
Closure and Causality

(A working paper)

John L. Pfaltz,

Dept. of Computer Science, Univ. of Virginia
Charlottesville, VA 22904-4740

jlp@virginia.edu

Abstract. We present a model of causality which is defined by the intersection of two distinct
closure systems, I and T . To present empirical evidence to demonstrate that this model
has practical validity we then examine computer trace data to reveal causal dependencies
between individual code modules. From over 498,000 events in an open source system, we
tease our 66 apparent causal dependencies. Finally, we explore how to mathematically model
the transformation of the causal topology resulting from unfolding events.

1 Closure Systems

Let U denote some universe of elements. A closure system, C, is any collection of subsets X, Y, . . . Z ⊆
U, including U itself, which is closed under intersection. Subsets in C are said to be closed. If
U = {a, b, c, d, e} then the collection of closed sets

C1 = {Ø, {a}, {b}, {ab}, {bd}, {abc}, {abd}, {abce}, {abcde}, {abcdef}} (1)

is a closure system.
A closure system can equivalently be defined as (U, ϕ), where ϕ is a closure operator satisfying

four axioms. For all Y, Z ⊆ U,
C1: Y ⊆ Y.ϕ,
C2: Y ⊆ Z implies Y.ϕ ⊂ Z.ϕ, and
C3: Y.ϕ.ϕ = Y.ϕ.

By C1, U itself must be closed. Here we are using a suffix operator notation, as we will throughout
this paper. Read Y.ϕ as “Y closure”. A set Y is closed if Y = Y.ϕ. It is not hard to show that these
two definitions of closure are equivalent.

A closure operator/system can satisfy other axioms depending on the mathematical discipline.
A topological closure is closed under union, or

C4: (Y ∪ Z).ϕ = Y.ϕ ∪ Z.ϕ.
The closure operator of linear systems, often called the spanning operator, satisfies the Steinitz-
MacLane exchange axiom

C5: if p, q 6∈ Y.ϕ and q ∈ (Y ∪ {p}).ϕ then p ∈ (Y ∪ {q}).ϕ.
Such closure systems are called matroids. Still other closure operators may satisfy an anti-exchange

axiom

C6: if p, q 6∈ Y.ϕ and q ∈ (Y ∪ {p}).ϕ then p 6∈ (Y ∪ {q}).ϕ.
These closure operators, which include the geometric convex hull operator, are said to define anti-

matroid closure systems. An important antimatroid property is that:

Dagstuhl Seminar Proceedings 06341
Computational Structures for Modelling Space, Time and Causality
http://drops.dagstuhl.de/opus/volltexte/2007/897

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62912238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Proposition 1. Let U be finite, and let ϕ be antimatroid. If X.ϕ = Y.ϕ = Z closed, then (X ∩
Y).ϕ = Z.

Proof. If X ∩ Y = X or Y , the result is trivial. So there exists p ∈ X−Y and q ∈ Y −X . Now,
suppose (X ∩ Y).ϕ 6= Z, then (X ∩ Y ∪ {p}).ϕ = Z = (X ∩ Y ∪ {q}).ϕ (if not let X ∩ Y ∪ {p} = X ′

and X ∩ Y ∪ {q} = Y ′ and repeat the argument) contradicting C6. ⊓⊔

To see why finiteness is required, consider U = Z+, and let X be the even integers, Y be the odd
integers, and ϕ be downset closure. Readily X.ϕ = Y.ϕ = Z+; but X ∩ Y = Ø.

Let (U, ϕ) be a closure system. Containment, ⊆, forms a natural partial ordering on the closed
subsets C1 shown in (1), and it is well known that the closed sets in (U, ϕ) so ordered form a lower
semi-modular lattice.1 Figure 1 illustrates the lattice of closed sets of the closure system C1 ordered
by inclusion.

abcde

abcdef

abce

abc

abcd

abd

abbd

ab

Ø

Fig. 1. The lattice of closed sets of C1

1.1 Generators

Let Z be a closed set. A subset X ⊆ Z is said to generate Z if X.ϕ = Z. By C4, every closed set
Z generates itself. But, that tends to be uninteresting. We say a generator X of Z is non-trivial

if X ⊂ Z. In fact, we are really only interested in minimal non-trivial generators. For a familiar
example, consider a convex polytope which is generated by its extreme vertices under convex hull
closure. If ϕ is antimatroid these minimal elements will be unique (as we show immediately below).
More specifically, if X is the minimal generating set, it is called the generator of Z, and denoted by
Z.γ. When a closed set may have more than one generator, the collection of all minimal generating
sets we denote by Y.Γ = {Y.γ1, . . . , Y.γn} [4]. When there is only a single generating set for any
closed set Z we say that (U, ϕ) is uniquely generated.

Proposition 2. A finite closure system (U, ϕ) is antimatroid if and only if it is uniquely generated.

1 This lower semimodularity of closed subsets partially ordered by inclusion has been repeatedly discovered
by many authors. See Monjardet [5] for an interesting summary.

3

Proof. If (U, ϕ) is not antimatroid then there exists some closed set Y.ϕ with p, q 6∈ Y.ϕ such that
p ∈ (Y ∪ q).ϕ and q ∈ (p ∪ Y).ϕ. Then p and q are members of distinct generators of (Y ∪ p).ϕ =
(Y ∪ q).ϕ. The converse is similarly shown. ⊓⊔

This proposition can also be treated as a corollary of Prop. 1. A closure operator ϕ is said to be
finitely generated if all the generators of Z, Z.γ are finite. In this case, Propositions 1 and 2 can
be relaxed slightly to read “If U is finitely generated, and . . . ”. Nevertheless, from now on we simply
assume all closure spaces are finite.

If (U, ϕ) is antimatroid, then the collection of all sets Xi with the same closure Z = Xi.ϕ

constitute a Boolean lattice with Z.γ ⊆ Xi ⊆ Y . In particular, if Xi, . . .Xk generate Z then Xi ∩
. . . ∩ Xk also generates Z.

2 A Model of Causality

By causality, we mean that whenever an event a occurs, event b must subsequently occur. More
accurately, whenever a sufficient set A of antecedent events occur then the resultant event b must
subsequently occur. This we symbolize by A ⇒ b. Because of the imperative “must”, our sense of
causality is deterministic. Readily, A may “cause” a large set of resultant events B, but there is no
loss of generality in considering only singleton results.

In this paper we regard an event as a primitive element. Thus, we are only considering discrete, or
quantum, causality. In a particular system S, it may be that whenever S is in state si and condition
ck is observed then S makes the transfer tm from si to sj . In our model the state si, condition
ck, and action am are all regarded as “events” and the causal relationships could be symbolized by
si, ck ⇒ am and si, tm ⇒ sj . Thus, in some respects, this model can be seen as being rather coarse.
We indicate a refinement in Section 5.

Let our universe U be the collection of all possible events {ei}. We assume that the resultant
event b ∈ U must temporally follow each of the antecedent events ai ∈ U. Consequently there is
an implicit partial order on U which defines the first “temporal” closure space, T . For a closure
operator, we will use the downset ↓ operator, which we denote by ϕR because we draw temporal
dependency left to right in our figures. Thus in Figure 2, event a temporally precedes events
d, e, h, i or {a}.ϕR = {adehi}.2 Also one can define an upset, ↑ or ϕL, operator as well as an interval,

a

b

c

e

d

f

g

h

i

j

Fig. 2. Ten events partially ordered with respect to time.

4

or “convex”, closure ϕC on any partial order. Convex closure provides a finer grained closed set
structure that can be desirable. All three closure operators, ϕL, ϕR and ϕC are antimatroid [9].

We will use the closure space T = (U, ϕR) to model the temporal aspect of causality.
The second closure system I models the imperative nature of deterministic causality. An impli-

cation in a first order logical system has the form

(∀o)[(a(o) ∧ b(o)) ∨ c(o) → (d(o) ∧ e(o)] (2)

which we read as “for all observations o, if either event a and event b occur or event c occurs then
events d and e must also occur”. We express (2) more concisely as

ab ∨ c → de (3)

Here concatenation denotes the logical “and”. The precedent P of any implication P → Q may be
in disjunctive normal form; but we only allow conjuncts for the consequent Q. Since we are modelling
deterministic causality, this leads to no loss of generality.

Consider the following collection of implications on the 10 events of Figure 2.

a b → d d → h
b → e e → h

b ∨ c → f f → i
c → g f ∨ g → j

They define a closure system I consisting of the sets I = {abcdefghi, abdefghij, acdefghij,
bcdefghij, abdefhij, acefghij, acdfghij, bdefghij, cdefghij, adeghij, bdefhij, cefghij, cdfghij, acfgih, deghij,
cfgij} and all intersections of these 16 sets. This is admittedly not very intuitive. However, we can
graph these 8 implications as in Figure 3. Here the ligature joining arrows (a, d) and (b, d) denotes

a

b

c

e

d

f

g

h

i

j

Fig. 3. Logical implications associated with the events of Fig. 2

the logical and of the first implication. Implication is transitive, so the figure captures such derived
implications as ab → defhij and c → fgij. While this graphic representation seems intuitive, it
is unable to accurately capture all the nuances present in a collection of implications. We use it only
as a suggestive illustration.

2 It is our habit to denote set-valued operators by this suffix dot notation. Later it will provide a nice lexical
distinction with element valued functions represented with the usual prefix notation.

5

Our thesis is that any set which is closed in both the T and I closure systems is a closed set
in the causal closure system C. A clearer way of stating this is “if A → b and if for all ai ∈ A,
b ∈ {ai}.ϕR then A ⇒ b. That is, the occurrence of all events ai will cause event b”. Superimposing
Figure 2 on Figure 3 we get Figure 4. Here we are saying that because the event c logically implies

a

b

c

e

d

f

g

h

i

j

Fig. 4. Causal dependencies reflected by Figures 2 and 3

event g, and g temporally follows c, the occurrence of c must cause the occurrence of g. In this
example, both events a and b must occur to cause event d.

Is this reasonable? In the next section we provide empirical evidence that this model has some
objective validity.

3 Empirical Evidence

Examples of deterministic causality are hard to find in the real world. This is not necessarily an
indication that the real world is not deterministic. Rather, it is usually a manifestation of (a)
the presence of errors in observation and/or measurement, or else (2) the presence of complex,
conjunctive antecedents whose nature we poorly understand. One exception is computer software.

For their own independent research [16, 17], my colleagues Jinlin Yang and David Evans in-
strumented the transaction management core of the open source JBoss 1.4.2 regression analysis
package.3 They collected 1,227 trace data sequences of observed executions, O, recording 498,489
distinct invocations of 144 different sub-modules M. It is these module invocations that we treat as
events.

In a preprocessing step, each module invocation was assigned a unique identifying integer. Figure
5 illustrates a short segment in one trace with the assigned integers. All subsequent steps were then
performed on sequences of integers such as ... 3 2 4 1 2 1 2 3 2 4 5 2 ...4

The 1,227 observed sequences O were converted to a 1, 227× 144 binary matrix where (i, k) = 1
if module mk ∈ M was invoked at least once in the observed trace oi ∈ O. (That mk may have been
invoked repeatedly in the trace oi is ignored in this phase.) This binary matrix denotes a relation
R between the trace observations O and module invocations M, to which we can apply the Galois

3 Jboss is an open source, professional middleware company which can be accessed at www.jboss.com.
4 The usual numeric ordering has no significance here, except that the preprocessor encountered one module

invocation before another, possibly in a different unrelated trace. Any other set of 144 distinct symbols
would have served our purpose.

6

3 TxManager.getTransaction()Ljavax/transaction/Transaction;

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

4 TxUtils.isActive(Ljavax/transaction/Transaction;)Z

1 TxManager.getStatus()I

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

1 TxManager.getStatus()I

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

3 TxManager.getTransaction()Ljavax/transaction/Transaction;

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

4 TxUtils.isActive(Ljavax/transaction/Transaction;)Z

5 TxManager.suspend()Ljavax/transaction/Transaction;

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

Fig. 5. A representative fragment of a trace sequence

closure operator [6]. The Galois closure has been employed by Rudolf Wille in the development of
“formal concept analysis” [15], and is best explained in [2].

Briefly, the Galois closure on O × M induces contravariant closure systems on O and M in
which Oi closed in O and Mi closed in M, called a concept (Oi, Mi) in [2], indicates that every
module invocation mk ∈ Mi occurs in every observed trace on ∈ Oi. Moreover, Mi is the maximal
set of module events occurring in every trace on of Oi. Because of this property we can interpret
the closure operator on a set of generators as a logical implication. That is, (∀on ∈ Oi)[Mi.γ → Mi].
This is not a universally quantified implication. It is only quantified over all observations so far, in
which the generating events Mi.γ are present.

Galois closure can be a useful tool in data mining [3, 14]. At the Univ. of Virginia, we have
developed a DDDM (discrete deterministic data mining) software system that has had conspicuous
success in several deterministic data mining venues [12, 13]. This system was used to extract the
closed concept sets Mi of M. Figure 6 illustrates just two of the resultant concepts. Observe that

concept #445:

events--> {2, 3, 13, 14, 17, 18, 19, 20, 21, 22, 23}

generators--> {{17}, {20}, {21}, {22}, {23}, {2, 18}, {3, 18}, {13, 18},

{14, 18}, {2, 19}, {3, 19}, {13, 19}, {14, 19}}

downpointers--> {446, 1744}

concept #448:

events--> {2, 3, 13, 14, 17, 18, 19, 20, 21, 22, 23,

50, 53, 54, 55, 58, 59, 61}

generators--> {{50}, {53}, {54}, {55}, {58}, {61}, {2, 59}, {3, 59},

{13, 59}, {14, 59}, {17, 59}, {20, 59}, {21, 59},

{22, 59}, {23, 59}}

downpointers--> {445, 1743}

Fig. 6. Two concepts created by the DDDM system.

7

our DDDM software also determines the generators of each closed set Mi. Module invocations 17, 20
21, 22 and 23 are each singleton generators of M445 = {2, 3, 13, 17, 18, 19, 20, 21, 22}. That is, {17}
logically implies { w, e, 13, 17, 18, 19, 20, 21, 22 }. So too are the conjunctions 2 ∧ 18, 3 ∧ 18, ...,
14∧ 19. Clearly the closed sets of a Galois closure are not uniquely generated; it is not antimatroid.

Our DDDM software also enumerates O445 and O448, the collections of trace sequences over
which these closed sets are formed. Since each is supported by over 1,000 trace sequences, we have
omitted this from Figure 6.

As with any closure system, the closed sets Mi of M (or closed sets Oi of O) form a complete
lattice, L, under set inclusion, c.f. Figure 1. The “downpointers” of Figure 6 denote the closed
concepts covered by M445 and M448. For example, we see that M448 covers M445 in L. When they
are small enough, visual inspection of these concept lattices can reveal interesting substructures.
Ganter and Wille make full use of this in [2]. The size of our lattice, with 1,805 nodes, precludes
visual interpretation. Consequently, we run a search engine on L to find those closed concepts most
likely to be of interest. A prime example are those closed module sets with only a singleton generator,
or logical precedent. Concepts #445 and #448 of Figure 6 are examples. In Figure 7, we list all 66
closed concepts denoting implications with at least one singleton precedent.

support singleton

concept size generators closed set

210 1,034 {1} -> {1,2,3}

837 1,160 {2} -> {2}

211 1,158 {3} -> {2,3}

250 977 {4} -> {2,3,4}

836 1,143 {5} -> {2,5}

273 3 {6} -> {1..6}

118 3 {7} -> {1..5,7}

40 3 {8} -> {1..5,8}

1789 2 {9} -> {1..6,8,9}

1 1 {10,11} -> {1..11}

1733 1,099 {12,15,16,24} -> {2,3,12..24}

446 1,130 {13,14} -> {2,3,13,14}

* 445 1,100 {17,20,21..23} -> {2,3,13,14,17..23}

1744 1,103 {18,19} -> {18,19}

251 966 {25..32} -> {2,3,5,12..32,56,57}

389 938 {33} -> {1..3,5,12..40,56,57}

392 1,057 {34} -> {1..3,5,12..32,34..38,56,57}

391 962 {35,36,37,38} -> {2,3,5,12..32,35..38,56,57}

444 975 {39,40} -> {2,3,13..23,39,40}

443 977 {41,42,43,44} -> {2,3,13,14,17..23,40..44}

1735 863 {45} -> {2,3,12..24,45}

945 852 {46} -> {2,3,5,12..24,46..51,53..55,58..64}

458 1,077 {47..49,51,60,62} -> {2,3,13..23,47..51,53..55,58..61}

* 448 1,098 {50,53..55,58,61} -> {2,3,13,14,17..23,50,53..55,58,59,61}

455 960 {52} -> {2,3,5,13..23,39..44,47..55,58..62}

53 1,091 {56,57} -> {2,3,5,12..24,56,57}

1743 1,101 {59} -> {18,19,59}

449 865 {63,64} -> {2,3,13..23,50,53..55,58,59,61,63,64}

74 167 {65} -> {2,3,5,12..24,65}

375 28 {66} -> {2,3,5,12..24,39,40,50,53..59,61,66,67,69..72}

150 96 {67} -> {2,3,5,12..24,50,53..59,61,67,69..71}

1754 28 {68} -> {2,3,5,12..24,50,53..59,61,65,68..72}

279 100 {69} -> {2,3,5,12..24,50,53..59,61,69..71}

452 101 {70} -> {2,3,5,12..24,50,53..59,61,70}

581 102 {71} -> {2,3,5,12..24,50,53..59,61,71}

583 101 {72} -> {2,3,5,12..24,50,53..59,61,71,72}

1745 65 {73,74,75} -> {18,19,59,73..75}

37 167 {76} -> {76}

1528 39 {77} -> {1..3,5,12..24,39..44,47..51,53..62,77}

966 252 {78} -> {2,3,5,12..24,78,79}

967 231 {79} -> {2,3,5,12..24,79}

358 157 {80} -> {80}

1181 61 {81} -> {1..5,12..45,50,53..59,61,78,79,81}

232 17 {82} -> {82}

1746 7 {83} -> {18,19,59,73..75,83}

725 3 {84,117,118} -> {1..5,12..32,35..45,47..51,53..62,71..75,78,79,83,84,101,114..118}

833 5 {85} -> {76,80,85}

575 62 {86,87,88} -> {1..5,12..32,35..45,47..51,53..64,76,78..80,82,86..88}

272 1 {89} -> {1..6,12..45,47..51,53..65,68..72,76,78..80,82,86..100}

823 2 {90..100} -> {2,3,5,12..24,45,47..51,53..65,68..72,76,79,80,90..100}

1283 3 {95,96,99} -> {2,3,5,1224,45,47..51,53..62,65,76,79,80,95,96,99}

731 8 {101} -> {1..5,12..32,35..40,47..51,53..62,78,79,101}

439 1 {102,103,105..112} -> {2,3,13..23,39..44,47..55,59..64,70,76,102..112}

1748 5 {104} -> {104}

499 1 {113} -> {1..5,12..32,35..64,73..76,78..80,82,86..88,113}

1618 4 {114..116} -> {1..3,5,12..24,39..44,47..51,53..62,71..75,83,114..116}

8

1802 2 {119} -> {2,3,5,12..24,45..51,53..64,76,80,119}

764 1 {120} -> {2,3,5,12..24,45..51,53..65,68..72,76,79,80,90..100,119,120}

1274 1 {121} -> {1..5,12..45,47..62,65,73..76,78..80,95,06,99,121}

1508 1 {122} -> {1..3,5,12..24,39..44,46..65,67..77,83,114..116,122}

1676 3 {123..125} -> {1..3,5,12..24,47..51,53..62,76,78,79,123..126}

1804 4 {126} -> {1..3,5,12..24,47..51,53..62,76,126}

1742 3 {127..129} -> {18,19,59,73..75,83,127..129}

1747 4 {130,131} -> {104,130,131}

1749 4 {132} -> {132}

1788 1 {133..144} -> {1..6,8,9,12..64,76,80,82,85,133..144}

Fig. 7. Concepts with singleton generators.

Not all of the logical implications in the closure space I of Figure 7 are interesting; for example
#837 is the trivial implication that 2 → 2. Not all of the logical implications correspond to causal
dependencies. For example, according to concept #210, 1 → {1, 2, 3}, so we know that if module 1 is
invoked in any trace then modules 2 and 3 will be also invoked. But invocation of module 1 does not
“cause” the invocation of module 2, because in at least one trace the invocation of module 1 is not

followed by module 2. For a → b to be considered a causal dependency, a ⇒ b, whenever a is invoked,
b must be subsequently invoked. In effect, we intersect the closure space I with the temporal closure
space T . Figure 8 illustrates the 41 possible causal dependencies resulting from a single submodule
invocation that we found in this set of trace data. A much more complete description of this process

support

concept size causal dependencies (possible)

1733 1,099 {12} => {13...24}

445 1,100 {17} => {22,23}

{20} => {21...23}

{21} => {22,23}

251 966 {25} => {26} => {27} => {28} => {29}

{28} => {30} => {31} => {32} (Note: {29} /=> {30...32})

391 962 {35} => {36} => {37} => {38}

444 975 {39} => {40}

443 977 {41} => {42} => {43} => {44}

945 852 {46} => {47,48,49,60,62}

458 1,077 {47} => {48} => {49} => {51} => {60} => {62}

448 1,098 {50} => {53} => {54} => {55} => {58} => {61}

53 1,091 {56} => {57}

449 865 {63} => {64}

375 28 {66} => {67,69,70}

1754 28 {68} => {69,70,71,72}

279 100 {69} => {70}

1745 65 {73} => {74} => {75}

966 252 {78} => {79}

725 3 {84} => {117} => {118}

575 62 {86} => {87} => {88} => {25...44,45,63,64}

272 1 {89} => {33,34,90...100)

823 2 {90} => {91}=>{92}=>{93}=>{94}=>{97}=>{98}=>{100}

1283 3 {95} => {96} => {99} => {65}

439 1 {102}=> {103}=>{106}=>{107}=>{108}=>{109}=>{110}=>{111}=>112}

499 1 {113}=> {46...63,78,79}

1618 4 {114}=> {115} => {116} => {83}

1802 2 {119}=> {23...51,55...58,60...64}

764 1 {120}=> {46...55,58...64,68...72,91...100}

1274 1 {121}=> {35...45,52,65,95...99}

1508 1 {122}=> {83}

1676 3 {123}=> {124} => {125} => {1,2,3,5,12...24,47...51,53...62,78,79}

1804 4 {126}=> {1,2,3,5,12...24,47...51,53...58,60,61,62)

1742 3 {127}=> {18,73...75,83,128}

{128}=> {59,129}

{129}=> {19}

1747 4 {130}=> {131}

1788 1 {133}=> {134}=>{135}=>{136}=>{137}=>{138}=>{139}=>{140}=>{141}=>{142}

{142}=> {1...6,8,9,12...58,60...64,80,82,119,143,144}

{143}=> {1...6,8,9,12...58,60...64,80,144}

{144}=> {1...6,8,9,12...58,60...64}

Fig. 8. Possible causal dependencies.

can be found in [11].

9

We must point out that the causal dependencies of Figure 8 are what Ernst et al. [1, 7] would
call “likely” causal events. They have the necessary hallmark of one; the event a is always followed
by the event b. But, a scientific assertion of causality based on empirical evidence would also require
a plausible explanation of “why a caused b”. This is not here. Nevertheless, Yang and Evens, who
understand the semantics of this system far better than I, assert that these are true instances of
causality.

Figure 8 shows no causal dependencies with conjunctive predicates; yet there are many closed
sets with doubleton generators. Concept #445 has eight. Our problem is that, while establishing
that b always follows a in a single pass over the trace data is easy, determining that b always follows a
conjunction a1∧a2 is not. But the fact that it is difficult to use the full generality of this intersection
model to discover causal relationships does not vitiate the model itself. The fact that any causal
dependencies can be found using the model seems to provide strong support for its validity.

4 Transformation of a Causal Topology

The remainder of this paper is more speculative, even though it is supported by a substantial
mathematical theory. The issue is to account for change in the causal system with the passage of
time. It may well be that a∧ b ⇒ d as in Figure 4, and event a may have occurred. But, if event b

does not occur, event d will not occur. And, as the hand of time moves on, the occurrence of a may
become irrelevant. What we are trying to say is that Figures 2, 3 and 4 are only static snapshots of
the underlying closure systems. In an on-going system, the “topology” of these systems may, or may
not, be changing. Thus we are concerned with transformations that take one closure system (U, ϕ)

into another (U′, ϕ′). Such a transformation U
f

−→ U′ is a singled valued function mapping 2U

into 2U′
. By using suffix notation for transformations, including closure operators which also take

sets of 2U into sets in 2U′
, we provide a linguistic indicator of this paradigm shift. Thus X.f denotes

the image of the set X under f . We retain the more familiar prefix notation for functions restricted
to the underlying set of event elements.

4.1 Regular Transformations

Our goal here is to establish the kinds of properties we would want when transforming a causal
topology. By the inverse transformation f−1 of a set Y ′ ⊆ U′, we mean the collection {Y ⊆
U|Y.f = Y ′}.

A transformation U
f

−→ U′ is said to be regular if it is union preserving, that is (X ∪Y).f =
X.f ∪Y.f . Regular transformations have three important properties that we will use in the following
sequence of propositions.

Proposition 3. If U
f

−→ U′ is regular, then f is:
monotone, .e.g. ∀X, Y ⊆ U, X ⊆ Y implies X.f ⊆ Y.f ;
inverse consistent, .e.g. (

⋃
Y {Y : Y.f = Y ′}).f = Y ′

inverse monotone, .e.g. X ′ ⊆ Y ′ implies X ′.f−1 ⊆ Y ′.f−1.

Proof. Let X ⊆ Y so Y = X ∪ Y . Since f is regular, X.f ∪ Y.f = (X ∪ Y).f = Y.f or X.f ⊆ Y.f .
Inverse consistency and inverse monotonicity are equally easy to show. ⊓⊔

10

By inverse consistency we will be able to treat
⋃

Y {Y : Y.f = Y ′} as the inverse of Y ′ under f .
That is Y ′.f−1 =

⋃
Y {Y : Y.f = Y ′}. Inverse consistency also implies that Y ′.f−1.f = Y ′. Thus

regular transformations, regarded as operators on a single space, have left inverses, while we have
only Y ⊆ Y.f.f−1.

Further, it is not hard to show that

Proposition 4. The composition f ◦ g of regular transformations is regular.

A common way of creating a set valued transformation is to lift it from a ordinary point function
f on the set U of events. As usual, we extend f to constituent subsets by defining Y.f = {y′ ∈
U′|∃y ∈ Y, y′ = f(y)} for all Y ⊆ U. Transformations that are lifted from element functions are
easily shown to be union preserving. Thus regular transformations encompass the a class of discrete
transformations that we commonly see in practice.

So far we have not considered how a transformation U
f

−→ U′ might interact with, or affect,

the closures ϕ and ϕ′ on U and U′ respectively. A transformation (U, ϕ)
f

−→ (U′, ϕ′) is said to be
complete if ∀Y ∈ U, Y.f closed in (U′, ϕ′) implies Y.ϕ.f = X.f .

In a discrete space, “completeness” has some of the characteristics more commonly associated
with “continuity”. In particular, it provides an analog to the notion that “the inverse image of closed
sets is closed”.

Proposition 5. Let (U, ϕ)
f

−→ (U′, ϕ′) be regular and complete. If Y ′ is closed in U′, then Y ′.f−1

is closed in U.

Proof. Let Y ′ be closed and Y = Y ′.f−1. Since f is regular Y ′.f−1.f = Y ′ and since f is complete,
Y ′, f−1.ϕ.f = Y ′, thus Y ′.f−1 is closed. ⊓⊔

Thus the inverse image of a closed set is indeed closed.

Proposition 6. A regular transformation (U, ϕ)
f

−→ (U′, ϕ′) is complete if and only if ∀X ⊆
U, X.ϕ.f ⊆ X.f.ϕ′.

Proof. Let Y ′ = X.f.ϕ′, so Y ′ is closed. Readily, X.f ⊆ X.f.ϕ′. Let Y = Y ′.f−1 Since by inverse
monotonicity X ⊆ X.f.f−1 ⊆ Y ′.f−1 = Y , by completeness we have X.ϕ.f ⊆ Y.f = X.f.ϕ′.
Conversely, let X.f be closed. Then X.ϕ.f ⊆ X.f.ϕ′ = X.f . Now X ⊆ X.ϕ, so X.f ⊆ X.ϕ.f and
equality holds. X.f.ϕ′ = X.f and f is complete. ⊓⊔

We will say a transformation (U, ϕ)
f

−→ (U′, ϕ′) is closed if f takes closed sets in (U, ϕ) onto
closed sets in (U′, ϕ′)

Proposition 7. A regular transformation (U, ϕ)
f

−→ (U′, ϕ′) is closed if and only if ∀X ⊆ U,
X.f.ϕ′ ⊆ X.ϕ.f .

Proof. Let f be closed. X ⊆ X.ϕ implies X.f ⊆ X.ϕ.f . But, because X.ϕ is closed and f is closed,
X.f.ϕ′ ⊆ X.ϕ.f

Conversely, let X be closed in (U, ϕ). X.f.ϕ′ ⊆ X.ϕ.f = X.f . But, readily X.f ⊆ X.f.ϕ′ so equality
holds. ⊓⊔

Combining Propositions 7 and 6 we have.

11

Theorem 1. A regular transformation (U, ϕ)
f

−→ (U′, ϕ′) is closed and complete if and only if for
all X ⊆ U, X.ϕ.f = X.f.ϕ′.

Theorem 1 provides necessary and sufficient conditions on a regular transformation f so that f

commutes with the closure operator ϕ as in Figure 9. In effect, regular transformations that are closed

U

(U, ϕ)

U′

(U′, ϕ′)

-

-

? ?

ϕ ϕ′

f

f

Fig. 9. Regular f regarded as a closure system transformation

and complete preserve in some fundamental sense the internal closure structure of the underlying
discrete spaces. This is just what we want for a slowly evolving causal topology, that is one without
catastrophes.

Proposition 8. Let U
f

−→ U′,U′ g
−→ U′′ be regular and complete (closed) then U

f ◦ g
−→ U′′ is com-

plete (closed).

Proof. By Prop. 4, f ◦ g is regular. That the composition of closed transformation is closed is trivial.
Let f and g be complete and let Y.(f ◦ g) = Y.f.g = Y ′′ ∈ U′′ be closed. We must show that
Y.ϕ.(f ◦ g) = Y ′′. Since g is complete, (Y.f.ϕ′).g = Y ′′ and f complete implies first that Y.ϕ.f ⊆
Y.f.ϕ′ and then that Y.ϕ.f = Y.f.ϕ′. Thus, Y.ϕ.f.g = Y.f.ϕ′.g = Y ′′. ⊓⊔

Consequently, we can say that the collection of all closure systems5 whose functors comprise

all regular transformations (U, ϕ)
f

−→ (U′, ϕ′) that are closed and complete constitute a category
ClosureSys. This category ClosureSys has rather nice properties which we will only suggest here.
We can define the intersection of transformations f ∩ g by Y.(f ∩ g) = Y.f ∩ Y.g for all Y ⊆ U.
It is not at all hard to show that such intersection transformations are themselves regular, closed
and complete. Consequently, the collection of all regular, closed, complete morphisms can be equally
regarded as an object in ClosureSys.

5 Rough Edges

While the idea of modelling causality in terms of an imperative closure system, I, intersected with a
temporal closure system, T , may have considerable validity, there are a number outstanding issues, or
“rough edges”. A first, and foremost, question is whether the kind of causal dependencies illustrated
in Figure 8 represent an adequate model, or description, of the underlying deterministic software.
The answer is an unequivocal “no”. For example, my colleagues, Jinlin Yang and David Evans,

5 If |U| = n > 10 then there can be more than nn distinct closure systems defined on U [8].

12

model the same software, based on the same traces, in terms of regular expressions that capture the
iterative nature of the system much better than Figure 8.

Perhaps the simplest deterministic causal system is a finite state machine. Surely any model of
causality should be able to model the behavior of finite state machines for starters. We are familiar
with many different ways of describing finite state behavior: regular expressions, graphs, Petri nets,
and temporal logics. Each has it strengths and its weaknesses.

Even though the causal dependencies of Figure 8 are not fully adequate to model JBoss software,
our intersection model can be refined to do a better job. Suppose we let our universe U of events
consist of states si, conditions cj , and actions ak as suggested in the beginning of Section 2. Now
consider the finite state machine M1 of Figure 10 where a1 ≡ (read n), a2 ≡ (n = n−1), a3 ≡ (halt)

s a s

a

a

0 1 1

2

3

c
1

1

M

- c

1

Fig. 10. A simple finite state machine, M1.

and c1 ≡ (n > 0). Readily, the set of causal dependencies

s0 ⇒ a1

a1 ⇒ s1

s1 ∧ c1 ⇒ a2

a2 ⇒ s1

s1 ∧ ¬c1 ⇒ a3

fully describes M1. Unfortunately, we do not now know how to adequately instrument software to
capture important “conditions” such as n > 0 [1, 7], nor how to discover the conjunctive precedents,
even though, as shown by Figure 6, the Galois closure of I is capable of generating the sufficient
conjunctive precedents.

An even better description of M1 in Figure 10 might be “if a number is greater than zero, M1

decrements it until it is zero”. The emphasis here is on the behavior, not on states. To describe
behavior, we might first represent the integer n as an ordered set D of n elements. Now we are using
closure to model the data space. We can regard M1 as a transformation f of D that simply deletes an
element. It is not hard to show that element deletion, in which {x}.f = Ø, and {y}.f = {y}, y 6= x, is
regular [10]. (We might note that a deletion transformation cannot be lifted from an ordinary point

function because every x ∈ U must have an image f(x) ∈ U′. But, as a transformation 2U
f

−→ 2U
′

it can map {x} onto Ø.) In this case, representing M1 as a transformation describes “what” it does,
not “how” it does it.

It is our sense that the best model of causal behavior may be as a transformation which combines
the temporal and imperative aspects of causality. But, unfortunately, the actual formalization of this
idea still eludes us.

13

References

1. Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically Discovering
Likely Program Invariants to Support Program Evolution. IEEE Trans. Software Eng., 27(2):1–25, Feb.
2001.

2. Bernhard Ganter and Rudolf Wille. Formal Concept Analysis - Mathematical Foundations. Springer
Verlag, Heidelberg, 1999.

3. Karam Gouda and Mohammed J. Zaki. Efficiently Mining Maximal Frequent Item Sets. In 1st IEEE
Intern’l Conf. on Data Mining, San Jose, CA, Nov. 2001.

4. Robert E. Jamison and John L. Pfaltz. Closure Spaces that are not Uniquely Generated. Discrete
Appl Math., 147:69–79, Feb. 2005. also in Ordinal and Symbolic Data Analysis, OSDA 2000, Brussels,
Belgium July 2000.

5. Bernard Monjardet. A Use for Frequently Rediscovering a Concept. Order, 1:415–416, 1985.
6. Oystein Ore. Galois Connexions. Trans. of AMS, 55:493–513, 1944.
7. Jeff H. Perkins and Michael D. Ernst. Efficient Incremental Algorithms for Dynamic Detection of Likely

Invariants. Proc. SIGSOFT’04/FSE-2, pages 23–32, Nov. 2004.
8. John L. Pfaltz. Evaluating the binary partition function when N = 2n. Congress Numerantium,

109:3–12, 1995.
9. John L. Pfaltz. Closure Lattices. Discrete Mathematics, 154:217–236, 1996.

10. John L. Pfaltz. Deletion Transformations in Antimatroid Closure Spaces. In 25th Combinatoric, Com-
puting, and Graph Theory Conf., Boca Raton, FL, Mar. 1998.

11. John L. Pfaltz. Using Concept Lattices to Uncover Causal Dependencies in Software. In B. Ganter
and L. Kwuida, editors, Proc. Int. Conf. on Formal Concept Analysis, Springer LNAI #3874, pages
233–247, Dresden, Feb. 2006.

12. John L. Pfaltz and Christopher M. Taylor. Closed Set Mining of Biological Data. In BIOKDD 2002,
2nd Workshop on Data Mining in Bioinformatics, pages 43–48, Edmonton, Alberta, July 2002.

13. John L. Pfaltz and Christopher M. Taylor. Concept Lattices as a Scientific Knowledge Discovery Tech-
nique. In Workshop on Discrete Mathematics and Data Mining, 2nd SIAM International Conference on
Data Mining, pages 65–74, Arlington, VA, Apr. 2002.

14. Petko Valtchev, Rokia Missaoui, and Robert Godin. A Framework for Incremental Generation of Fre-
quent Closed Itemsets. In Peter Hammer, editor, Workshop on Discrete Mathematics & Data Mining,
2nd SIAM Conf. on Data Mining, pages 75–86, Arlington, VA, April 2002.

15. Rudolf Wille. Restructuring Lattice Theory: An approach based on hierarchies of concepts. In Ivan
Rival, editor, Ordered Sets, pages 445–470. Reidel, 1982.

16. Jinlin Yang and David Evans. Dynamically Inferring Temporal Properties. In Proc. ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, PASTE 2004, Washing-
ton, DC, June 2004.

17. Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das. Terracotta: Mining
Temporal API Rules from Imperfect Traces. In 28th Internl. Conf. on Software Engineering (ICSE
2006), Shanghai, China, May 2006.

