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dieterkoenig@de.ibm.com

Abstract. In this paper we present first results of a SOA-based archi-
tecture framework. The architecture framework is required to be close to
industry standards, especially to service component architecture (SCA),
language independent (i.e. it is adoptable) and the building blocks of
each system, activities and data, are first class citizens. We present a
meta model of the architecture framework and discuss its concepts in
detail.

1 Introduction

Since the early days of computer science it is well-known that mastering the
complexity of large (software) systems is the major challenge. On the level of
programming many methods and techniques, such as structured programming,
stepwise refinement, functional programming, logical programming and object-
oriented programming, were developed. Another attempt to master complexity
was to introduce more levels of abstraction in the development. So techniques
for structural analysis and design were introduced and later formal specifications
with languages as Z [1] and Vienna Development Method (VDM) [2].

One very successful approach for handling complexity is modularization. Al-
ready from the beginning of computer science, programming languages have fa-
cilities to split systems into modules that hide details you do not need when you
use or reuse the module. Modules have different names like procedure, subrou-
tine, function, class, object, capsule or component. There are many differences
in the properties of these modules concerning the way they are invoked, if they
are stateless and if they have side effects. The principle of compositionality is one
of the most wanted requirements for modular systems: A collection of modules
that are properly connected to each other, should behave as one module itself.
Often we require more: If we have verified that all modules of a system satisfy
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some property and they are connected properly, then the system as a whole
should have the same property. In object-oriented programming modules, called
classes or objects, are first class citizens. During the last decade modularization
is considered as the most important feature of a design of a system. In the rest
of this paper we will use the term component for a module.

At a high level a system is described by its components and their relation-
ships. Such a description is called the architecture of a system. Software architects
are the most wanted specialists in the software industry. There are several lan-
guages to define components and to glue them together. There are also different
architectural styles. In this paper we focus on a style based on the service-oriented
architecture (SOA). SOA is seen as one of the key technologies to enable flexi-
bility and reduce complexity in software systems (see [3]). Today SOA is a set of
ideas for architectural design and there are some proposals for SOA-frameworks,
including an architectural language, the service component architecture (SCA) [4]
and software tools to design systems in the SOA-style.

In this paper we present first results of a SOA-based architecture framework
which is close to industry standards, especially to SCA. The architecture frame-
work is language independent, i.e. it is adoptable and the building blocks of each
system, activities and data, are first class citizens. We present this architecture
framework by means of a meta model and discuss its concepts in detail.

The outline of the paper is as follows: In Sect. 2 we sketch the practice
of component-based software systems. Next, in Sect. 3, we introduce software
architectures and in particular the service-oriented architecture. Based on SOA
we formulate a set of requirements for a SOA-based architecture framework
and present an architectural framework covering most of these requirements in
Sect. 4. Finally, Sect. 5 summarizes the paper and describes how this work will
be continued.

2 The component-based world

The idea to use components in software development was already published by
McIlroy in 1968 [5]. In this paper McIlroy presented his idea of mass-produced
software components. Even though much research was achieved since then, today
there is still no universally accepted definition of what a component is. Most
cited is the definition of Szyperski [6]: “A component is a unit of composition
with contractually specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject to composition
by third parties.” In [7] Messerschmitt and Szyperski present a more enhanced
definition: A software component is a reusable module suitable for composition
into multiple applications. A component fulfills five properties:

– it can be used in multiple projects,
– it is designed independently of any specific project and system context,
– it can be composed with other components,
– it is encapsulated, i.e. only the interfaces are visible and the implementation

cannot be modified,
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– it can be deployed and installed as an independent atomic unit and later
upgraded independently of the remainder of the system.

As there is no consensus about what a component is there is also no agreement
on the granularity of components. A component can be small grained, like a
graphical object in a user interface, for instance or coarse grained, like a debtors
register in an Enterprise Resource Planning (ERP) system, for instance.

A component has four different interfaces: (1) a software interface to com-
pose the component with other software components, (2) a user interface which
allows the communication between the component and a human user, (3) a con-
figuration interface that is used to configure the component, e.g. set parameters
and (4) a monitoring interface to provide runtime diagnostic statements of the
component’s internal, e.g. values of the messages that are sent or received by
the component. So far components often have neither a user nor a monitoring
interface, but in near future they will become an inherent part of a component’s
interface.

Components can be classified based on their functionality : There are appli-
cation specific and generic components. A general ledger component or an SAP
component is an example of an application specific component whereas a doc-
ument manager or a workflow engine is a generic component. A synonym for
generic and application specific, respectively, is horizontal and vertical, respec-
tively, because components address either a horizontal or a vertical market [6].
A vertical market, also known as a niche market, meets the interest of their
customers by offering custom-tailored products. In contrast, a horizontal market
tries to attempt most of the needs of a broader community of customers. Another
classification of components is based on the configuration of their parameters.
In a predefined (or hard-wired) component the version is hard-coded and the
parameters are selected from an option list. An inventory control rule like FIFO
or LIFO would be an example. In contrast, the parameters in a programmable
component are database schemes, process models or business rules.

A system which is developed by composing components is a component-based
system. Component-based systems will evolve in an organic way. There will never
be a total renewal nor an upgrade of the overall system. Instead components
will be replaced periodically by better ones, e.g. because the performance was
not good enough anymore. Adding new functionality to the system will also be
realized by either adding new components or replacing components by better
ones. This will save the total cost of ownership of component-based systems.

At the time the market expectations are low, but during the next 5-10 years
they will increase. Reasons are the enormously growing of software systems dur-
ing the last decades and the globalization which demands greater flexibility – in
particular from the software systems. So for today’s IT it is most challenging to
respond quickly to new business requirements while reducing the IT costs. One
possibility to overcome this problem is to buy software (components) from third
parties. This is in fact usually cheaper and more effective than doing the work
itself. Therefore the software development in many companies has been out-
sourced. Building software from reusable components rather than from scratch
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is another possibility to decrease IT costs and develop more flexible software
systems.

Components may have a vendor. Vendors will compete with each other to of-
fer the best functionality. For instance, they will offer components with different
levels of quality and/or functionality at a different level of price. Furthermore
components will be customized. For this purpose, vendors might offer compound
components, i.e. prepacked solutions or combinations of components with param-
eters that can be used as a new predefined component. For example, the software
of set-top boxes offered by telecommunication companies consists of components.
These components have parameters, e.g. video format and resolution, that are
initially configured.

In the component-based world the architecture becomes an important role.
Firstly, the architecture can be used as a blue print for the development of a
component. For example, a component can be seen as a black-box, i.e. only
the interface is visible, or the internal details of the component are visible. As
the architecture supports such different views on a component, it may help to
develop software in a more structured way. Secondly, an architecture facilitates
the work distribution in the software development process: If the interfaces are
specified, different components can be developed in parallel and independent of
each other. Simulation, testing and verification of components is an important,
but very difficult task. Components are replaced by other components or added
to the system and this change must preserve the properties of the system. We
further believe that in the near future customers will require a guarantee that at
least some safety properties hold in a component. Such a safety property might
be for example: “if the component fails to function, it will never jeopardize the
overall system”. Therefore (computer-aided) verification of components becomes
increasingly important. Finally, as mentioned above, a component-based system
is not upgraded, but components have to be added and exchanged during the
runtime of the system. To this end, approaches are needed that incorporate this
requirement into the architecture.

3 Architecture frameworks

We are shifting our attention now from components and component-based sys-
tems to software architectures. We start with a definition of software architec-
tures in general and introduce then the service-oriented architecture.

3.1 Software architectures

Just like for the term “component” everyone knows roughly what a software
architecture is, but there is also no universally accepted definition. We there-
fore start this section with two definitions from the literature. Based on these
definitions we elaborate our own definition.

The first definition of software architecture, we present, is a modern one [8]:
“The software architecture of a program or computing system is the structure or
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structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them.” The second,
but also well-known definition is presented by the IEEE Standards Association
for Recommended Practice for Architectural Description of Software-Intensive
Systems: “Architecture is defined by the recommended practice as the fundamen-
tal organization of a system, embodied in its components, their relationships to
each other and the environment, and the principles governing its design and
evolution.”

Referring to both definitions an architecture shows the elements of the sys-
tem, i.e. in case of a component-based system the components, and their rela-
tionships. We restrict us to “the structure of the system” or “the fundamental
organization of a system” and we define this as a set of views. A view is a model
of a part or an aspect of a system. Views should be consistent, i.e. no view
should contradict another view of the system. Furthermore views should also be
complete. That means, every property of the system should be modelled by at
least one view. As a view is a model, i.e. a simplification of the system, it is
therefore possible that the view does not make a statement whether a specific
property holds or not.

Based on this facts we elaborate the definition of a software architecture to
the following which is used throughout the paper: “An architecture of a system
is a set of descriptions that present different views of the system. These views
should be consistent and complete. Each view models a set of components of
the system, one or more functions of each component and the relationships be-
tween these components.” For example, a view could show a data model of some
components and the inheritance relationship between the components.

A specification to organize and develop a software architecture in a spe-
cific style is an architecture framework. Some examples for software architecture
frameworks are UML, CORBA, Turbine, Avalon and SCA to name a few. The
Unified Modeling Language (UML)4 serves the (graphical) description of mod-
els. It can be used to describe the structure, e.g. by help of class diagrams or
the behavior, e.g. by help of use-case diagrams or sequence diagrams. Com-
mon Object Request Broker Architecture (CORBA)5 enables the interaction
of heterogenous applications by providing an interface definition language, ob-
ject models and communication protocols. Apache’s Turbine6 is a servlet-based
framework to develop web applications. Avalon7, also from the Apache foun-
dation, is a framework for building server side applications. It allows to create
components, manage them and use them in applications. Service Component
Architecture (SCA) [4] provides a programming model for building applications,
components and systems based on SOA. The programming model describes the
relationships, the composition and the deployment of components. It also applies
infrastructure capabilities to components, such as security and transaction.

4 www.uml.org
5 www.corba.org
6 http://jakarta.apache.org/turbine/
7 http://avalon.apache.org
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3.2 Service-oriented architecture

The example architecture frameworks presented above reveal that the use of
reusable software components becomes more and more popular. One of today’s
most popular architecture frameworks is the service-oriented architecture (SOA).
SOA is seen as one of the key technologies to enable flexibility and reduce com-
plexity in software systems (see [3]). It follows the paradigm to explicitly separate
an implementation from its interface. Such an interface is well-defined, i.e. it is
based on standards like the Web Service Description Language (WSDL) [9]. Im-
plementation and interface form together a component. In a SOA a component is
called service. Services are independent of applications and the computing plat-
forms on which they run. Services in a SOA can be connected without having
knowledge of their technical details, they are loosely coupled. To connect ser-
vices during runtime SOA supports dynamic binding. For the message exchange
between services standardized communication protocols are used. Further, all
the standards used in a SOA are extensible, i.e. they are not limited to current
standards and technologies.

SOA distinguishes three different roles of services: service provider, service
consumer and service registry. It postulates a general protocol for interaction: A
service provider registers at the service registry by submitting information about
how to interact with its service. The service registry manages such information
about all registered service providers and allows a service consumer to find an
adequate service provider. Then, the service of the provider and the service of
the consumer may bind and start interaction.

A service has two kinds of interfaces: required and provided interfaces. Re-
quired interfaces specify which services are used by the service. In contrast,
provided interfaces specify which services are offered by the service. So in terms
of the service roles in SOA a service plays the consumer’s role at the required
interfaces and at the provided interfaces it plays the provider’s role.

Apart from these technical paradigms services in SOA are also based on an
economical paradigm: a service is comparable with a business unit. So it should
create value for its environment. Therefore the two kinds of interfaces can be
seen as the buy side and the sell side of the service. On the buy side a service
behaves as a service consumer or client and buys other services. On the sell side
a service behaves as the service provider and offers its service to other services.
Services are operating as actors on a market place. This means, they offer their
services to any consumer who needs it and they buy services from providers with
the best value proposition. So both parties publish their needs and offerings at
a repository, respectively.

4 A SOA-based architecture framework

Starting from the service-oriented architecture we collect and discuss require-
ments for a SOA-based architecture framework. Then we present a meta model
of our architecture framework. We introduce its concepts and show that it covers
most of the collected requirements.
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4.1 General requirements

The following list of required features is distilled from the variety of proposals for
architecture frameworks. They can be seen as general requirements that should
be satisfied by an architectural framework:

– The basic concept of an architecture framework should be a component.
– A component should have an interface with its environment. The interface

should facilitate an easy “plug and play” of components.
– A component should also have an internal structure that consists of

• a partially ordered set of activities. Activities describe the component’s
behavior.

• zero or more data elements, which are global to the component. Data
elements can be used to configure the component.

– A component should have a mechanism to catch and handle faults. It should
also support an orthogonal mechanism, namely the roll back of already ex-
ecuted activities.

– A component should offer a monitoring service which logs the execution of
the component. For this purpose, the monitoring interface of the component
(see Sect. 2) is used.

– It should support relationships between components:
1. Interaction relationships with facilities for synchronous and asynchronous

communication by message exchange on the one hand and shared data
elements on the other hand.

2. Hierarchical relationships between components to support refinement as
a design technique.

– The architecture framework is open in the sense that the following three
elements are left undefined, they can be considered as “plug-ins”:
• A process formalism describes the ordering of the activities in a com-

ponent. Such a formalism usually separates the activities from the data
elements of a component. We allow for different formalisms, e.g. labelled
transition systems, various kinds of process algebras, Petri nets, or in-
dustry standards as UML activity diagrams, Business Process Modeling
Notation (BPMN) [10] and Business Process Execution Language for
Web Services (BPEL) [11]. Programming languages like Java or C++
can also be used.

• A data model defines the data elements, their types and their meth-
ods. We may use here algebraic formalisms such as abstract state ma-
chines [12] or industry standards as UML class diagrams, entity rela-
tionship model or the relation model. As industry standards are often
not refined enough to provide all the relevant aspects of a data model
we use the object constraint language (OCL) [15] to specify constraints
between entities of a data model. It is also possible to use programming
languages like Java or C++ as a data model.

• A language defines the operations of activities. Here we may apply formal
specification languages such as abstract state machines, B [13], VDM [2]
or Z [1], but also programming languages like Java or C++.
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– An architecture framework should have a formal semantics.
– It should be close to existing industrial (graphical) description techniques,

such as the UML family, BPMN and process models as BPEL. With “close”
we mean that it is easy to translate the models used in the architecture
framework into existing industrial description techniques and vice versa.

Not every process formalism separates the activities from the data elements
of a component. For example, BPEL provides a combined view on activities
(BPEL activities) and on data elements (BPEL variables). So an architecture
should offer both views, the combined view, showing data elements and activities
together, and also a view restricted to the ordering of activities without data
aspects.

4.2 A meta model of the architecture framework

In the following we present our SOA-based architecture framework. It is based
on the general requirements presented in the last section. Figure 1 shows the
meta model of the architecture framework in UML notation. After a general
explanation of this meta model we have a more detailed look at the concepts of
the architecture framework.

Fig. 1. Meta model of the architecture framework.

The basic concept of the architecture framework is a component. We distin-
guish between atomic components and composite components. An atomic com-
ponent consists of a set of activities (q is the name of the relationship between
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atomic component and activity in Fig. 1) and zero or more data elements. Every
data element has a type. A composite component, however, describes hierarchical
relationship between components. It is a container for components, i.e. it may
contain atomic components and other composite components (see relationship
m in Fig. 1).

Each component has one or more interfaces with its environment (see rela-
tionship j in Fig. 1). An interface consists of a set of operations (relationship
h). An operation describes message exchange between two participants. It fol-
lows a given operation type (s is the name of the relationship between operation
and operation type) which describes a message exchange pattern between the
participants. We allow for the four operation types presented in the WSDL 1.1
specification [14]: one-way, request-response, solicit-response and notification. In
general an operation type consists of zero or one input and/or zero or one output
messages and an optional fault message. Each message has a message type. As
can be seen from Fig. 1 the operation type of one-way and notification has an
input and an output message, respectively. Operation types solicit-response and
request-response define an input message, an output message and optionally a
fault message. The difference between both operation types is the message order.
In case of a solicit-response the component sends a message and then receives
a correlated message (i.e. first an outgoing message, then an incoming message)
whereas in case of a request-response the component first receives a message and
then sends a correlated message (i.e. first an incoming message, then an outgoing
message).

An activity may exchange messages through one or more operations (see
relationship r in Fig. 1) with other components. It may also access to data
elements of its atomic component by means of method calls (not visible in Fig. 1).
Please note that these method calls may change the value of the data elements.

Besides wrapping components, a composite component also defines one or
more wires (relationship p). In general, a wire connects interfaces of components.
More detailed, a wire connects two operations depicted by relationship e. These
two operations have either the same operation type or they have complementing
operation types, e.g. one-way and notification. Wiring two operations with the
same operation type can be seen as a reference. The operation of a component
is propagated to the enclosing composite component. Such a wire is therefore
called a vertical wire. In contrast, wiring two operations with complementing
operation types shows the connection of two components. We call such a wire
a horizontal wire. Most of these information about wiring operations cannot be
derived from the meta model in Fig. 1. Later in this section we will therefore
define the wiring using the object constraint language (OCL) [15].

Components support the concept of instances (not depicted in Fig. 1). If
an atomic component is invoked via its interface, a case, i.e. a new instance,
is created. This implies the creation of case activities and case elements which
belong to exactly one case. Besides case activities and case elements, an atomic
component may also contain base activities and base elements. These activities
and elements are static, i.e. all cases can access to them. The set of case and
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base activities is also called case process and base process, respectively. A base
process starts when the component becomes live and stops when the component
“dies”. The life-cycle of a case process, in contrast, is restricted to its respective
case.

The state of a component is determined by the value of data elements, the
received or sent messages and the state of its activities.

Components and activities A component is required to consists of activities
(see Sect. 4.1). From Fig. 1 it can be derived that a composite component does
not (directly) fulfill this requirement. A composite component, however, can be
flattened to a component that contains atomic components only. Consequently,
it also contains a set of activities – the set of all activities of its inclosing atomic
components and thus it still fulfills the above requirement.

As already mentioned, a component consists of case and base activities which
form a base and a case process, respectively. Both processes can communicate
with the component’s environment by message exchange. Base and case pro-
cesses are connected in only one direction. The case process can trigger the base
process but not vice versa. Together, the activities form the process layer of
the component. The process layer can be seen as a workflow model. The second
layer of a component is the data layer. It can be seen as a class model. It consists
of the component’s data elements and methods. Methods are used to read and
write the value of data elements. The relationships between activities and data
elements in Fig. 1 show that process layer and data layer are connected.

An activity consists of one or more method calls and some additional logic
(not visible in Fig. 1). The logic controls the method calls and evaluates their
return values. In our architecture framework method calls are restricted to ac-
tivities. As a consequence, no data element can access to another data element.
Methods are defined in the same component as the activities and activities can
only call methods which are defined in their component. Furthermore a method is
never part of an activity. Otherwise there would be too much overhead, because
a method can be used by several activities.

The meta model of our proposed architecture framework in Fig. 1 is very gen-
eral. Thus it supports different process models. In the following we will present,
as an example, two possible process models, BPEL and Petri nets.

The first example of a process model, we present, is the widely-used Business
Process Execution Language for Web Service (BPEL) [11]. BPEL is a language
for describing the behavior of business processes based on web services. For the
specification of a business process, BPEL provides activities and distinguishes
between basic and structured activities. A basic activity can communicate with
other services by message exchange or it can manipulate data, for instance. A
structured activity defines a causal order on the basic activities and can be
nested in another structured activity. The structured activities include sequen-
tial execution, parallel execution, branching, and repeated execution. The most
important structured activity is a scope. It links an activity to a transaction
management subsystem and provides fault, compensation, and event handling.
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In our meta model this subsystem is part of a case process, because it needs
access to all data elements, e.g. to reverse some effects caused by the execution
of an activity. For the sake of simplicity we restrict our view on BPEL to activ-
ities and do not go into the details of BPEL’s advanced concepts like fault and
compensation handling. The meta model in UML notation for this restricted
part of BPEL is depicted in Fig. 2. So back to our meta model in Fig. 1, in case
of BPEL an activity in our architecture framework is a synonym for a BPEL
activity and a data element corresponds to a BPEL variable.

Fig. 2. Meta model for BPEL activities.

Petri nets are another example of a process model supported by our architec-
ture framework. The formalism of Petri nets has been proven to be an adequate
model for business processes (e.g. [16]). A Petri net (see e.g. [17] for a formal
definition) is a bipartite graph. It consists of two different nodes, places and
transitions, and (directed) arcs. An arc connects two nodes of different kind.
That means, it connects either a place and a transition or a transition and a
place.8 The meta model for Petri nets in UML notation is presented in Fig. 3. In
the meta model an arc that connects a place and a transition is called P-T-Arc
and an arc that connect a transition and a place is called T-P-Arc. The entity
Transition in this meta model coincides with the entity activity in the meta
model of the architecture framework in Fig. 1.

Interface and wiring Now we have a more detailed look at the interface
concept. The similarity of our interface concept to WSDL is intended. As WSDL
is a widely-used industry standard, it is necessary that the interface definition in
our architecture framework is at least adoptable to WSDL. The interface concept
and the wiring of components is visualized in Fig. 4. Three components, c1, c2

and c3, are depicted in Fig. 4. Component c1 contains components c2 and c3. It

8 Please note, there are Petri net classes which allow arcs between nodes of the same
kind. For a general meta model for Petri nets we refer to Billington et al. [18].
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Fig. 3. Meta model for Petri nets.

defines four wires w1,. . . ,w4. Each of them is depicted by a solicit line. Interfaces
i1,. . . ,i6 of the components are depicted by a dashed frame. A box inside of
an interface visualizes an operation. Its operation type is depicted by one or
two arcs inside the box. Interface i2 has an operation with operation type one-
way, i3 notification, i5 solicit-response and i6 request-response. A horizontal wire
connects operations of two components that have the same enclosing component.
For instance, wire w4 in Fig. 4 connects the operations of the interfaces i5 and
i6. The interfaces are part of components c2 and c3 whose enclosing component
is c1. A special case is wire w1 which connects operations of the interfaces i2 and
i3. Both interfaces are part of component c2 and consequently share the same
enclosing component c1. A vertical wire, in contrast, connects the operation of
a component with an operation of its enclosing component. Wires w2 and w3 in
Fig. 4 are examples for vertical wires. It can be seen that w2 and w3 connect
operations of component c2 with operations of its enclosing component c1. A wire
represents an abstract view on the communication of a component, i.e. it only
shows the invocation dependencies of a component. As shown by wire w1, it is
not excluded to wire an operation to another operation of the same component.

From the relationship e in the meta model in Fig. 1 can be seen, one op-
eration may be part of several wires. Thus at runtime it is possible to wire
this operation to more than one operation. This is an important feature as we
may want to wire a request-response operation with a notification operation
and a one-way operation, for instance. However, it is also possible to wire a
request-response operation with two solicit-response operations, for instance.
Such a choice should be solved non-deterministically. Nevertheless, the frame-
work should throw a warning to the developer, because this behavior might not
be its intention. Furthermore it is also possible that two or more activities share
one operation. As long as these two activities exclude each other, i.e. only one of
them is activated and the other cannot be activated anymore (e.g. each activity
is a different OR-branch), this is a valid behavior. Otherwise it is not valid. As
there is no general answer whether such a construct is correct or erroneous, we
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Fig. 4. Wiring of components.

do not exclude it from the level of our meta model. These examples show that
the architecture framework firstly needs a formal semantics (as proposed in the
general requirements in Sect. 4.1). The semantics defines the behavior of the
architecture framework formally. Secondly, the architecture framework should
also offer tool support to detect such design flaws.

Instantiation One of the most important concepts of an architecture frame-
work is instantiation. In our architecture framework components can be instan-
tiated (not shown in the meta model in Fig. 1). For the purpose of instantiation,
atomic components distinguish between case activities and case elements on the
one hand and base activities and base elements on the other hand. A case is
created if a specific activity of the component receives a message. Then case
activities and case elements of the component are copied and “fresh” values are
assigned to the data elements. Base activities and base elements, in contrast,
are independent of a case. That means, every case may execute base activities
and may have access to base elements. Base activities and base elements are
initialized once the component is initialized. After this initialization cases of the
component can be created. The life-cycle of the base activities and base elements
ends once the component is deactivated. A base element can therefore be seen as
a parameter. Base activities are typically used for monitoring and configuration
of a component.

If we think of a Petri net as a model for the base and case process, for
instance, different cases can be expressed by different colors, where each color
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represents the identifier of exactly one case. Thus the resulting Petri net is a
Colored Petri net.

Messages sent to an atomic component need to be delivered not only to the
correct operation, but also to the correct case of the component. Therefore we
use the concept of correlation (known from BPEL, for instance). Every case gets
an identifier. A message can be delivered to the correct case if the identifier can
be determined from the content of the message. As it is possible to create an
instance (by receiving a message), it is also possible to destroy an instance when
it has been finished.

Constraints In the previous sections we have mentioned that the presented
meta model is in some sense quite general. Therefore it is possible to design
erroneous components (remember the example where two activities share one
operation). We also motivated that it is not possible to exclude such behavior
at the level of the meta model as it would also restrict some valid behavior. In
the following we present five constraints that help to formalize in particular the
concept of wiring. Consequently, the constraints will restrict the meta model
in Fig. 1 as well as the interface concept depicted in Fig. 4. All constraints
are invariants specified in the Object Constraint Language (OCL) [15]. OCL
keywords are depicted in bold font. For the parameters used we refer to the
relationships in Fig. 1.

1. Connection between activity and operation:

context a : activity, o : operation inv:
if o.r → select(a′ | a′ = a) and a.r → select(o′ | o′ = o) then a.q = o.h.j

From the keyword inv it can be derived that this OCL expression is an
OCL invariant. The invariant is introduced for the context of activity and
operation. It specifies that the relation r (see Fig. 1) between an activity a
and an operation o is redundant. This relation can be expressed using the
component that encloses a, because the component is related to the operation
o by its interface. As o.r (a.r) is the set of activities (operations) that are
related to o (a), we use the select operator to select activity a (operation o)
from this set of activities (operations).

2. A horizontal wire connects components having the same enclosing compo-
nent:

Let f be a relationship between operation and wire (see Fig. 1) with e 6= f .
context w: horizontal wire inv: w.e.h.j.m = w.f.h.j.m = w.p

A horizontal wire w connects two operations. The component(s) of these
two operations are embedded in the same composite component. w.e.h.j.m
specifies the composite component for the component of one operation and
w.f.h.j.m the composite component for the component of the other opera-
tion. The composite components are the same and finally w.p specifies that
the wire w is defined in this composite component. Wires w1 and w4 in Fig. 4
are examples of a horizontal wire.
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3. A vertical wire connects a component with its enclosing component:
Let f be a relationship between operation and wire (see Fig. 1) with e 6= f .
context w: vertical wire inv: w.e.h.j = w.p and w.f.h.j.m = w.p

A vertical wire w connects two operations. One of these operations is defined
in a component and the other operation in that component’s enclosing com-
ponent. The first part of the conjunction specifies the enclosing component
and the second part its inclosed component. w.p specifies that the wire is
defined in the enclosing component. Wires w2 and w3 in Fig. 4 are examples
of vertical wires.

4. A vertical wire connects two operations with the same operation type:
Let f be a relationship between operation and wire (see Fig. 1) with e 6= f .
context w: vertical wire inv:
w .e.s.oclIsKindOf (one − way) = w .f .s.oclIsKindOf (one − way) or
w .e.s.oclIsKindOf (notification) = w .f .s.oclIsKindOf (notification) or
w .e.s.oclIsKindOf (request − response) =
w .f .s.oclIsKindOf (request − response) or
w .e.s.oclIsKindOf (solicit − response) =
w .f .s.oclIsKindOf (solicit − response)
A vertical wire always connects two operation of the same operation type.
Wires w2 and w3 in Fig. 4 are examples for vertical wires.

5. Horizontal wire connects two operations with matching operation types:
Let f and g be relationships between operation and wire (see Fig. 1) with
e 6= f 6= g.
context w: horizontal wire inv:
w .e.s.oclIsKindOf (one − way) = w .f .s.oclIsKindOf (notification) or
w .e.s.oclIsKindOf (request − response) =
w .f .s.oclIsKindOf (solicit − response) or
w .e.s.oclIsKindOf (request − response) =
w .f .s.oclIsKindOf (one − way) and w .g .s.oclIsKindOf (notification) or
w .e.s.oclIsKindOf (solicit − response) =
w .f .s.oclIsKindOf (one − way) and w .g .s.oclIsKindOf (notification)
A horizontal wire connects two operations of complementing operation type.
Complementing operation types are one-way and notification as well as
request-response and solicit-response (first three lines of the disjunction).
The four remaining lines of the disjunction specify that a horizontal wire
can also connect an operation with a synchronous operation type to two op-
erations with asynchronous operation type. More detailed, a solicit-response
operation can be wired with a notification operation and a one-way opera-
tion. The same holds for a request-response operation.

5 Outlook

In this paper we addressed our efforts in developing an architecture framework
based on the service-oriented architecture (SOA). The architecture framework is
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required to be language independent and close to industry standards, in particu-
lar to the service component architecture (SCA) [4]. We further require activities
and data, which are the building blocks of each system, to be first class citizens.

The architecture framework was presented by means of a meta model. The
main concepts include components as building blocks, interaction relationship
between components by synchronous and asynchronous message exchange, hi-
erarchical relationship between components and the concept of instantiation.
Components have two connected layers, a process layer (consisting of activities)
and an data layer (data elements and methods).

The development of the architecture framework, however, is not finished yet.
We are currently working on the integration of an inheritance concept. Inher-
itance is an important concept as it allows the reuse of parts of the system.
Furthermore we have to formally define our architecture framework. To this
end, we are aiming at building a Colored Petri net (CPN) model.

As mentioned above, our architecture framework is required to be close to
existing industry standards. Therefore further research includes a comparison
of our architecture framework with the service component architecture, its data
model, service data objects (SDO) [19] and BPEL [11] as a process model. Finally,
having formalized the architecture framework we want to spend effort in the
verification of components and as a long-term objective in the development of
tools for the design and management of component-based systems.
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