
A common framework for aspect mining based on
crosscutting concern sorts

Marius Marin
Delft University of Technology

The Netherlands
A.M.Marin@tudelft.nl

Leon Moonen
Delft Univ. of Technology & CWI

The Netherlands
Leon.Moonen@computer.org

Arie van Deursen
Delft Univ. of Technology & CWI

The Netherlands
Arie.vanDeursen@tudelft.nl

Abstract
The increasing number of aspect mining techniques proposed
in literature calls for a methodological way of comparing and
combining them in order to assess, and improve on, their qual-
ity. This paper addresses this situation by proposing a com-
mon framework based on crosscutting concern sorts which al-
lows for consistent assessment, comparison and combination
of aspect mining techniques. The framework identifies a set of
requirements that ensure homogeneity in formulating the min-
ing goals, presenting the results and assessing their quality.
We demonstrate feasibility of the approach by retrofitting

an existing aspect mining technique to the framework, and
by using it to design and implement two new mining tech-
niques. We apply the three techniques to a known aspect
mining benchmark and show how they can be consistently as-
sessed and combined to increase the quality of the results. The
techniques and combinations are implemented in FINT, our
publicly available free aspect mining tool.

1. Introduction
Aspect mining research aims at providing techniques and

tools that support the identification of crosscutting concerns

in existing code. Such concerns are of interest since they are

particularly difficult to manage and understand due to their

specific lack of modularization and locality.

With a growing number and variety of mining techniques

proposed in literature, it becomes increasingly important to

aim at consistency and compatibility between these tech-

niques and their results. Such properties would allow for a

systematic evaluation of the techniques, an assessment of re-

sults and the combination of techniques to improve quality.

However, most mining techniques rely on heterogeneous

descriptions of the crosscutting concerns they aim to identify

and the steps to be taken to map their results onto potentially

associated concerns. In some cases, the description of the dis-

covered concerns is specific to the context into which they

were encountered, and explained through other, better known,

examples of crosscutting functionality (e.g., CORBA Portable

Interceptors1 are described as “observer style entities” [14]).
Quite often, the mining techniques focus on generic symp-

1 Object Management Group - CORBA v3.0.3 specification

toms of crosscuttingness, like tangling or scattering, instead

of exploiting specific characteristics of the particular types of

concerns they aim to identify. In addition, there is little con-

sistency in describing results and concerns, which makes it

hard to compare or combine the results.

Previous experiments aimed at comparing and combining

aspect mining techniques [2] show that a significant chal-

lenge rises from the lack of a sound definition of crosscut-

ting concerns. This leads to the following (hypothetical but

likely) evaluation scenario: One technique describes its re-

sults through the participants in an implementation of the Ob-

server pattern that are crosscut by the super-imposed roles

of Subject and Observer [3]. A second technique reports re-

sults related to the same instance of the pattern, but identified

through the elements implementing the crosscutting mecha-

nism of the observers-notification (that is, the methods chang-

ing the state of the Subject object consistently invoke a notifi-

cation method). By interpretation, the human analyzers agree

on ad-hoc convergence rules of the results: the Observer pat-

tern instance is counted as a common finding as results from

both techniques are valid, and the Observer is a well known

example of crosscuttingness. Each technique can further ex-

plain how the implementation of the Observer is related to its

own identification mechanism.

The problems with the sketched scenario are apparent: the

convergence relies on an inconsistent level of granularity for

the reported findings, as the Observer implementation com-

prises distinct crosscutting concerns that the techniques iden-

tify. The results require a tedious manual correlation effort

as they do not (always) overlap directly but are related by the

design decisions they implement. Moreover, the approach re-

quires that, despite their inconsistency, detailed descriptions

of results and associated concerns are present. In practice,

however, such descriptions are often not available.

To address these issues, we identify a set of requirements

for systematic aspect mining aimed at ensuring consistency

and compatibility in identification of crosscutting concerns

and description of the mining results. These requirements

form the basis of a common framework for aspect mining.

They comprise a clearly defined search-goal for the mining
technique, descriptions of the rules for mapping the mining

results onto the description of the concerns targeted by the

technique, and objective metrics for assessment.

1Dagstuhl Seminar Proceedings 06302
Aspects For Legacy Applications
http://drops.dagstuhl.de/opus/volltexte/2007/882

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62912212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Contributions of this paper can be summarized as follows:

• We present a common framework that defines a system-

atic approach to aspect mining (Section 2);

• We introduce two new aspect mining techniques and

show how these and a previously proposed technique

conform to the proposed framework (Section 3);

• We apply the three techniques to a common benchmark,

both individually and in combination, and assess the re-

sults and approach (Sections 6 and 7);

• We provide a high level of automation for the techniques

and their combination through tool support (Section 5).

The final sections of the paper present related work, draw

some conclusions and discuss future work.

2. Common aspect mining framework
The focus of this work is on systematic aspect mining for

generative techniques: approaches that identify program el-
ements which participate in a crosscutting concern based on

source code characteristics, without using domain knowledge

about the system that is analyzed. The identified elements are

known as crosscutting concern seeds.
Most generative aspect mining techniques contain an au-

tomatic step in the analysis. The results of this step are

candidate-seeds (or candidates): results which are proposed
as seeds by the tool, but still require human inspection and val-

idation. Rejected candidates are non-seeds (false positives).
To ensure consistent and systematic aspect mining, we

identify a number of requirements for aspect mining tech-

niques. One of these requirements is to define the targeted

kinds of crosscutting concerns; that is, the search-goal of the
technique. We propose to define search-goals using our earlier

defined classification of crosscutting concerns in sorts [9, 10].

2.1. Crosscutting concern sorts

An important limitation of aspect mining comes from lacking

a definition of crosscutting concerns. Such a definition would

allow to clearly specify the search-goals of a technique and

the mapping between these goals and the actual results. With-

out this definition, aspect mining techniques have to resort to

ad-hoc descriptions of their goals and output and sometimes

even omit a detailed specification of their findings and the as-

sociated crosscuttingness.

A first step towards overcoming this limitation is a consis-

tent system for addressing and describing crosscutting con-

cerns. To this end, we propose the use of crosscutting con-
cerns sorts, a classification system for crosscutting function-
ality presented in our earlier work [9, 10].

Crosscutting concern sorts are atomic descriptions of
crosscutting functionality. They are characterized by a num-

ber of properties common to all the instances of the sort: (1)

a generic description of the sort (i.e., the sort’s intent), (2)

a specific implementation idiom of the sort’s instances in a

non-aspect-oriented language (i.e., sort’s specific symptom),
and (3) an atomic aspect language mechanism to modularize
concrete instances of the sort.

Table 1 shows a selection of four crosscutting concern

sorts. They are described by their defining properties and by

a number of concrete instances. For example, the roles super-

imposed to participants in a typical implementation of the Ob-

server pattern (the concrete Subject and the Observer roles)

are instances of the Role superimposition sort. Similarly,

the mechanism of consistently notifying Observer objects

of changes in the Subject’s state by invoking a notification-

method is an instance of the Consistent behavior sort.

The classification of crosscutting concerns based on sorts

ensures a number of important properties for consistent as-

pect mining: first, the atomicity of the sorts ensures a consis-

tent granularity level for the mining results; second, sorts de-

scribe the relation between concrete instances and the associ-

ated crosscutting functionality; third, sorts provide a common

language for referring to typical crosscuttingness, and hence

for defining the search-goals of an aspect mining technique.

2.2. Defining the common framework

We propose a common framework for aspect mining that de-

fines a systematic approach to identify crosscutting concerns.

The framework is aimed at ensuring consistency of the min-

ing process and compatibility of results. This compatibility

would further allow for assessment and combination of min-

ing techniques and results. Conformance with the framework

requires a developer of aspect mining techniques to:

Define the search-goal of the mining technique. An as-
pect mining technique has to define its search-goal in terms

of kinds of crosscutting concerns that the technique aims to

identify. We use the classification system based on crosscut-

ting concern sorts to define search-goals.

Describe the representation of the mining results. An as-
pect mining technique has to define and describe the format

for presenting the results of the automatic mining process (i.e.,

the candidate-seeds). Common formats would typically re-

semble the specific implementation of the crosscutting con-

cerns targeted by the mining technique (i.e., the sort’s imple-

mentation idiom).

Define mapping between mining results and goals. The
mining technique has to define how the candidate-seeds map

onto the targeted crosscutting concerns (i.e., the implementa-

tion idiom of the targeted sort). This mapping forms the re-

lation between mining results and potentially associated con-

cerns. Furthermore, it describes how we should understand

and reason about the candidate-seeds, and how we can expand

them into complete crosscutting concern implementations.

Candidate-seeds that cannot be mapped are rejected.

Define metrics to assess mining technique and results.
We distinguish three metrics: (1) precision, (2) absolute re-
call, and (3) seed-qualitymetric [7]. The first metric evaluates

2



Sort Intent Object-oriented Idiom Aspect mechanism Instances
Consistent Behavior Implement consistent behavior as a

controlled step in the execution of a

number of methods that can be cap-

tured by a natural pointcut.

Method calls to the desired func-

tionality

Pointcut and advice Log exception throwing events in

a system; Wrap/Translate business

service exceptions [8]; Notify and

register listeners; Authorization;

Contract enforcement Comply to design by contract rules,

e.g., pre- and post-conditions checking

Method calls to method imple-

menting the condition checking

Pointcut and advice Contract enforcements specific to

design by contract

Redirection Layer Define an interfacing layer to an object

(add functionality or change the con-

text) and forward the calls to the object

Declare a routing layer (decora-

tor/adapter), and have methods in

this layer to forward the calls

Pointcut and around

advice

Decorator pattern, Adapter pat-

tern [5]; Local calls redirection to

remote instances (RMI) [12];

Role superimposition Implement a specific secondary role or

responsibility

Interface implementation, or di-

rect implementation of methods
that could be abstracted into an

interface definition

Introduction mecha-

nisms

Roles specific to design patterns:

Observer, Command, Visitor, etc.;
Persistence [8]

Table 1. Sorts of crosscuttingness.

the quality of the whole set of candidate-seeds generated by

the mining technique. The second counts the absolute number

of identified concern seeds. The last metric aims at describ-

ing each candidate-seed and providing a measure of the effort

required for reasoning about the candidate. Candidates with a

low value of the quality metric will typically be dismissed.

These three metrics form the core set that is used for as-

sessment; however, this set can be extended with othermetrics

provided that they are generally applicable.

Optionally (but recommended) the mining technique

should provide guidelines for improving the metric values.
Such improvements can be made, for instance, through com-

binations of techniques. For example, precision can be im-

proved by combining techniques with the same search-goal;

absolute recall can be improved by combining techniqueswith

different goals. Seed-quality would typically be improved by

generating results that better overlap with the implementation

of their associated crosscutting concerns, and hence have a

higher confidence level.

3. Three aspect mining techniques
In this section, we describe three techniques for identifying

crosscutting concern seeds and how they conform with our

framework for systematic and consistent aspect mining. One

of these techniques, Fan-in analysis, is a previous contribu-

tion, while the other two techniques are contributions of this

work. This shows how existing techniques can be retrofitted

to the framework and how new techniques can be designed

based on the framework’s structure. Experiments that apply

these techniques to a common case are discussed in Section 6.

3.1. Fan-in analysis

Fan-in analysis is a mining technique aimed at identifying

crosscutting concerns whose implementation consists of a

large number of scattered invocations of specific functional-

ity implemented by a method. The number of distinct call

sites gives the fan-in metric of the method invoked. The anal-
ysis reports methods with large values of their fan-in metric

as candidate-seeds. The seeds found using Fan-in analysis

typically correspond to crosscutting concerns refactorable by

an aspect-oriented pointcut and advicemechanism that exists,
for example, in AspectJ: the aspect solution captures the calls

sites in a pointcut definition and triggers the automatic execu-

tion of the method with a high fan-in value at these call sites.

Fan-in analysis can identify a number of crosscutting con-

cern sorts. For example, one type of concerns are mechanisms

for consistent notification, such as Observer pattern imple-

mentations, consistent logging or tracing operations, excep-

tion handling and wrapping, etc. Another type of concerns

that are identified by Fan-in analysis is role superimposition.

To improve assessability, we will differentiate between var-

ious Fan-in analyses based on the concern sort(s) that are ac-

tually targeted by a particular analysis. This will allow us to

distinguish between intended and unintended discoveries.

In this paper we will focus on Fan-in analysis aimed

at identifying Consistent behavior or Contract enforcement.

When we describe properties particular to this analysis, we

will refer to it as Fan-inCC. In terms of our common frame-

work, it can be defined as follows:

Search goal Instances of the Consistent behavior or Contract
enforcement sorts.

Presentation Results are call relations, described by a callee
and a set of callers.

Mapping The method with a high fan-in value (the callee)
maps onto the method implementing the crosscutting

functionality, and the callers of the method correspond

to the crosscut elements.

Metrics We consider three metrics for assessment:
• precision: the percentage of seeds for instances of

Consistent behavior or Contract enforcement in the

whole set of reported candidates;
• absolute recall: number of identified seeds (i.e.,

validated candidates);
• seed-quality: the percentage of callers in the re-

ported call-relation that match elements crosscut by

consistent invocation of the methodwith a high fan-

in value. Callers that increase the metric value are

3



those that are validated as participants in the imple-

mentation of the associated crosscutting concern.

In our previous work we discuss a number of properties that

can be analyzed for improving the seed-quality for Fan-in

analysis [7]. These include, for instance, structural or call

position relations between the callers of a method with a high

fan-in value. High quality candidates contain mostly elements

that participate in the implementation of a crosscutting con-

cern, and hence are relevant for reasoning about a candidate.

Recall is likely to improve for lower threshold values of the

fan-in metric; however, this is also likely to reduce precision.

3.2. Grouped calls analysis

Experience shows that crosscutting concern implementations

can be closely related, or that a single concern can be imple-

mented by a number of related method calls. Examples in-

clude pre- and post-operation notifications, consistent initial-

ization and clean-up of resources, and multi-step set-up oper-

ations. Such concerns typically share their intent and crosscut

the same elements. We identify them by looking for groups of

methods that consistently invoke a same set of callees.

Grouped calls analysis applies formal concept analysis [4,

6] to all calls in the analyzed system in order to find maximal

groups of callees that are invoked by the same callers.

Search goal Instances of the Consistent behavior or Contract
enforcement sorts.

Presentation The results are concepts, where the grouped
callees are the attributes and the callers are the objects

in the concept.

Mapping The attributes in the concept (i.e., the callees) map
onto methods implementing crosscutting functionality,

and the objects in the concept (i.e., the callers) match

the crosscut elements.

Metrics We consider the same three metrics for assessment
as for Fan-in analysis:

• precision: the percentage of seeds for Consistent

behavior or Contract enforcement instances in the

whole set of reported candidates;

• absolute recall: number of identified seeds;

• seed-quality: is given by two partial measures: (1)

the percentage of callers that are indeed crosscut by

a consistent call to a specific functionality and (2)

the percentage of callees that are part of the cross-

cutting concern implementation as assessed by an

human analyzer. The value of the metric is obtained

by multiplying the partial measures.

Improving the seed-quality for this analysis can target the set

of callers for a reported group of callees, similar to Fan-in

analysis, as well as the set of grouped callees, by selecting

only those callees that are relevant for a potentially associated

crosscutting concern.

3.3. Redirections finder

Redirections finder is a technique that looks for classes whose

methods consistently redirect their callers to dedicated meth-

ods in another class. A typical example are implementations

of the Decorator pattern [3]: The Decorator class’ methods

receive calls, optionally add extra functionality, and then redi-

rect the calls to specific methods in the Decorated class.

To detect such a consistent, yet method-specific, redi-

rection concern, the technique looks for classes (C) whose

methods (m[i]) invoke specific methods from another class D

(D.n[j]). The automatic selection rule is:

C.m[i] calls D.n[j] and only n[j] from D and
D.n[j] is called only by m[i] from C.

Class C and its redirector methods are reported by the tech-

nique if the number of methods in C complying with these
conditions is above a chosen threshold, and if the percentage
of methods in C complying with the conditions w.r.t. the total

set of methods of C is higher than a second threshold.

Search goal Instances of Redirection layer.
Presentation Redirection relations described by a set of pair
methods from two different classes, related by one-to-

one call relations.

Mapping The callers in the reported set match the methods
executing the redirection, while their pair callees receive

the redirection.

Metrics We consider three metrics for assessment:
• precision: the percentage of Redirection layer

seeds in the set of reported candidates;
• absolute recall: number of identified seeds;
• seed-quality: the percentage of redirectors in the

reported candidate.

To further improve the quality, we can add a filter that checks

for matching names between the callers and callees. This is

a common practice for implementing redirectors, although it

could also introduce false negatives.

4. Combining techniques
Effectiveness of aspect mining can be increased by combining

techniques. This section investigates various combinations of

techniques and discusses the effect on the combined results.

4.1. Improving precision

Precision is measured by the percentage of crosscutting con-

cern seeds in the complete set of candidates reported by the

(automatic) mining technique. A straightforward combina-

tion of two aspect mining techniques that increases precision

is achieved by intersecting their results (i.e., the set of candi-

dates). However, this can be done only when the techniques

target the same crosscutting concern sorts, with compatible

representations of the results.

4



Two techniques that satisfy this condition are, for exam-

ple, Fan-in and Grouped calls analyses. To combine them, we

select those results of Fan-in analysis whose callees occur as

callees in at least one of the Grouped calls candidates.

4.2. Improving absolute recall

To improve absolute recall, we can simply consider the union

of the results of different mining techniques. For techniques

that target different concern sorts, this union will not contain

overlap in the individual results, and the number of seeds for

the combination is the sum of the seeds for each technique.

As argued before, another way of improving the absolute

recall is by being less selective, by lowering the thresholds.

However, this is likely to reduce precision. For Fan-in and

Grouped calls analyses, precision can be restored by combin-

ing the techniques with the same search-goal, and taking the

intersection of their results. The lower thresholds allows for

new candidates to be reported and the intersection filters the

results so the precision does not drop significantly.

4.3. Improving the seed-quality

Combination of techniques targeting same sort’s instances

also allows for improvement in the seed-quality of the can-

didates. For example, we can consider the intersection of

the results for Fan-in and Grouped calls analyses, selecting

the common callees and the common callers of these callees.

Thus, for the same value of the threshold for the number of

callers, we consider only callees reported by both techniques,

and the callers reported by Grouped calls analysis.

Because Grouped calls analysis is the most restrictive of

both techniques, the number of callers for a callee is typically

lower than for Fan-in analysis. Moreover, the quality of the

combined results will be higher than for Grouped calls analy-

sis alone because the combination takes only one callee, and

hence we have no false positives grouped together with seeds.

One result of Fan-in analysis can occur in multiple groups

of callees reported by Grouped calls analysis: in this case, we

select the Grouped calls result for which the callers set has the

largest overlap with the set of callers for the Fan-in candidate.

5. Tool support
To experiment with the ideas laid out in this paper, we have

extended our free aspect mining tool FINT2 to include auto-
matic support for the three techniques and their various com-

binations. FINT is available as an Eclipse3 plug-in. Figure 1
shows part of the functionality provided by the tool, including

views for displaying results of each of the three techniques,

and the Seeds view where candidates marked as seeds by the

user can be managed, documented and made persistent.

2 http://swerl.tudelft.nl/view/AMR/FINT (v0.6)
3 http://www.eclipse.org/

Each technique allows for a number of specific, automatic

filters, like filters for utility elements or accessor methods.
Utility elements are those that the user considers as irrelevant

for analysis. To filter them, the user is presented with the hi-

erarchical structure of the top-level Java element selected for

analysis (e.g., a Java project) in which the elements to be ig-

nored can be selected (e.g., all the elements in packages con-

taining JUnit tests). The accessor methods, that is getter and

setter methods, are filtered by automatic inspection of either

the signature of the methods or their implementation.

The results for each technique are displayed in a dedicated

view, following the representation described in Section 3. The

views allow for various sorting operations and code inspection

from the elements selected by the user in the view. The user

can further open and inspect each candidate in a new view, and

run a number of analyses for improving the quality of the can-

didate. These analyses include inspection of various structural

relationships between the elements describing a candidate [7].

Support for combining techniques is available, for exam-

ple, through intersection of the sets of results of two tech-

niques: The views showing the results can be synchronized

so common findings are highlighted in the views. For ex-

ample, the highlighted elements in the Fan-in Analysis View

of Figure 1 correspond to methods that are also present in at

least one group reported by the Grouped calls analysis. The

bold colored elements show candidates marked as seeds by

the user. These elements are also shown in the Seeds view.

6. Experiment
We apply the aspect mining techniques described above to

JHOTDRAW,4 which has been proposed and used as common
benchmark for aspect mining [8, 2]. Detailed results of the

experiments discussed in this section are available on-line.5

6.1. JHOTDRAW

JHOTDRAW is an open-source framework for bi-dimensional

drawings editors. The distribution (v 5.4b1) comes with a

default drawing application that we also analyze. The sys-

tem is a show-case for applying design pattern solutions in a

Java implementation. Its size is approximatively 20,000 non-

comment, non-blank lines of code.6

6.2. Applied filters

Table 2 shows the filters applied for conducting the mining

experiments on the selected case-study. For all techniques, we

filter out the (JUnit) test classes deliveredwith the application;

i.e., the methods from the test classes do not occur among the

reported candidates of any technique, and methods from these

classes do not contribute to the fan-in metric of a method.

4 http://www.jhotdraw.org/
5 http://swerl.tudelft.nl/view/AMR/CombinationResults
6 SLOCCount: http://www.dwheeler.com/sloccount/

5



Figure 1. FINT views

Fan-inCC Grouped calls Redirection
Targeted sorts Consistent behavior (and Contract en-

forcement)
Consistent behavior (and Contract en-
forcement)

Redirection layer

Utility filters Collection wrappers and test classes Collection wrappers and test classes Test classes

Accessor filters Accessors by name and implementation Accessors by name and implementation -

Threshold filters No. callers: 10 No. callers: (1)10 and (2)7;

No. grouped callees: 2

No. redirectors: 3;

Percentage redirectors: 50%

Accepted Seed quality Above 50% Above 50% Above 50%

Table 2. Selection conditions applied for the combination experiment.

Collection wrappers, like IteratorWrapper or SetWrapper,
are also marked as utilities to be filtered from the set of candi-

dates. Similar to the test classes, these wrappers are typically

part of dedicated packages (CH.ifa.draw.util.collections.*).
Collection elements tend to be frequently used in an applica-

tion, however, in most cases they are not part of a consistent

mechanism associated with crosscutting functionality. Filter-

ing these elements is likely to reduce the number of candidates

without introducing false negatives.

For Fan-in and Grouped calls analysis, we also filter ac-

cessor methods from the set of candidates. The filters check

both the signatures of methods (set* and get* names) and their
implementation (i.e., only set a field or return a reference).

A number of threshold values are specific to each case and

can be varied by the user to refine the results:

• Fan-inCC: the threshold value for the number of callers

of a candidate is set to 10, following considerations from

previous experiments [8];

• Grouped calls: the first experiment uses a threshold of 10

for the number of callers, this is lowered to 7 for the sec-

ond experiment; the threshold for the minimal number of

callees to be grouped by a candidate is always set to 2;

• Redirections finder: the technique uses two threshold

values, the first sets the minimal number of redirector

methods in a class to 3, and the second sets the minimal

percentage of methods in the class executing the redirec-

tion to 50%. Thus candidates reported by this technique

will have at least 3 redirector methods, and at least 50%

of all their methods execute the required redirection.

6



//CutCommand.execute()
public void execute() {
// perform check whether view() isn’t null.
super.execute();

// prepare for undo
setUndoActivity(createUndoActivity());
getUndoActivity().setAffectedFigures(

view().selection());

// key logic: cut == copy + delete.
copyFigures(view().selection(),

view().selectionCount());
deleteFigures(view().selection());

// refresh view if necessary.
view().checkDamage();

}

Figure 2. (Simplified) execute method in
JHOTDRAW’s Command hierarchy.

Candidates are marked as seeds if they correspond to a

crosscutting concern according to the mapping rules of each

technique and the seed-quality of the candidate is above 50%.

6.3. Individual results

This section shows a number of typical results and metric val-

ues for each of the three techniques. Table 3 shows the metrics

as well as the values for the combination experiment discussed

in the next section.

Fan-in analysis A number of seeds identified by Fan-inCC

implement concerns that crosscut the Command hierarchy
in JHOTDRAW. Command classes follow the design de-
scribed by the pattern with the same name; they implement

an execute method that carries out specific activities in re-
sponse to, for instance, user actions like menu-items selection.

Figure 2 shows the method for executing cut operations in

a drawing editor. The method starts with a condition check

implemented by the command’s super-class (AbstractCom-
mand). Similarly, all the (around 20) methods overriding the
AbstractCommand’s execute method in non-anonymous
classes check this condition. The commands then conclude

with a notification of the editor’s view.

The check- and notification-actions implement two cross-

cutting concerns scattered over a large number of methods that

invoke these actions, and hence increase the value of their fan-

in metric. The first invocation is a typical seed for an instance

of the Contract enforcement sort, while the latter implements

a concern of the Consistent behavior sort.

To calculate the quality of these results, we have to con-

sider all the callers reported by Fan-inCC for each of the in-

voked actions. Not all the callers, however, belong to the

context of the Command hierarchy crosscut by the concerns
of the two candidate-seeds. For instance, one of the calls to

the execute method originates from an action-event han-

Technique Precision Absolute recall
(no. of seeds)

Fan-inCC (FI)
7 30% (33/109) 33

Grouped calls (GC1) 45% (5/11) 5

Grouped calls (GC2) 55% (12/22) 12

Redirection finder (RF) 92% (12/13) 12

FI + GC1 41% (7/17) 7

FI + GC2 + RF - 51

Table 3. Metric values for individual and combined
techniques.

dler in a MenuItem class. The quality of the candidate for
the execute method is given by the proportion of the 18
methods crosscut by the reported call, to the whole set of 24

callers. This value is 75%, above the set threshold of 50% for

selecting a candidate as a seed.

The Consistent behavior (Contract enforcement) seeds

identified through Fan-inCC analysis count 33 methods in the

total set of 109 candidates reported. This indicates a precision

of around 30% for the targeted sorts, as shown in Table 3.

Grouped calls analysis The two candidates discussed
above for Fan-in analysis share the largest part of their callers,

and hence are also among the results reported by the Grouped

calls analysis. Although the two concerns are distinct, they

are related by the set of elements they crosscut (i.e., the Com-
mand hierarchy). The Grouped calls analysis does not sep-
arate the two concerns, but instead allows to put them in a

single, shared context.

One of the candidates reported by this technique groups the

view and execute methods in the set of callees, together
with 14 common callers. Another candidate groups the same

two methods, but also the checkDamage method, together
with 12 common callers. In the first case, the execute
method is the relevant element for the crosscutting concern

associated with the reported candidate. The view method has
no relevance to this concern, and hence it decreases the quality

of the candidate. We dismiss the candidate as we select only

those whose quality (for the callees group) is above 50%.

On the second case, however, each invocation of the view
method occurs together with a call to the checkDamage
method, which is a seed for the previously discussed instance

of the Consistent behavior sort. In this case, the reported

view method is relevant for the crosscutting concern associ-
ated with the reported candidate and contributes to the quality

metric. For this candidate, the quality metric is 100% as all

the grouped callees and callers belong to the implementation

of the related crosscutting concern.

In comparison with Fan-in analysis, the number of results

and seeds for this technique is lower for the same threshold for

the number of callers. This is to be expected, as this technique

7 Results for Fan-inCC in this work are exclusively for the targeted sorts.

They differ from results reported in our earlier work [8] because in that case

more concern sorts were targeted. All results are documented on the experi-

ment’s web-page mentioned earlier (footnote 5).

7



public abstract class DecoratorFigure {
// ...
private Figure myDecoratedFigure;

public TextHolder getTextHolder() {
return getDecoratedFigure().getTextHolder();

}

public Rectangle displayBox() {
return getDecoratedFigure().displayBox();

}

// Forwards draw to its contained figure.
public void draw(Graphics g) {

getDecoratedFigure().draw(g);
}

// ...
}

Figure 3. (Part of) DecoratorFigure - super-class for
Figure objects decorators.

has more restrictive selection rules for the candidates: a callee

should not only have a large number of callers, but it also has

to be called together with at least same one other method.

For a lower threshold, the number of seeds is almost dou-

bled, but is still lower than the one reported for Fan-in analy-

sis.

Redirection layer analysis A number of classes in JHOT-
DRAW, like Border- or Animation-Decorator, extend theDec-
oratorFigure class shown in Figure 3, which provides the ba-
sic functionality to forward calls to a decorated Figure object.
This example is a typical instance of the Decorator pattern:

Methods in the Decorator classes consistently redirect their

callers to dedicated methods of a target object, before or after

(optionally) providing additional functionality.

The Redirectors finder candidate for this concern consists

of 22 call relations, 3 of which correspond to the methods

shown in the figure. Since all reported results implement the

redirection concern, the seed-quality of the candidate is 100%.

The high precision of this technique has been confirmed by

experiments on other case-studies like Tomcat8 and JBoss9.

6.4. Combinations

Precision An overview of the quality improvements gained

by combining Fan-in and Grouped calls analyses is shown in

Table 4. Despite a significantly lower absolute recall value (7),

we observe that the precision of the combination is higher, as

shown in Table 3.

For the case discussed, the combination of techniques

proves successful as it provides a better precision than the in-

dividual technique (Fan-inCC).

8 http://tomcat.apache.org/
9 http://jboss.org/

Absolute recall Besides taking the union of results, we also
run a second experiment by lowering the threshold for the

number of callers required for candidates of Grouped calls

analysis from 10 to 7 (labeled with GC2 in Table 3). This ex-

periment allows to consider callees that are potentially missed

by fan-in analysis due to its higher threshold filter. Most of the

results and seeds of the Grouped calls analysis with a lower

threshold overlap with the results of Fan-in analysis, however,

a number of seeds were found and included in the union set

for the three techniques. The size of the union set counts 51

distinct seeds.

Candidate-seed quality The results of the combination of
the two techniques targeting the same sort show improved val-

ues for the quality metric. Most of the common results have a

higher quality for the Grouped calls analysis, and the combi-

nation of techniques would retain these high values.

7. Discussion
Retrofitting existing techniques A number of existing
mining techniques described in literature appear to be suit-

able for adaption to the proposed framework. The technique

for detection of aspectizable interfaces by Tonella and Cec-

cato [13], for instance, could be described in terms of our

common framework as follows:

Search goal Instances of the Role superimposition sort, as
described in Table 1.

Presentation Inheritance relations described by groups of
methods that belong to or can be abstracted into an in-

terface definition, and their implementing types.

Mapping The reported interface and its members map onto
elements that crosscut the types implementing them.

Metrics The precision is given by the percentage of correctly
identified crosscutting type (interface) definitions. The

number of these types gives the absolute recall measure.

The quality metric is given by the percentage of meth-

ods in a result that are correctly identified as part of a

crosscutting type definition.

Techniques based on clone detection could also prove suit-

able for identifying instances of Consistent behavior or Con-

tract enforcement. The Grouped calls technique resembles

mining based on clone detection but only in some respects:

by not considering the position of the calls in the body of

the callers, the technique allows to identify related calls that

would typically be missed by classical clone detection tools.

On the other hand, it can introduce false positives that proba-

bly will not be present in standard clone detection. Although

a number of aspect mining experiments have been carried out

using clone detection [1, 11], there is no report of a complete

analysis of all the results produced by clone detection-based

techniques, and their total precision and absolute recall.

8



Candidate FI quality GC1 quality FI+GC1 quality
framework.DrawingView.checkDamage 64% 100% 100%

framework.DrawingView.clearSelection 55% 100% 100%

framework.DrawingView.selectionCount 63% 83% 83%

standard.AbstractCommand.execute 71% 100% 100%

standard.AbstractFigure.changed 100% 100% 100%

standard.AbstractFigure.willChange 100% 100% 100%

util.UndoableAdapter.undo 92% 100% 100%

Table 4. Values of the quality metric for individual and combined techniques.

Interpretation of results The Consistent behavior and Con-
tract enforcement sorts share their implementation idiom.

Thus, instances of both sorts have the same specific symptoms

of crosscuttingness. This allows aspect mining techniques to

target instances of both sorts together. However, because the

differences between the two sorts are only due to their intent,

it is difficult to distinguish between them automatically. As a

consequence, assessment requires human interpretation.

The Grouped calls analysis builds concepts of callees-

callers based on the complete set of methods of the analyzed

system. The methods grouped in a concept and to which no

filters have been applied give the extended result. That is, an
extended result also includes accessor or utility methods that

we would typically filter before reasoning about a candidate.

To reduce the number of false negatives, we can first apply the

filters, reason and decide about a candidate, and then investi-

gate all the remaining elements in the extended representation

of the results marked as seeds.

Similar extensions can be achieved for the results of the

combination of Fan-in analysis with Grouped calls analysis

for improving the seed-quality: the combination considers

only the callers from the Grouped calls analysis, as this will

typically provide a better seed-quality. However, this inter-

section might ignore relevant elements from the set of callers

reported by Fan-in analysis. A common practice in this com-

bination is to reason about the result of the combination for

deciding about a candidate, and then extend the analysis to

the other callers reported by Fan-in analysis.

Multiple search-goals As mentioned before, the relation
between a technique and its search-goal is not exclusive: the

same technique can target instances of different sorts if differ-

ent mappings are defined and applied.

Earlier, our focus for Fan-in analysis was at identifying

Consistent behavior or Contract enforcement. However, if we

were to employ Fan-in (or Grouped calls) analysis to iden-

tify instances of the Role superimposition sort (Fan-inRS), we

could define the following mapping: the callers of the high

fan-in method belong to the implementation of a crosscutting,

super-imposed role, and the reported method with a high fan-

in value implements functionality dedicated to and accessed

from the scattered places implementing the role.

Several instances of Role superimposition are present in

JHOTDRAW. A typical example is the persistence con-

cern: The Figure elements implement the Storable interface

that defines (read and write) methods to (re-)store a fig-
ure from/to a file. The scattered implementations of these

methods for persistence invoke functionality from classes

(StorableInput and StorableOutput) that are specialized in
reading/writing specific types of data. The candidates re-

ported by the technique are the methods in the specialized

classes together with their callers in the Storable hierarchy.
The persistence candidates for Role superimposition in-

stances add to the total number of seeds identified for the an-

alyzed system. However, since these results are not compat-

ible with the Consistent behavior (Contract enforcement) in-

stances discussed earlier, they should be addressed distinctly

if the technique is to be compared with another one. This is

achieved by explicitly specifying the search-goal, as is done

with Fan-inCC and Fan-inRS.

The complete results for various crosscutting concern sorts

identified using fan-in analysis is discussed and described in

previous work [8].

Tool performance Although this work’s focus is less on
each individual mining technique and more on the common

framework to consistently assess and possibly combine min-

ing techniques, we will briefly discuss the performance of the

tool. The analysis of the whole JHOTDRAW system for Fan-

in analysis requires around 30 seconds on our test machines

(Pentium 4 - 2.66 GHz, with 1GB of RAM) running Eclipse

3.1.x under either Linux or Windows OS.

The Grouped calls analysis requires the model built for the

Fan-in analysis and takes around 5 minutes to examine all the

call relations (approximately 6000 x 6000 elements). This

analysis will not scale up very well to systems like Tomcat

or JBoss, which have up to 35,000 elements. However, try-

ing to understand such large systems in one iteration is hardly

advisable due to the cognitive complexity. We would sug-

gest dividing them into sub-systems comparable in size with

JHOTDRAW and gather understanding for each of these sys-

tems. Actually, to ensure maintainability, the architecture of

the two aforementioned systems is already conveniently split

in components that are suitable for analysis in isolation.

The Redirection finder uses the Fan-in model and requires

only a few seconds for execution.

Reproducibility To allow for reproducibility of the exper-
iments described in this paper, we provide both the tool and

detailed setup elements and results sets on the tool’s and ex-

periment’s web-pages, indicated in footnotes 2 and 5.

9



8. Related work
Several authors have proposed (and taken) steps towards the

comparison and combination of aspect mining techniques [8,

2, 11]. We are not aware of related work on providing a com-

mon framework for systematic aspect mining, and consistent

combination and assessment of mining techniques.

Shepherd et al. [11] report on machine learning techniques

for combining aspect mining analyses. Their approach learns

from annotated code and they compare the results of their

combination to results of Fan-in analysis [8]. A drawback

is the required annotation of crosscutting concerns on some

significant system, which is needed for training the tool.

The techniques considered for combination include some

that are also used as filtering support in FINT, such as filters

for accessor or utility methods. However, the authors of the

experiment do not describe their findings in detail nor do they

provide rules to consistently associate results of different rep-

resentations to crosscutting concerns.

In the collaborative AIRCO effort [2], three aspect mining

techniques are compared and investigated from the perspec-

tive of combination. The techniques include fan-in analysis,

dynamic analysis of execution traces, and analysis of shared

identifiers in signatures of program elements. Major difficul-

ties in this experiment were caused by heterogeneity in the

search-goals of the three techniques and in representation of

results. Such experiments require a tedious effort from the

participants in the experiment to bring individual results to

comparable levels of granularity. Due to such issues, the ex-

periment could focus only on a limited selection of common

findings. This motivated the work presented here.

A broader overview of specific aspect mining techniques

falls out of the scope of this paper. We refer the interested

reader to surveys of related work in our earlier work [8, 2].

9. Conclusions
With a growing number of aspect mining techniques and ap-

proaches, it is increasingly difficult to consistently assess,

compare and combine mining results.

This paper addresses this situation by proposing a com-

mon framework to define systematic aspect mining based on

crosscutting concern sorts. The framework allows for con-

sistent assessment, comparison and combination of compliant

aspect mining techniques. It identifies a set of requirements

that ensure homogeneity in formulating the mining search-

goals, presenting the results and assessing their quality.

We demonstrate feasibility of the approach by retrofitting

an existing aspect mining technique to the framework, and by

using it to guide the design and implementation of two new

mining techniques. We apply the three techniques to an as-

pect mining benchmark known from literature and show how

they can be consistently assessed and combined to increase

the quality of the results. The techniques and combinations

are implemented in FINT, our free aspect mining tool which

is publicly available.

As future work, we would like to investigate how other

existing mining techniques can be retrofitted to the proposed

framework and integrated into FINT. We would also like to

experiment with other combinations of aspect mining tech-

niques, and analyses for improving the seed-quality, as dis-

cussed in [7].

References
[1] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwé.

An evaluation of clone detection techniques for identifying

crosscutting concerns. In Proc. Intnl. Conf. on Software Main-
tenance (ICSM’04), pages 200–209. IEEE, 2004.

[2] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and

T. Tourwé. Applying and combining three different aspect min-

ing techniques. Software Quality Journal, 14(3), 2006.
[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[4] B Ganter and R Wille. Formal Concept Analysis: Mathemati-
cal Foundations. Springer-Verlag New York, Inc., 1997.

[5] J. Hannemann and G. Kiczales. Design pattern implementation

in Java and AspectJ. In Proc. ACM SIGPLAN Conf. on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA’02), pages 161–173. ACM, 2002.

[6] C. Lindig. Fast concept analysis. In Working with Concep-
tual Structures - Contributions to ICCS 2000, pages 152–161.
Shaker Verlag, 2000.

[7] M. Marin. Reasoning about assessing and improving the

candidate-seed quality of a generative aspect mining tech-

nique. In LATE Aspects Workshop at AOSD. CWI Technical
Report, SEN-R06xx, 2006. Available at: http://swerl.
tudelft.nl/view/AMR/.

[8] M. Marin, A. van Deursen, and L. Moonen. Identifying as-

pects using fan-in analysis. In Proc. Working Conf. on Reverse
Engineering (WCRE’04), pages 132–141. IEEE, 2004.

[9] M. Marin, L.Moonen, and A. van Deursen. An approach to as-

pect refactoring based on crosscutting concern types. In Intnl.
Workshop on the Modeling and Analysis of Concerns in Soft-
ware, ICSE. Software Engineering Notes, 30(4), 2005.

[10] M. Marin, L. Moonen, and A. van Deursen. A classification of

crosscutting concerns. In Proc. Intnl. Conf. on Software Main-
tenance (ICSM’05), pages 673–676. IEEE, 2005.

[11] D. Shepherd, J. Palm, L. Pollock, and M. Chu-Carroll. Timna:

a framework for automatically combining aspect mining anal-

yses. In Proc. Intnl. Conf. on Automated software engineering
(ASE’05), pages 184–193. ACM, 2005.

[12] S. Soares, E. Laureano, and P. Borba. Implementing distri-

bution and persistence aspects with AspectJ. In Proc. ACM
SIGPLAN Conf. on Object-Oriented Programming, Systems,
languages, and Applications (OOPSLA’02), pages 174–190.
ACM, 2002.

[13] P. Tonella and M. Ceccato. Migrating interface implementation

to aspect-oriented programming. In Proc. Intnl. Conf. on Soft-
ware Maintenance (ICSM’04), pages 220–229. IEEE, 2004.

[14] C. Zhang and H.-A. Jacobsen. Quantifying aspects in middle-

ware platforms. In Proc. Intnl. Conf. on Aspect-Oriented Soft-
ware Development (AOSD’03), pages 130–139. ACM, 2003.

10


