation of
agent systems that the author has been involved in are used to elucidate
the problem area discussed in the paper.

1 Introduction

Within economic theory the consumer�s behaviour has traditionally been de-
scribed as determined by a utility function. During the latest three decades
there has been a growing interest among researchers in how norms (for example
rules of law) give restrictions on the behaviour induced by the utility function.1

The behaviour of the consumers or other economic agents, according to this
model, is the result of interplay between optimization of the utility function and
restrictions due to norms. We may perhaps speak of norm-regulated Homo oe-
conomicus. It has also been suggested that a model of this kind could be used
for regulating the behaviour of arti�cial agents. We can perhaps call this model
Agent oeconomicus norma. The role that norms will have in regulating the be-
havior of agents is, according to this model, to delimit the autonomy of the
agents. Metaphorically one can say that the norms de�ne the scope (Spielraum)
for an agent. The agent chooses the act it likes best within the scope determined
by the norms.
In this preliminary report on a work in progress, I will discuss some aspects of

how norms can be used to regulate the behaviour of multiagent-systems. I will do
this at least partially with a concrete problem area in view, namely the automa-
tion of forest management treatments, especially the cleaning of young forest
stands. The automation of forest cleaning presupposes principles for choosing,
in a state of incomplete information, those trees that ought to be taken away

1 Cf. for example [4] p. 518, where the so called Coase theorem is discussed.

Dagstuhl Seminar Proceedings 07122
Normative Multi-agent Systems
http://drops.dagstuhl.de/opus/volltexte/2007/917

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62912278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

and those that shall be left standing. I will discuss the possibility of formulat-
ing those principles as a kind of norms and in that way partially regulate the
cleaning process by a normative system.
Norm-regulation of agents presupposes a precise and signi�cant representa-

tion of norms and normative systems. A norm is here represented as an im-
plicative sentence where the antecedent is a descriptive condition stating the
circumstances of an agent, and the consequent is a condition expressing the nor-
mative or deontic position that the agent has with respect to a state of a¤airs.
Hence, from the norms of the system will follow a deontic structure over possible
state of a¤airs implying that some states may be permissible while the rest are
non-permissible. The �wish�or �desire�of an agent is represented as a prefer-
ence structure over possible states or situations. The agent chooses an act which
leads to a permissible state it prefers the most.
In [14] the ideas outlined above were developed using the typology of nor-

mative (deontic) positions developed by Kanger and Lindahl and the algebraic
representation of normative systems developed by Lindahl and myself. One of
the results in [14] was a scheme for how normative positions will restrict the set
of actions that the agents are permitted to choose from. The possibility of using
the proposed theory in the construction of abstract architectures for multiagent-
systems was discussed. The method used for describing abstract architectures
was based on the de�nition of set-theoretical predicates.
Thee is a need for revisions and developments of [14] in di¤erent aspects. The

algebraic representation of normative systems has been further developed since
[14] was published, for example by the use of intermediaries, especially open
intermediaries. The application of the Kanger-Lindahl typology of normative
positions can be a more complex task than indicated in [14], for example two-
agent types of normative positions can be used in addition to just one-agent-
types. Furthermore, the characterization of a norm-regulated multiagent-system
can be made more �exible. The intended extension and revision of [14] will be
tested by an application to the decision-making problem of an idealized forest
cleaning agent.

2 Automation of forest cleaning2

2.1 Cleaning in silico

In forest industry there is an increasing interest in the automation of forest
management treatments, perhaps with the ultimate goal that autonomous robots
will be able to do a substantial part of such work. But before robots of this kind
can be constructed a lot of di¢ cult problems must be solved, for example how
the robots will perceive the environment and how they will transport itself.
But there are also decision-making problems involved. Three important kinds of
forest management treatments are cleaning, thinning and harvesting, and they
all require methods or principles for making decisions of which trees shall be

2 This section is based on [2].

3

taken away (removed) and which will be left standing. Such "remove-decisions"
must be made on-line with information only of the robot�s neighbourhood and
about that part of the stand already cleared. The treatment cannot be evaluated
until the actual stand is completely cleared. To test and evaluate principles
for remove-decisions by real-world-experiments (�eld experiments) is expensive
and time-consuming. It is therefore an interesting question wether evaluating
experiments could be made in silico, i.e. through simulation.
In [1] a platform for simulation of young forest stands is presented. Given

�eld data of a special type of young forest, for example a 10 years old somewhat
damp spruce forest in the middle of Sweden on 200 m above sea level, it is
possible to simulate di¤erent stands of this type of forest. Field data of a few
di¤erent types of young forests has so far been used for simulation. As a base
for the simulation of di¤erent stands of the same forest type, it is of course also
possible to use man-made, arti�cial data, or to assign values to the parameters
that govern the simulation.
One of the goal with our present work on automation of forest cleaning is to

formulate di¤erent principles for making the remove-decisions, test the principles
in simulated forests of di¤erent types and evaluate and compare the results. We
are especially interested in the possibility that, given a method for evaluating
the result of cleaning, the system can improve the decision-making principles
and even suggest new ones on the bases of machine learning.
How the principles for the remove-decisions ought to be formally represented

seems to be a complicated question. One possibility we want to investigate is
to formulate the principles as a normative system supplemented by a utility
function, i.e. if the automation of forest cleaning could be modelled as an Agent
oeconomicus norma.
Forest cleaning is a kind of activity and to elucidate some formal aspects

of norm-regulation of forest cleaning, the next subsections are devoted to some
general remarks on the structure of an activity and its evaluation.

2.2 The formal structure of an activity

An activity is based on actions performed by one or more agents. Accordingly,
one can distinguish between one-agent-activities and multi-agent-activities. The
execution of a speci�c instance of an activity involves the performance of a
number of actions, often appropriately represented as a sequence of actions. Let
V be an activity and c an instance of V . The execution of the instance c of the
activity V starts from an input and results in an output. Let ci be the input
of c and co the output of c. The input of c is often an initial state while the
output of c is often a set of possible �nal states. If the output of an instance of
the activity V is always singleton, then the execution of V is deterministic. If c
is an instance of a deterministic activity V and co = fsg we will often, for the
sake of simplicity, say that co = s, i.e. we identify the output with the element
in the singleton set.
Suppose that V is an activity. There may be di¤erent ways of (or di¤erent

procedures for) executing instances of the activity V and each way or procedure

4

is represented by a function F such that F (ci) = co. If F and G are di¤erent
ways of executing V we say that F and G are extensionally equivalent, which is
denoted F =e G, if F (ci) = G(ci) for all instances c of V .
There are di¤erent modes of de�nition of F and depending on the mode of

de�nition there are di¤erent kinds of questions to ask. We will here give three
examples.

(I) F is determined as the agent !�s way of executing the activity V . This
presupposes that the agent is su¢ ciently "reliable" such that one can suppose
that the agent has a procedure for executing the activity V . In this case one
can be interested in
(i) making explicit the rules that ! uses, such that every competent agent

can determine the value of F for an argument ci by applying the rules,
or

(ii) determining a computational function G which is extensionally equiva-
lent to F .

(II) F is de�ned by a system of rules such that an agent system A which complies
with the rules "computes" F . In this case one may want to characterize F as
a computationally more e¤ective function that is not necessarily agent-based.

(III) F is de�ned as a computational function, in which case it can be of interest
to determine a system of rules such that if an agent follows the rule the
result will be F (ci) for all instances c of V .

2.3 Forest cleaning as a kind of activity

It does not seem to be adequate to consider �forest cleaning�as an activity - it is
too broad a concept and is more properly classi�ed as a kind of activity. However,
the cleaning of a special kind or type of forest for a certain aim or purpose is
an activity. An instance of a cleaning activity is the cleaning (speci�ed in an
appropriate way) of a stand. Input of the instance is the stand before cleaning
and the output is (a) the stand after cleaning if the activity is deterministic
and (b) the set of possible results of cleaning the stand if the cleaning activity
is indeterministic. A cleaning activity is often executed by one agent alone and
cleaning is therefore in many contexts a one-agent-activity.
Let R denote the activity �cleaning of the kind � of forests for the purpose ��.

� can, for example, be a �mixed forest�or a �deciduous forest�. � can be related
to the intended use of the forest in the future. An instance c of this activity is
the cleaning of a certain stand p. The input of the instance, i.e. ci, is the stand
p before it is cleaned and we denote it p0. This means that ci = p0. The output
of c is the stand p after the cleaning has been done. Agents executing R are
today human beings. A human cleaner who is going to execute the instance c
does not need a description of p0, but an arti�cial cleaner needs a description or
representation of the input of c. Such a representation may consist, for example,
of a description of each tree in the stand, the position of the trees, the topography
of the land, the quality of the soil, the existence of obstacles (for example large
stones and ditches) and the climate (micro as well as large scale) of the stand.

5

For testing di¤erent ways of executing cleaning, it is convenient to use a
platform for simulations of young forest stands and such a platform is described
in [7] and [1]. The platform is used for two di¤erent tasks, (a) to create replicate
forest stands and (b) to perform cleaning on �eld data or on simulated data. The
objective behind the �rst task is to create replicates of forest stands that belong
to certain forest types. The basic data for a replicate simulation can be �eld
data or simulated data. Data of a given forest type can be used for constructing
a decision tree structure and probabilities are calculated for di¤erent parameter
values of a tree, such as diameter, eventual damage and species. The decision
tree structure can then be used for creating replicate forest stands that are
di¤erent but represent the same forest type as the stand form which the data were
collected. A user can also apply her own principles of forest stand parameters
and thus decide more or less strictly how the resulting forest is going to be.
In [17], Vestlund et.al. describe a way of cleaning young forest stands as an

on-line algorithm expressed in an informal language. The algorithm is at least
partially based on interviews with professional cleaners. In [17] there is also an
implementation of the algorithm in a programming language and cleaning in
silico of forest stands represented by computer �les are executed. In [2] results
of cleaning simulated stands using principles based on the work by Vestlund
et.al. are presented.

2.4 Evaluating activity procedures

Di¤erent procedures for executing an activity V can be more or less good or
appropriate. It is therefore important in many contexts to evaluate di¤erent ways
of executing activities. Suppose that F and G are di¤erent ways of executing
V . It is important to note the di¤erence between how good F is as a way of
executing a given instance of V and how good F is a way of executing V in
general. It is thus important to distinguish between

1. F (ci) �V G(ci), i.e. the execution of the instance c of V by F is better than
by G.

2. F �V G, i.e. F is quite generally a better way of executing V than G.

In certain cases there exists a measure uV of how good di¤erent procedures
for executing an instance c of the activity V is and a measure UV of how good
di¤erent procedures for the activity V is generally. It is reasonable to suppose
that the following holds:

(a) uV (F (ci)) > uV (G(ci)) i¤ F (ci) >V G(ci)
(b) uV (F) > uV (G) i¤ F >V G.

If for all instances c of an activity V it holds that F (ci) >V G(ci), then it seems
uncontroversial to conclude that F >V G. But if for some instances c it holds
that F (ci) >V G(ci)while for other instances c it holds that G(ci) >V F (ci)
then it is more di¢ cult, in many cases impossible, to decide if F >V G or not.

6

The binary relations >V and >V and the measures uV and uV concern how
good di¤erent execution procedures are (for given instances or generally) "all
things considered". These relations and measures can be di¢ cult to establish
since appropriateness ("goodness"), all things considered, is in many contexts
a very complex attribute. However, appropriateness with respect to a certain
aspect (attribute) � may be easier to ascertain. Let

�F (ci) >V� G(ci) denote that F is a better way with respect to � than G
to execute the instance c of V ; if the activity is cleaning then � can be for
example the number of trees per unit area or the average distance between
the trees.

�F >V;� G, denote that F is a better way with respect to � than G to execute
V .

� uV� (F (c
i)) is a measure of how good F is with respect to � as a way of

executing the instance c of the activity V .
� uV;�(F) is a measure of how good F is generally with respect to � as a way
of executing the activity V .

uV� and uV;� can be considered as a kind of utility function. Utility functions are
largely used in economics. In addition, utility functions play an important role in
the study of intelligent agents within the discipline of arti�cial intelligence, as the
following quotation from [16] p. 52 emphasizes: �. . . when there are con�icting
goals, only some of which can be achieved . . . , the utility function speci�es the
appropriate tradeo¤s. . . . when there are several goals that the agent can aim for,
none of which can be achieved with certainty, utility provides a way in which the
likelihood of success can be weighed up against the importance of the goals.�
Suppose that di¤erent procedures for executing V is evaluated with respect

to the attributes �1,. . . ,�k. Then

uV
�
F
�
ci
��
= f

�
uV�1(F (c

i); :::; uV�k(F (c
i))
�
.

The form of the function f can di¤er considerably in di¤erent contexts. But
it is often a desideratum that f has a simple form, for example being additive
or multiplicative.
For many aspects � of importance for how good F is as a way of executing

V , but certainly not for all aspects, it seems reasonable that the following holds:

�F (ci) >V� G(ci)) F (ci) >V G(ci) ceteris paribus (everything else held
constant)

�F >V;� G) F >V G ceteris paribus (everything else held constant).

It is of course desirable to have a complete method for evaluating di¤erent
ways of executing an activity but when this is not possible the concepts intro-
duced above can still make a partial evaluation possible, and this may in certain
situations be of great interest.
Suppose that the relation >V is de�ned for the activity V . Then an optimal

way of executing V is a procedure F that is maximal with respect to >V . It

7

is usually desirable to choose an optimal way of executing V , but it can be
di¢ cult to �nd such a way if the number of di¤erent ways to execute V is large.
The search for an optimal way of executing V may then be replaced by a more
restricted goal, viz. the search for an acceptable way, i.e. a way that is good
enough (su¢ ciently acceptable).

3 Norm-regulation of cleaning agents3

In [14], an abstract architecture for idealized multi-agent systems, whose be-
haviour is regulated by normative systems, is developed. The idea behind the
architecture is roughly the following:
"When it is agent !�s turn to move it chooses an act out of a set of feasible

alternatives and the result will be that the system enters a new state; which
state depends on the actual state of the system when the act is performed. The
agent�s choice is determined partially by the preference ordering of the possible
states and partially by the deontic structure: the agent chooses that act which
leads to the best outcome of all permissible actions. If an action is permissible
or not depends on whether the result of performing the action leads to a state
which satis�es a condition which is forbidden according to the normative system
regulating the multi-agent system." ([14] p. 152).
The architecture is articulated as a de�nition of a deontic action-logic based

multiagent-system. Since �MAS� is the standard abbreviation of �multiagent-
system�, we call the kind of system discussed here �Dalmas�.
In this section the possibility to useDalmas as the architecture for a cleaning

agent is outlined. At this preliminary stage, a cleaning agent is regarded as "a
solitary being" and, hence, a cleaning Dalmas is a one-agent-system (thus more
correctly a Daloas), but we will here regard a one-agent-system as a degenerated
MAS. But at a later stage, more then one agent may be involved, for example
can "nature" be regarded as an agent or the individual trees be regarded as
agents. The last mentioned alternative is especially interesting if the growth of
a forest stand is incorporated in the simulation.
The formal de�nition of a Dalmas is summarized in the next section. In this

section is given an outline of how the de�nition can be applied in the context of
cleaning. Let us consider the cleaning of a stand p.
The stand p is divided into n di¤erent areas. A state is the stand with i areas

cleaned, where 1 � i � n, and a speci�cation of what area to clean next. The
initial state is the stand with 0 areas cleaned and the �nal state is the state with
n areas cleaned. We let each area be denoted by a unique number between 1
and n. Let Si be the i:th state. Let Ci be the set of cleaned areas and Ui the
set of uncleaned areas in Si. Thus, Ci [Ui = f1; 2; : : : ; ng and Ci \ Ui = ;. Ci
contains i numbers and Ui n � i numbers. Si = hCi; Ui; ji where j is the area
which will be cleaned next, i.e. j 2 Ui and Si+1 = hCi [fjg; Uinfjg; ki for some
k 2 Uinfjg.
3 This section is based on [1].

8

The norm of a cleaning Dalmas is expressed in a conditional sentence of the
following form, where Deop is a deontic operator, for example �it shall be the
case that�, �it may be the case that �or �it may not be the case that�:
Given that the actual state of the system has the property P , then Deop(the

next state of the system has the property Q).
Let us give a few examples of sentences that have the right form for being norms
(which of course does not imply that they are norms):

(a) If there is only one undamaged tree in the area to be cleaned with diameter
within the desirable range, then this tree shall be saved.

(b) If there is at least one undamaged tree in the area to be cleaned with diameter
within the desirable range, then a damaged tree with diameter below the
desirable range may be taken away.

(c) If, in the area to be cleaned, a tree t is damaged and is closer than 0.5m to an
undamaged tree with diameter within the desirable range and with distances
to other undamaged trees larger than 0.5m, then t may not be saved.

The antecedent of a norm is thus a descriptive sentence and the consequent
is a deontic sentence. In the de�nition of Dalmas, the Kanger-Lindahl the-
ory of normative positions is used to obtain a logically powerful framework for
expressing deontic sentences.
In many situations, the norms for a Dalmas do not determine the action to

be taken in each state, but utility considerations are also necessary. If we have
the relation >R at hand, where R denotes the activity �cleaning of the kind �
of forests for the purpose ��, then we can search for the optimal way of cleaning
the actual area, given the condition that the way of cleaning satis�es the given
norms.

4 The de�nition of a Dalmas

The aim of [14] was to present a theory of how norms can be used to regulate
the behaviour of multiagent-systems on the assumption that the role of norms is
to de�ne the Spielraum for an agent. The theory can be summarized as follows.
The norms for aMas are regarded as belonging to a normative system and such
a system is represented algebraically as a Boolean joining system containing
a Boolean quasi-ordering of grounds and a Boolean quasi-ordering of conse-
quences. The norms are joinings from the Boolean quasi-ordering of grounds to
the Boolean quasi-ordering of consequences, and the speci�c normative content
of a normative system is given by the set of minimal norms. The consequences are
expressed using operators on conditions corresponding to the Kanger-Lindahl-
types of one-agent-positions. An important step in the theory construction was
the speci�cation under what circumstances the sentence Tid(!1; :::; !� ; !;!; s)
implies that an action a is prohibited for the agent ! in the state s. (See section
6.) An action a was regarded as a function, which is the usual way of represent-
ing an action in decision theory, and d is a �-ary condition on agents, true or

9

false in the situation s. An abstract architecture based on the theory of norm-
regulation of behaviour was de�ned, and a Mas having this architecture was
called a norm-regulated Dalmas.
Dalmas is a global clock (synchronous update), global state, global dynam-

ics system. It can be viewed as a simpli�cation constructed for conceptual and
computer simulation purposes. In particular, Dalmas can be used as a model
system for studying the interplay between preferences and norms in Mas archi-
tectures.
A Dalmas is an ordered 7-tuple h
;S;A;A;�;�; � i containing

� an agent set
 (!;{; !1; ::: elements in
),
� a state or phase space S (r; s; s1; ::: elements in S),
� an action set A such that for all a 2 A, a :
�S �! S such that a(!; r) = s
means that if the agent ! performs the act a in state r, then the result will
be state s (a; b; a1; ::: elements in A),

� a function A :
 � S �! }(A) where }(A) is the power set of A; A(!; s) is
the set of acts accessible (feasible) for agent ! in state s,

� a deontic structure-operator � :
 � S �! D where D is a set of deontic
structures of the same type with subsets of A as domains and �(!; s) is !�s
deontic structure on A(!; s) in state s,

� a preference structure-operator � :
 � S �! P where P is a set of prefer-
ence structures of the same type with subsets of A as domains and �(!; s)
is !�s preference structure on A(!; s) in state s,

� a choice-set function � :
 � S �! }(A) where � (!; s) is the set of actions
for ! to choose from in state s.

Note that in the de�nition the Cartesian product
�S motivates the intro-
duction of a name for the elements in
 � S: Let D be a Dalmas. A situation
for the system D is determined by the agent to move ! and the state s. A situ-
ation is represented by an ordered pair h!; si: The set of situations for D is thus

 � S:
In a Dalmas, all the agents have the same initial set of actions. The set

of actions to choose from (the choice-set) in a situation h!; si is determined
by the agent�s deontic structure �(!; s) and preference structure �(!; s). If
� (!; s) consists of one action, then this action applied in the situation h!; si, i.e.
[� (!; s)] (!; s), is the resulting state when ! acts in state s.
A simple Dalmas is a Dalmas containing the following simple versions of

�, � and � .

1. �(!; s) � A(!; s) and �(!; s) is the set of permissible actions for ! in the
state s,

2. �(!; s) = hA(!; s);%i where % is a weak ordering
3. � (!; s) = fx 2 �(!; s) : for all y 2 �(!; s); x % yg :

Hence, in a simple Dalmas the choice-set consists of the best actions which
are permissible. Among the elements in A there can be a pass action, which

10

means the agent does nothing. If we combine the existence of such an action with
very short clock cycles, we obtain systems with close to asynchronous behaviour.
A Dalmas is not deterministic, since it does not determine in which order

the agents are going to move, and the choice-set may contain more than one
action in every situation. Let us therefore make the following de�nition.

De�nition 1. A deterministic Dalmas is an ordered 9-tuple
h
;A; S;A;�;�; �; � ;
i such that h
;A; S;A;�;�; � i is a Dalmas and

� :
 �!
,
 : }(A) �! A.

The intended interpretation is the following:

� � :
 �!
 is a turn-operator such that �(!) = { means that it is {�s turn
after !; � determines a simple agent priority.

�
 : }(A) �! A is a tie-breaking function, determining which of several
permissible and equally preferred actions to choose.

An important tool in the present study is the characterization of abstract ar-
chitectures by the de�nitions of set-theoretical predicates. Among the abstract
architectures de�ned in this way, the most important one is a norm-regulated
Dalmas. This is just the �rst step towards a theory of architectures forMas that
restricts the behaviour of the multiagent-system using norms. The theory can
be developed by de�ning a number of set-theoretical predicates that are speci-
�cations of the predicate Dalmas, and we can obtain a hierarchy of predicates
with Dalmas as its root.

5 The algebraic representations of norms and normative
systems

The method used for representing norms in an architecture for norm-regulated
Mas can be of importance for the e¤ectiveness of the architecture. Let me
mention a few examples of what can be regarded as desiderata for a norm-
representation method.

1. The system of norms is depicted in a lucid, concise and e¤ective way.
2. Changes and extensions of the normative system are easily described.
3. The normative system can be divided in di¤erent parts which can be changed
independently.

4. The multi-agent system can by itself change the normative system wholly or
partially.

The last item in the list may deserve a comment. It is often di¢ cult to predict
the e¤ect of a normative system for a Mas or the e¤ect of a change of norms.
It is therefore desirable that the Mas can by itself evaluate the e¤ect of the
normative system and compare the result with other normative systems that it
changes to. The result can be a kind of evolution of normative systems obtained
by machine learning.

11

In a series of papers (among which are [15], [9], [10], [11] and [12]) Lars
Lindahl and I have developed an algebraic approach to the study of normative
systems. One of our main tools in this endeavour is the theory of a Boolean
quasi-ordering, which is an extension of the theory of Boolean algebras. A norm
is regarded as consisting of two objects, a ground and a consequence standing
in a relation to each other. The ground belongs to one Boolean quasi-ordering
and the consequence to another. Therefore, we can view a normative system
as a set of joinings of a Boolean quasi-ordering of grounds to a Boolean quasi-
ordering of consequences. A normative system S can therefore be represented
as a Boolean joining system hB1;B2; Ji where B1 is a Boolean quasi-ordering of
ground-conditions, B2 a Boolean quasi-ordering of consequence conditions and
the set J of norms where J � B1 � B2. One can de�ne a qu asi-ordering E
expressing how narrow norms are and determine the set of minimal elements of
J , min J , with respect to E. The set min J characterizes J in the following way:

ha1; a2i 2 J i¤ 9 hb1; b2i 2 min J : hb1; b2i E ha1; a2i .
Given certain general presuppositions, one can choose a subset C of min J

from which min J can be inferred and which therefore also determines J . We call
such a set C for a base of minimal elements of J . In many contexts the elements in
C can be represented by intermediaries (intermediate concepts). Intermediaries
are determined by the condition that constitute its ground and the condition
that constitutes its consequences.
Within the algebraic representation of norms the consequences are norma-

tive conditions. In [14] simple normative conditions were constructed by letting
a "normative position operator" Ti, 1 � i � 7, operate on descriptive con-
ditions. Compound conditions are Boolean combinations of simple conditions.
The operators T1; :::; T7 are applications of Lindahl�s one-agent-types of norma-
tive positions, which are brie�y described in the next section.

6 The Kanger-Lindahl typology of normative positions

Based on the work by Stig Kanger ([5], [6]), Lars Lindahl developed three systems
of types of normative positions, see [8]. The simplest one is the system of one-
agent types of normative position, and in [14] we made only use of this system.
This kind of types is constructed in the following way. Let �� stand for either
of � or :�: Starting from the scheme �May�Do(x;�q); where � stands for
the two alternatives of a¢ rmation or negation, a list is made of all maximal and
consistent conjunctions, �maxiconjunctions�, such that each conjunct satis�es the
scheme.4 Maximality means that if we add any further conjunct, satisfying the
scheme, then this new conjunct either is inconsistent with the original conjunc-
tion or redundant. Note that the expression :Do(x;q)& :Do(x;:q) expresses x�s
passivity with regard to q. Here this expression is abbreviated as Pass(x; q). By
this procedure the following list of seven maxiconjunctions is obtained, which
are denoted T1(x; q),. . . ,T7(x; q) (see [8] p. 92).
4 The notion of �maxiconjunction�was introduced in Makinson (1986) p. 405f.

12

T1(x; q) : MayDo(x; q) & MayPass(x; q) & MayDo(x;:q):
T2(x; q) : MayDo(x; q) & MayPass(x; q) & :MayDo(x;:q)
T3(x; q) : MayDo(x; q) & :MayPass(x; q) & MayDo(x;:q):
T4(x; q) : :MayDo(x; q) & MayPass(x; q) & MayDo(x;:q):
T5(x; q) : MayDo(x; q) & :MayPass(x; q) & :MayDo(x;:q):
T6(x; q) : :MayDo(x; q) & MayPass(x; q) & :MayDo(x;:q)
T7(x; q) : :MayDo(x; q) & :MayPass(x; q) & MayDo(x;:q):

T1,. . . ,T7 are called the types of one-agent positions. Given the underlying logic,
the one-agent types are mutually disjoint and their union is exhaustive. Note that
:MayDo (x; q) & :MayPass (x; q) & :MayDo(x;:q) is logically false, according
to the logic of Shall and May.
The ground of a norm is usually a descriptive condition, while the conse-

quence is a deontic condition. In [10] we use the one-agent-types in the Kanger-
Lindahl theory of normative positions as operators on descriptive conditions to
get deontic conditions. As a simple example, suppose that r is a unary condition.
Then Tir (with 1 � i � 7) is the binary condition such that

Tir(y; x) i¤ Ti(x; r(y));

where Ti(x; r(y)) is the i:th formula of one-agent normative positions. Note that
for example T3(x; r(y)) means

MayDo(x; r(y)) & :MayPass(x; r(y)) & MayDo(x;:r(y)):

If hp; Tiri is a norm, then from p(x1; x2) we can, by using the norm, infer
Tir(x1; x2) and thus also Ti(x2; r(x1)), which means that, with regard to the
state of a¤airs r(x1), x2 has a normative position of type Ti:

7 Normative positions regulating actions

The idea behind a norm-regulated Dalmas is that the deontic structure oper-
ator � is de�ned in terms of a normative system S in the sense that what is
permissible to do in a situation is determined by S. This idea can be explicated
in the following way. Let
Tid(!1; :::; !� ; !;!; s) mean that in the situation where it is !�s turn to draw

and the state of the system is s, ! has the normative position of type Ti with
regard to the state of a¤airs d(!1; :::; !�).
Prohibited!;s(a) mean that in the situation where it is !�s turn to draw and

the state of the system is s, ! is prohibited to execute the act a.
The following seven principles establish connections between the condition

Tid and the predicate Prohibited (see [14] p. 160f.):

1. From T1d(!1; :::; !� ; !;!; s) follows no restriction on the acts.
2. From T2d(!1; :::; !� ; !;!; s) follows that
if d(!1; :::; !� ; s) and :d(!1; :::; !� ; a(!; s)) then Prohibited!;s(a):

13

3. From T3d(!1; :::; !�!;!; s) follows that
if [d(!1; :::; !� ; s) i¤ d(!1; :::; !� ; a(!; s))] then Prohibited!;s(a):

4. From T4d(!1; :::; !� ; !;!; s) follows that
if :d(!1; :::; !� ; s) and d(!1; :::; !� ; a(!; s)) then Prohibited!;s(a):

5. From T5d(!1; :::; !� ; !;!; s) follows that
if :d(!1; :::; !� ; a(!; s)) then Prohibited!;s(a):

6. From T6d(!1; :::; !� ; !;!; s) follows that
if not [d(!1; :::; !� ; s) i¤ d(!1; :::; !� ; a(!; s)] then Prohibited!;s(a):

7. From T7d(!1; :::; !� ; !;!; s) follows that
if d(!1; :::; !� ; a(!; s)) then Prohibited!;s(a):

These principles can be used to de�ne the deontic structure-operator �: One
possibility is to let �(!; s) be the set of feasible acts a that are not eliminated
as Prohibited!;s(a) according to the rules (1)-(7) above, where

Prohibited!;s(a) is equivalent to :Permissible!;s(a).

Hence,

�(!; s) = fPermissible!;s(a) : a 2 Ag:

Note that in the outset all feasible acts are permissible, i.e. for all a 2 A
Permissible!;s(a). The basic idea is that we eliminate elements from the set of
permissible acts for ! in s using the norms and sentences expressing what holds
for the agents with respect to grounds in the norms. To facilitate the presentation
it is convenient to introduce the following six operators on state-conditions:

Ea2d(!1; :::; !� ; !;!; s) i¤ [d(!1; :::; !� ; s) and :d(!1; :::; !� ; a(!; s))]
Ea3d(!1; :::; !� ; !;!; s) i¤ [d(!1; :::; !� ; s) i¤ d(!1; :::; !� ; a(!; s))]
Ea4d(!1; :::; !� ; !;!; s) i¤ [:d(!1; :::; !� ; s) and d(!1; :::; !� ; a(!; s))]
Ea5d(!1; :::; !� ; !;!; s) i¤ [:d(!1; :::; !� ; a(!; s))]
Ea6d(!1; :::; !� ; !;!; s) i¤ not [d(!1; :::; !� ; s) i¤ d(!1; :::; !� ; a(!; s)]
Ea7d(!1; :::; !� ; !;!; s) i¤ d(!1; :::; !� ; a(!; s)):

Note that for all i; 2 � i � 7; (Tid ^ Eai d)(!1; :::; !� ; !;!; s) implies that
Prohibited!;s(a)
In [3] an implementation in Prolog of the theory of a norm-regulated Dalmas

is presented. The algebraic model for the Dalmas is inspected and instrumen-
talized through an executable logic program. In particular, important issues in
the transition from a set-theoretical description to a Prolog implementation are
discussed. Results include a general-level Prolog implementation, which may be
freely used to implement speci�c systems.
According to the de�nition of aDalmas, an agent �enters�a set of normative

positions when it is its turn to move, and this set is determined by the normative
system and the actual state. Normative positions can play a role in the abstract
architectures for agent systems in other ways as well. One possibility is the
following. A state s contains a description of all the normative positions for all
agents in that state. Of course, the normative positions for an agent can be

14

changed when another agent moves, but an agent can only execute its rights or
ful�ll its duties when it is its turn to move. How the normative positions change
when an agent moves is determined by the normative system for the Dalmas.
(Some of the normative positions for an agent in a state can be conditional, so
that they can be executed only when certain requirements are satis�ed.)

8 Concluding remarks

Forest cleaning is a kind of activity and in the paper some aspects of the formal
structures and the evaluation of activities have been discussed. The automa-
tion of forest cleaning presupposes, inter alia, principles for making "remove-
decisions" and the question has been raised if such principles can be formulated
as a combination of a normative system and a utility function. Some results about
the representation of normative systems and the norm-regulation of multiagent-
systems that may be used in the investigation of the question at issue has been
outlined.
For the possibility of using norms in the automation of forest cleaning in

the way outlined above, it may be an important issue whether the cleaning
system can optimize the system of norms regulating its remove-decisions. This
is a special case of a more general problem: Suppose that D is a Dalmas, where
the agents cooperate to solve a problem. Which normative system will lead to
the most e¤ective behavior of the system? Of course, it is desirable that D
itself could determine the optimal normative system for the task in question.
Given a set of grounds and a set of consequences, which together constitute
the vocabulary of the system, D can test all possible sets of minimal norms (in
some cases satisfying certain constraints). If there is a function for evaluating the
result of a run of D, then di¤erent normative systems can be compared and the
best system can be chosen. A change of vocabulary corresponds to a �mutation�
among normative systems and can lead to dramatic changes in the e¤ectiveness.
Note that, in principle, the evaluation function can be very complicated, for
example it can be multi-dimensional.

Acknowledgement
I am very grateful to my colleagues involved in di¤erent aspects of this work:

Ulla Ahonen-Jonnarth, Magnus Blom, Magnus Boman and Lars Lindahl. Finan-
cial support was given by the University of Gävle.

References

1. Ahonen-Jonnarth U, Odelstad J. (2005). Simulation of cleaning of young forest
stands. Reports from Creativ Media Lab, University of Gävle, Report 2005:2, 25
pp.

2. Ahonen-Jonnarth, U. & Odelstad, J. (2006). Evaluation of Simulations with Con-
�icting Goals with Application to Cleaning of Young Forest Stands. Proceed-
ings of ISC 2006 (Fourth Annual International Industrial Simulation Conference),
Palermo, Italy, June 5-7, 2006.

15

3. Blom, M. (2007). Deontic Action-Logic Multi-Agent Systems in Prolog. Master�s
Thesis, Department of Information Technology, Uppsala University.

4. Gravelle, H. & Rees, R. (1992).Microeconomics. Second edition, Longman, London.
5. Kanger, S. (1957) New Foundations for Ethical Theory. Part 1. Stockholm,
1957 (Reprinted in Deontic Logic: Introductory and Systematic Readings, ed. R.
Hilpinen, Dordrecht, 1971, pp. 36-58.)

6. Kanger, S., Kanger, H. (1966). �Rights and Parliamentarism �, Theoria 32: 85-115.
7. Larsson P, Lehnbom P, Ahonen-Jonnarth U, Odelstad J. (2004). Simlation of young
forest stands. Description of the program Forest stands simulation version 1.0. (In
Swedish) Reports from Creativ Media Lab, University of Gävle, Report 2004:2, 11
pp.

8. Lindahl, L. (1977). Position and Change. A Study in Law and Logic. Dordrecht:
Reidel.

9. Lindahl, L. & Odelstad, J. (2003). Normative Systems and Their Revision: An
Algebraic Approach. Arti�cial Intelligence and Law, 11, 81-104.

10. Lindahl, L. & Odelstad, J. (2004). Normative Positions within an Algebraic Ap-
proach to Normative Systems. Journal Of Applied Logic 2, 63-91.

11. Lindahl, L. and Odelstad, J. (2006a). Intermediate Concepts in Normative Systems.
In L. Goble and J-J. Ch. Meyer (eds.) Deontic Logic and Arti�cial Normative
Systems. (DEON 2006). Berlin: Springer.

12. Lindahl, L. and Odelstad, J. (2006b). Open and Closed Intermediaries in Normative
Systems. In T.M. van Engers (ed.) Legal Knowledge and Information Systems.
(Jurix 2006). Amsterdam: IOS Press.

13. Makinson, D. (1986). On the Formal Representation of Right Relations. Journal
of Philosophical Logic 15:403-425.

14. Odelstad, J. & Boman, M. (2004). Algebras for Agent Norm-Regulation. Annals
of Mathematics and Arti�cial Intelligence, 42: 141-166, 2004.

15. Odelstad, J. & Lindahl, L. (2002). The Role of Connections as Minimal Norms
in Normative Systems. Legal Knowledge and Information Systems. Eds. T. Bench-
Capon, A. Daskalopulu and R. Winkels. Amsterdam: IOS Press.

16. Russell, S. & Norvig, P (2003). Arti�cial Intelligence. A Modern Approach. Second
edition. Prentice Hall, 2003.

17. Vestlund K, Nordfjell T, Eliasson L and Karlsson A. (2005). A decision support
system for selective cleaning. In: Vestlund K. 2005. Aspects of automation of se-
lective cleaning. Acta Universitatits Agriculturae Sueciae 2005:74. Department of
Silviculture, Swedish University of Agricultural Sciences, Umeå, Sweden. 54. p.
ISBN 91-576-6973-2.

