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Abstract. In this paper, we first motivate and summarize our recent
work on creation, management, and specifically merging of partial be-
havioural models, expressed as model transition systems. We then ad-
dress two issues coming out of MMOSS discussions: alphabet embedding
as an alternative to common observational refinement and minimum re-
finement steps. We show that the former is not possible, and discuss
informally how to define the latter.

1 Introduction and Goals of the Project

Event-based models such as Labeled Transition Systems (LTSs) [9] have been
shown to be successful for modeling and reasoning about the behavior of software
systems at the architectural level. These behavior models provide a basis for a
wide range of successful automated analysis techniques, such as model-checking,
animation, and simulation.

However, the adoption of behavior modeling and analysis technology by
practitioners has been slow. Partly, this is due to the complexity of building
behavioral models in the first place – behavior modeling remains a difficult,
labor-intensive task that requires considerable expertise. In addition, and per-
haps more importantly, the benefits of the analysis appear only at the end of
a costly process of constructing a comprehensive behavior model. The reason
for the latter is that traditional behavior models are required to be complete
descriptions of the system behavior up to some level of abstraction, i.e., the
transition system is assumed to completely describe the system behavior with
respect to a fixed alphabet of actions. This completeness assumption is limit-
ing in the context of software development process best practices which include
iterative development, adoption of use-case and scenario-based techniques and
viewpoint- or stakeholder-based analysis; practices which require modeling and
analysis in the presence of partial information about system behavior.

Our aim is to address the limitations of existing behavior modeling ap-
proaches by shifting the focus from traditional behavior models to partial be-
havior models – models that are capable of distinguishing known behavior (both
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required and proscribed) from unknown behavior that is yet to be elicited. Our
overall aim is to develop sound theory, techniques and tools that i) facilitate the
construction of partial behavior models through model synthesis, ii) enable early
feedback through partial behavior model analysis, and iii) support incremental
elaboration of partial models.

The rest of this paper is organized as follows. We give an overview of our
work in Section 2. Section 3 provides the formal background required to follow
the discussions in the next two sections, which address two technical points that
came out of the discussions during the Dagstuhl week: the need for observational
refinement rather than standard refinement and alphabet embedding (Section 4),
and the notion of a minimum refinement step (Section 5). Section 6 concludes
the paper.

2 MTS Merge: A Foundation for Model Construction

and Elaboration

In this section, we give an informal overview of our approach. Section 3 gives
formal definitions for some of these concepts. Further details are available in [2,
13, 1].

Our approach adopts Modal Transition Systems (MTSs) [10] as the basis
for describing partial system behavior. MTSs have been extensively studied and
provide a formal underpinning for program analysis [8]. MTSs are a natural
extension to Labelled Transition Systems (LTSs), which have been proven to
be successful for modeling and analyzing the behavior of systems at the archi-
tecture level. Systems are modeled as a set of components or sub-systems that
communicate and synchronize to provide system-level behavior. Each compo-
nent is described as a transition system where labels on transitions represent an
interaction of the component with the environment. In MTSs, each transition
can be either ’required’ or ’maybe’. The later means that it is not yet certain if
the interaction modelled by the transition is required or prohibited in the final
system. An MTS with no maybe-transitions is a model that is fully defined up
to its alphabet, and hence corresponds to an LTS.

MTS models come equipped with a definition of refinement that captures the
notion of ”more defined than” or ”more information than”. A refinement step
corresponds intuitively to removing maybe transitions or replacing them with a
required one1. Refinement can be shown to preserve temporal properties [2, 8];
hence, by refining an MTS, we are guaranteed that all properties that were true
(false) in the partial model will continue to be so in the refinement. However,
by iteratively refining an MTS into an LTS, all the temporal properties that are
undecided in the partial model eventually become either true or false depending
on the decisions made in the refinement process. An important practical result
is that the value of a modal µ-calculus property (true, false, or undecided) in
an MTS can be obtained by performing two checks on LTSs derived from the

1 In fact, refinement is more subtle. We discuss it in Section 5.
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MTS [2, 8]. This means that two model-checks are sufficient to decide effectively
whether a property holds or does not hold in all possible refinements of an MTS.

Although MTS models and refinement are an appropriate fit for incremental
construction of models of software development artifacts, we identified that such
models lack a specific concept that is necessary in the context of model elab-
oration, namely, model merging. Behaviour descriptions are typically provided
by different stakeholders with different viewpoints [7], describing different, yet
overlapping aspects [3] of the same system. How should these partial models be
put together?

Composition of behaviour models is not a new idea [12, 6]; however, its main
focus has been on parallel composition which describes how two different compo-
nents work together. In the context of model elaboration, what we are interested
in is composing two partial descriptions of the same component to obtain a more
elaborate version of both original partial descriptions. We call this operation a
merge.

The core concept underlying MTS merging is that of a common observational
refinement, which ensures that the required and proscribed behaviour of the
models to be merged is preserved. Furthermore, merge should result in a model
that is as least refined as possible, while still preserving the behaviour of the
models being merged. The notion of common refinement also entails a natural
definition of consistency as the existence of such common refinement.

We have studied MTS merge and produced a number of theoretical results
and algorithms that support MTS construction and elaboration [2, 13]. Our re-
sults build on extensive existing research on MTSs (e.g., [8, 10, 11]). We have
developed algorithms [13] for checking consistency of MTSs, merging consistent
MTSs, and for approximating the merge of MTSs when the “best” merge is
not unique and thus cannot be obtained algorithmically. We have character-
ized merge in terms of 3-valued modal µ-calculus [2] and extended these results
to temporal logics that are well suited for requirements specifications, such as
the linear temporal logic of fluents (FLTL) [5]. In addition, because in practice
MTS merging is likely to be combined with other operations over MTSs such
as parallel composition, we have studied the algebraic properties of merging [2].
Finally, we have also started to study other refinement notions over MTS such
as branching refinement [4].

3 Background

In this section, we give formal definitions of the key concepts that our work is
based on: MTSs, alphabet, refinement, etc.

Definition 1. Let States be a universal set of states, Act be a universal set
of observable action labels, and Actτ = Act ∪ {τ}. An LTS is a tuple P =
(S, L, ∆, s0), where S ⊆ States is a finite set of states, L ⊆ Actτ is a set of
labels, ∆ ⊆ (S × L × S) is a transition relation, and s0 ∈ S is the initial state.
We use αP = L \ {τ} to denote the communicating alphabet (vocabulary) of P .
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Definition 2. An MTS M is a structure (S, L, ∆r, ∆p, s0), where ∆r ⊆ ∆p,
(S, L, ∆r, s0) is an LTS representing required transitions of the system and
(S, L, ∆p, s0) is an LTS representing its possible (but not necessarily required)
transitions. We use αM = L \ {τ} to denote the communicating alphabet of M .

When depicting MTSs we label states for reference, we assume that they start in
state 0. Maybe transitions are denoted with a question mark following the label,
and transitions on sets are short for a single transition on every element of the
set. For example, the MTSs I with alphabet {c} and J with alphabet {a, b, c}
are shown in Figure 1.

Given an MTS M = (S, L, ∆r, ∆p, s0) we say M transitions on ℓ through

a required transition to M ′, denoted M
ℓ

−→r M ′, if M ′ = (S, L, ∆r, ∆p, s′0)
and (s0, ℓ, s

′

0) ∈ ∆r, and M transitions through a possible transition, denoted

M
ℓ

−→p M ′, if (s0, ℓ, s
′

0) ∈ ∆p. Similarly, for γ ∈ {r, p} we write M
ℓ̂

−→γ M ′

to denote that either M
ℓ

−→γ M ′ or ℓ = τ and P = P ′ are true, and we use

P
ℓ

=⇒γ P ′ to denote P (
τ

−→γ)∗
ℓ

−→γ (
τ

−→r)
∗P ′.

We capture the notion of elaboration of a partial description into a more
comprehensive one using refinement and observational refinement:

Definition 3. (Strong Refinement) Let ℘ be the universe of all MTSs. N is a
refinement of M , written M � N , when αM = αN and (M, N) is contained
in some refinement relation R ⊆ ℘ × ℘, for which the following holds for all
ℓ ∈ Actτ and all (M, N) ∈ R:

1. (M
ℓ

−→r M ′) =⇒ (∃N ′ · N
ℓ

−→r N ′ ∧ (M ′, N ′) ∈ R)

2. (N
ℓ

−→p N ′) =⇒ (∃M ′ · M
ℓ

−→p M ′ ∧ (M ′, N ′) ∈ R)

Definition 4. (Observational Refinement) N is an observational refinement of
M , written M �o N , if αM = αN and (M, N) is contained in some refinement
relation R ⊆ ℘ × ℘ for which the following holds for all ℓ ∈ Actτ :

1. (M
ℓ

−→r M ′) =⇒ (∃N ′ · N
ℓ̂

=⇒r N ′ ∧ (M ′, N ′) ∈ R)

2. (N
ℓ

−→p N ′) =⇒ (∃M ′ · M
ℓ̂

=⇒p M ′ ∧ (M ′, N ′) ∈ R)

Two models are strongly (observationally) equivalent noted ≡ (≡o) if they
strongly (observationally) refine each other. We denote by M@X the result of
restricting αM to X , i.e., replacing actions in Act\X with τ and reducing αM

to X . We say that an LTS L is an implementation of an MTS M if N is a
refinement of M .

We now review the process of merge. The intuition behind this process is to
find a more precise system by combining what is known from two partial descrip-
tions of that system. This is a process aimed at finding a common observational
refinement, and may require human intervention [13].

Definition 5. An MTS P is a common refinement (CR) of MTSs M and N if
αP ⊇ (αM ∪ αN), M �o P@αM and N �o P@αN .

4



We denote the set of CRs of models M and N by CR(M, N). Two MTSs, M

and N , are consistent iff CR(M, N) 6= ∅. In [13], it is argued that the merged
model should not introduce unnecessary behaviours, and is therefore based on
finding a minimal common refinement.

Definition 6. An MTS P is a minimal common refinement (MCR) of MTSs
M and N if P ∈ CR(M, N), αP = αM ∪ αN , and there is no MTS Q 6≡o P

such that Q ∈ CR(M, N) and Q@αP �o P .

For example, the models I and J in Figure 1 have two incomparable minimal
common refinements, K with alphabet {c} and L, also shown in Figure 1. We
denote the set of MCRs of models M and N by MCR, so MCR(I,J ) = {K,L}.

4 Alphabet Embedding

A major goal of our work is treatment of merge for models with different vo-
cabularies. Such treatment allows integrating descriptions that have different
scopes. Varying the scope of a description to include only the relevant aspects of
the problem to be described makes model construction simpler. Consequently, it
is common to find models describing different viewpoints provided by different
stakeholders with different alphabets.

The way we have addressed merging models with different vocabularies is
to define observational refinement and algorithms that construct models that
are common observational refinements. A reasonable question to ask is why not
unify vocabularies first, embedding each model into the unified vocabulary, and
then merge the resulting systems which have the same vocabulary? Such an em-
bedding may allow us to use the strong refinement and conjunction operator
defined by Larsen [11] for MTSs with same alphabets. We first provide an in-
formal argument as to why we believe such an embedding is not possible, and
then show that even if it were possible, it does not resolve the major issues that
merging models with different alphabets has.

Recall the models I−L shown in Figure 1 and described in Section 3. Starting
with a model I with an alphabet {c}, we would like to produce an embedding,
I ′, with alphabet {a, b, c}, such that the minimal common refinements of I ′ and
J are still K and L. The embedding should reflect the fact that I does not say
anything about labels a and b, hence the embedding I ′ should not require nor
proscribe the occurrence of a and b events. In other words, all states of I ′ should
always have maybe transitions on a and b.

A natural choice of embedding is to add transitions on the new labels from
and to any state of I, yielding the embedding I ′

1 (see Figure 2). The problem
with I ′

1 is that it is inconsistent with J . Note that the initial state of I ′

1 has
an outgoing required transition on c while the initial state of J does not have
possible transitions on c from it (i.e., it disallows c). Because of this, it is easy
to see that there can be no common refinement of I ′

1 and J .
Thus, the embedding of I should result in a model which in the initial state

does not have a required c transition enabled. Yet, clearly, to preserve the se-
mantics of I, a state in which there is an enabled required c transition should
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I: 0 1
c J : 0 1 2

a?

b?

c? K: 0 1 2

a?

b

c L: 0 1 2

a

b?

c

Fig. 1. Example MTS I and J and their minimal common refinements K and L. MC:
Should J have c? or c

I′

1: 0 1

a?, b?, c

a?, b?

a?, b? a?, b?

I′

2: 0 1 2
a?, b? c

a?, b?

a?, b?

Fig. 2. Two candidate embeddings of MTS I.

be reachable. Furthermore, this state should be reachable only through maybe
transitions on a and b.

Consider a second candidate embedding I ′

2 (see Figure 2) of I. This model
satisfies the criteria described above. However, note that J is a common refine-
ment of I ′

2 and J . Indeed, the combination of J and I ′

2 has lost the requirement
that c must happen if a or b occur. Furthermore, J is less refined that K and
L. In conclusion, by embedding I into the alphabet {a, b, c} as described by I ′

2,
we have changed the semantics of merge.

We now address the general case. We shall refer to a state which has a
required c transition enabled as a c state for brevity. We have already discussed
why the initial state of the embedding of I is not a c state. We also know
that the embedding must have a reachable c state. If that state is reachable in
strictly more than one a or b step, then the embedding has a state which can be
reached by one a or b step which proscribes c. This would be inconsistent with
J . Suppose then that all c states are reachable in exactly one a or b step. If any
of these steps are required, then the embedding will rule out either K or L. If
neither are required, we have I ′

2 which is not appropriate either. Hence, we can
conclude that it is not possible to embed I into {a, b, c} while preserving the
minimal common refinements of I and J .

This argument above leads to the following theorem.

Theorem 1. There does not exist an embedding function f : MTS × 2Act ⇒
MTS that satisfies the condition that for all MTSs A and B, MCR(A, B) =
MCR(f(A, αA ∪ αB), f(B, αA ∪ αB)).

5 Refinement

Another issue that was raised at the workshop was about refinement: If the
intuition of refinement is simply removing a maybe transition or replacing it
with a required one, how can refinement capture the elaboration process that
starts with an MTS that knows nothing about its alphabet to an LTS of the
system to be. For instance, how can an MTS such as that in Figure 3(a) ever be
refined to describe a set of traces that requires more than one MTS state? The
answer is simple. The MTS in Figure 3(a) is equivalent to the one in Figure 3(b)
(which has two states) and similarly equivalent to an MTS with an arbitrary
number of states!
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0

a?, b?, ...

(a)

0 1

a?, b?, ... a?, b?, ...a?, b?, ...

a?, b?, ...

(b)

Fig. 3. Exploding states in MTS models

0 1 2
a? b?

(a)

0

1 2

3 4

a?
b?

a?
b?

(b)

0

(c)

0 1
a

(d)

0 1 2
a b

(e)

0

1 2

3

a
b

a

(f)

Fig. 4. Two equivalence MTS models (a and b), with all their implementations (c, d,
e and f)

Having looping transitions as in Figure 3(a) is not necessary for replicating
states. Consider Figure 4(a), this model is equivalent to Figure 4(b). In general
it is simple to generate equivalent MTS by simply replicating branches of the
MTS and introducing non-determinism.

Figure 4(a) is an interesting model to use to address some erroneous intuitions
that one might have regarding MTS refinement. Figure 4(a), seems to provide
two decision points, one for a and one for b, which may lead us to think that it has
only three implementations Figure 4(c), (d), and (e). Yet because Figure 4(a) is
equivalent to Figure 4(b), it also clearly admits the implementation Figure 4(f).
Indeed, the intuition of making a maybe transitions required or removing it as
the only refinement options that are available is deceiving.

Since refinement is not simply removal or replacement of maybe transitions
with required ones, a reasonable question to ask is what are the strict refinement
steps that can be used to generate all possible refinements of an MTS. Or if it
is possible to transform an MTS such that all its refinements can be produced
by simple removal or replacement of maybe transitions with required ones.

The latter seems possible for some notions of refinement (note that the pre-
ceding discussion in this sections applies to strong refinement). For example,
consider the model in Figure 5(a). Its maybe transition can be refined to false
and to true, resulting in the models in Figure 5(b) and (c) respectively. How-
ever, the models in Figure 5(d) and (e) are also observational refinements of
Figure 5(a). These additional models either sometimes provide a, or sometimes
inevitably provide a. Note that all four models (Figure 5(b), (c), (d) and (e))
are incomparable using MTS observational refinement.

Consider now the model in Figure 5(f). This model is observationally equiv-
alent to Figure 5(a) and can be refined into any of its refinements by making
binary choices on τ transitions.

Is it possible then to transform an arbitrary MTS M into an equivalent one in
which all decisions needed to reach an arbitrary refinement N are binary over the
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0 1
a?

(a)

0

(b)

0 1
a

(c)

0

1

2

a

τ

(d)

0

1 2

3

τ
a

τ

(e)

0

1 2

3

τ?
a

τ?

τ?

(f)

Fig. 5.

maybe transitions of M? The answer to this question is negative. Consider the
refinements of Figure 3(a). What size of state space should the transformation
of Figure 3(a) have considering that the refinements of Figure 3(a) have an
unbounded number of states?.

Our final example refers to the question of whether it is possible to consider a
notion of minimal refinement step or one-step refinement that allows generating
all possible refinements of an MTS. We define one-step refinement as follows:

Definition 7. We say that MTS N is a one step refinement of M (M �s N)
if ∀P · M � P � N, P ≡ M ∨ P ≡ N .

We can now reformulate the question of above as the following proposition

Proposition 1. For all MTSs M and N : M � N ∧ M 6≡ N =⇒ ∃P1 · · ·Pn ·
M ≡o P1 �s P2 �s · · · �s Pn ≡o N .

We conjecture that the proposition above is false. Consider the MTS of Fig-
ure 6(a), this model admits refinements that require a b if an a transition has
been taken. The MTS of Figure 6(b) is a refinement of Figure 6(a). The question
then are the minimal refinement steps that lead from Figure 6(a) to Figure 6(b).
The answer to this question, we conjecture, is negative. All the MTS models
of the form Figure 6(c) are strict refinements of Figure 6(a) and it is also the
case that Figure 6(b) is a strict refinement of all the MTS models of the form
Figure 6(c) with n > 2. We conjecture that it is not possible to find a strict
refinement of Figure 6(a) such that it is also a strict refinement of all MTS of
the form of Figure 6(c). As a consequence, it is not possible to define a finite
set of strict refinement steps that will allow us to generate each refinement of
Figure 6(a).

6 Conclusion

In this paper, we gave a high level overview of the process of merging partial
behavioural models. We have also identified and discussed two problems that
arose in this context during the MMOSS week: whether alphabet embedding
provides an easy and natural way for merging MTSs with different vocabularies,
and what is the intuition behind refinement and “minimum refinement step”.
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0 1

a?

b

(a)

0 1 2 3 4
a? b a? b

(b)

0 1 2 3 4 2n − 2 2n − 1 2n
a? b a? b a? b

(c)

Fig. 6. There are no small step refinements that refine (a) into (b). There exist an
infinite number of distinct refinements between (a) and (b) of the form of (c).

In addition to the aspects described here, we are working on the problem of
synthesizing partial behavioural models from a collection of positive and neg-
ative scenarios and temporal properties; giving user support for choosing the
best common refinement out of a set of possible MCRs; helping deal with in-
consistency resolution, and many others. Overall, our goal is to provide a set of
techniques, tools and methodologies to support all aspects of engineering with
partial behavioural models.
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