
Aspect-Oriented Techniques for Web Services: a
Model-Driven Approach1

Guadalupe Ortiz, Juan Hernández

Quercus Software Engineering Group
University of Extremadura

Computer Science Department
Spain

{gobellot, juanher}@unex.es

Abstract. In order to tackle the entire web service life cycle, it is necessary to
face how to model systems based on service functionality and also how to add
extra-functional properties to modelled services. In this regard, we propose first
of all to use UML for modelling services based on the Service Component
Architecture (SCA) specification, in order to provide a model environment in
which extra-functional properties are added, also using UML. The implemented
models based on these profiles will be independent of a final implementation
language or platform, thus it is necessary to specify a particular type of model
into which to convert the independent one in a subsequent step. In order to meet
this requirement a JAX-RPC based specific metamodel is proposed for services
and a soap tag, an aspect and a policy based ones are proposed as the
intermediate step between the independent model and the final code.

Keywords. Extra-Functional property, web service, model-driven development,
aspect-oriented techniques, WS-policy, service component architecture.

1 Introduction

Web Services provide a successful way to communicate distributed applications, in a
platform independent and loosely coupled manner, providing the systems with great
flexibility and easier maintenance. Although development middlewares provide a
splendid environment for service implementation, methodologies for earlier stages of
development, such us the modeling stage, are not provided in a cross-disciplinary
scope, whereby, for instance, the automatic model-implementation transformation or
the addition of extra-functional elements would be possible. At present, academy and
industry are beginning to focus on the modeling stage, where it is also pursued to
keep the loosely coupled notion and independence from the platform [10] [15]. Some
rising proposals focus on representing the service as a component and others base the
said model on WSDL elements; besides, the named approaches, component or

1 This work has been developed thanks to the support of MEC under contract TIN2005-09405-

C02-02.

Dagstuhl Seminar Proceedings 06291
The Role of Business Processes in Service Oriented Architectures
http://drops.dagstuhl.de/opus/volltexte/2006/826

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62912102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

WSDL-based may or may not propose a model-driven development; representative
approaches are described below:

To start with, Service Component Architecture provides a way to define interfaces
and references independently of the final implementation technology, which will be
bound subsequently [3]. According to SCA, services are modeled as components,
which are linked to a given interface which can be later specified in a particular one.
Besides, they will show the needed references for their behavior to be completed. This
way, a very high level model is defined, allowing the developer to implement it by
using different approaches such as Java, BPEL, States Machine, etc., at a later stage.
One additional example of a component-oriented proposal is the one from Smith et al.
[12] where grid services are modelled as components stereotyped for grid
environments.

As a second trend, we can find WSDL-centric proposals, where the service
description is mainly based on the different elements which form the WSDL
document. Most of the proposals try to find an appropriate way to model web services
and their service compositions with UML based on the WSDL structure, as for
instance [4] [6] or [13].

Additionally, many proposals are emerging in the literature where the Model-
Driven Architecture (MDA) approach is being applied to Web Service Development.
MDA has been proposed to facilitate the programming task for developers by
dividing system development into three different phases: first of all, a Platform
Independent Model (PIM) is proposed with the purpose of representing our system
without coupling it to any specific platform or implementation language; secondly, a
Platform Specific Model (PSM) represents our system based on a specific target
platform; finally, Code Layer provides our final application code. Some of the
component-oriented and WSDL-centric approaches may also propose a model-driven
development. From those we mentioned earlier, for instance, the work from Smith et
al. [12] consists of a model-driven development for grid applications based on the use
of web services modeled as components; the research presented by J. Bezivin et al.
[4] is also worth a special mention, where Web Service modeling, based on the
WSDL structure, is covered in different levels, using Java and JWSDP
implementations in the end.

Let us consider now that we want to provide our modeled services with extra-
functional properties2. It is suggested by the SCA specification that this type of
property may be modeled at a different level; the way to do so and to include them in
additional stages of development has not been approached as yet. Alternatively,
WSDL-centric proposals do not consider extra-functional properties in their models,
since they are not part of the WSDL document elements. Besides, the named MDA
proposals do not consider the way extra-functional properties may be included in
modeled services. On the other hand, WS-Policies have emerged as a standardized
way for describing extra-functional service capabilities by using the XML standard
[14]. This allows properties to remain completely decoupled when described and

2 By the term extra-functional properties we mean pieces of code which provide additional

functionality to the services, but which are not part of their main functionality. This concept
can be found in the literature as extra-functional property, non-functional property and even
functional aspects. From now on we refer to this meaning when talking about extra-
functional properties in this paper.

2

there is no need to establish dependences from the service description file (WSDL) to
the policies ones; property description is not linked to a specific implementation,
either, maintaining the platform’s independent environment. However, WS-Policy
does not determine how the properties are to be modeled or implemented, and an
additional mechanism would be necessary so as to integrate property modeling and
implementation with their description in service-based systems. We can mention the
ASG (Adaptive Services Grid) project, which takes into consideration some specific
extra-functional properties in their WSDL-centric model-driven development [11];
however, services and properties have to be initially described by a semantic
language, and, being a WSDL-centric approach from the very beginning, the
possibilities of implementation for the services described are limited.

Closely related to this is the main aim of this paper, which consists on offering a
component-oriented model-driven methodology in order to deal with extra-functional
properties in web service environments based on the standard modeling language
UML. In order to do so we also provide a model-driven approach for the services
themselves, although we expect the extra-functional property approach to be
integrated with other web service model-driven approaches.

The rest of the paper is organized as follows: Section 2 gives an overview of the
whole process followed in this approach. Section 3 shows how the PIM should be
implemented, first of all presenting our profile proposed for service modelling in
Section 3.1 , then the one proposed for property modeling is explained in Section 3.2
and finally showing the application of our approach to a case study in Section 3.2 .
Section 4 explains the PSM stage, where Section 4.1 shows the proposed specific
metamodel for the services, Section 4.2 explains the metamodels proposed for the
properties and, then, Section 4.3 shows the specific models obtained from the case
study PIM. Section 5 discusses the type of code to be generated from the platform-
specific model. Finally, our main conclusions are presented in Section 6 .

2 Model-Driven Transformations

In this section we are going to provide and depict a general overview of the presented
approach, describing the order to be followed to face web service and their extra-
functional property development from the platform independent model to code, which
will be explained in detail in the next sections.

The first thing is to define the metamodel to be followed by the platform
independent model. This can be done either by using MOF compliant metamodels
(http://www.omg.org/mof/) or EMF ones (http://www.eclipse.org/emf/). We decided
to use MOF-compliant metamodels at this level, which will be based in UML, thus
facilitating the developer work by using common standard modeling tools at this stage
of development. Particularly, we propose to use a UML profile based on the SCA
specification for service models and an additional one for modeling extra-functional
properties in a decoupled manner. Both are applied in this paper in order to obtain a
case study model.

Afterwards, the specific metamodels have to be defined: in this case we decided for
them to be EMF-compliant, which facilitates a graphical edition of the model element

3

attributes and their values, which permits easy consultation or modification, if
necessary. In our approach, on the one hand, we propose a JAX-RPC metamodel for
web services specific modeling, and on the other hand three different specific
metamodels are provided for extra-functional properties, which will motivated
shortly.

Subsequently, the transformation from PIM to the PSMs has to be defined. Several
tools can be found for model transformations and code generation. We decided to use
ATL (http://www.eclipse.org/gmt/atl/), which provides an Eclipse plugin and which
has its own model transformation language. The ATL transformation file will define
the correspondence between the elements in the source metamodel (PIM) and the
target ones (PSMs) and will be used to generate the target model based on the defined
rules and the input model. When the transformation rules are applied to the case study
PIM, the case-study platform-specific models are obtained.

Finally, code can be generated from the specific models by applying additional
transformation rules. In this case no target metamodel is needed since the output code
files will be based on Strings. On the one hand, JAX-RPC web service code, to be
deployed with the Java Web Service Developer Pack, will be generated from the
service specific model. On the other hand, AspectJ will be used for the
implementation of the property functionality, thus maintaining properties well
modularized and decoupled from the services implemented; Java will be used to
implement the code necessary for optional property inclusion. With regard to
description, the WS-Policy [1] and WS-PolicyAttachment [2] documents are obtained
for each property, which are integrated with the aspect-oriented generated properties.
The usefulness of aspect-oriented techniques for extra-functional properties and its
use in conjunction with WS-Policy is motivated and evidenced in [9].

3 PIM

In this section we are going to see the profiles proposed to model services and extra-
functional properties and how they are used in a case study PIM.

3.1 The Service Profile

Fig. 1. Service profile.

As shown in Figure 1, the proposed service profile is very simple, since we aim to
keep the simplicity and versatility of the SCA proposal. First of all, we can see the

4

serviceComponent stereotype which extends component metaclass. Secondly, we can
see the reference stereotype which extends port metaclass and has the attribute uri to
refer to the URI of the element needed to complete the service functionality. The
elements provided interface and required interface, also used in the service model,
are not defined in the profile as they already belong to the UML syntax. Further
motivation and explanation on this profile can be found at [8].

3.2 The Extra-Functional Property Profile

In order to maintain our system loosely coupled when adding extra-functional
properties to the model, we propose the profile in Figure 2, whose elements will be
explained as follows and are described thoroughly in [8]:

Fig. 2. Extra-functional property profile.

• First of all, we define the abstract stereotype extra-functional property , which will
extend operation metaclass or interface metaclass. The extra-functional property
provides five attributes: the first one is actionType, which indicates whether the
property functionality will be performed before, after or instead of the stereotyped
operation’s execution – or if no additional functionality is needed it will have the
value none, only possible in the client side. Secondly, the attribute optional will
allow us to indicate whether the property is performed optionally –the client may
decide if it is to be applied or not– or compulsorily –it is applied whenever the
operation is invoked. Then, a third attribute, ack, is included: when true it means
that it is a well-known property and its functionality code can be generated at a
later stage; it will have the value false when only the skeleton code can be
generated. Finally, we have two additional attributes, namely policyID and
policyDoc. PolicyId contains the name of an existing policy or the name to be
assigned to the new one in the service side; policyDoc allows the developer to
reuse an existing policy document. If the attribute value is null then the WS-Policy
document could be generated at code generation stage. The policy attachment

5

document would be generated in each case. These are the necessary attributes to
define the main characteristics in any property, which may be complemented with
the specific property attributes.

• In order to define actionType, an enumeration is provided with four alternative
values: before, after, instead or none. In this sense, properties may include new
functionality before executing the stereotyped operation, after it or they can even
replace the operation’s functionality. Some properties may be included from the
client side without the need for any additional functionality, in which case its value
would be none.
Once we want to use the profile in a specific case study, we will extend it with the

specific properties to be used or we can have a pool of predefined properties, as for
instance the one in Figure 3, which will be used in the next subsection.

Fig. 3. Extension of the extra-functional property profile with specific properties.

3.3 Case Study PIM

Consider a simple case study in which we have a set of services related to the
university administrative service (Figure 4). All the services are stereotyped as
ComponentServices, which offer an interface. No references have been included as
they are not relevant for property application. Let us imagine that we want to include
some extra-functional properties to the services’ model. We have devised four
different sample properties, included in Figure 4:
• First of all, a log property, to be applied to all operations offered by the registration

service to record received invocations.
• Secondly, a property called detailedInfo, which will be required discretionarily by

the client when invoking bringForwardExam in ExamOpportunityService: exam
dates and locations can be obtained when changing the semester in which the

6

student is going to take the exam; the change is regularly updated and no additional
information is obtained.

• Additionally, invocations to personalData in RegistrationService must be
encrypted. In order to enable this functionality the desencyption stereotype has to
be applied to the offered operation.

• Finally, sendPdf from PreregistrationService can be invoked –optionally- with a
digital signature. That is why the property digitalSignatureCheck stereotypes the
named operation in the service model.

Fig. 4. PIM with extra-functional properties.

7

We have chosen, for instance, the detailedInfo property as a characteristic example
for the remainder of the paper. In this sense, in order to provide bringForwardExam
operation in ExamOpportunityService with detailedInfo in the PIM, we only have to
stereotype the named operation with the << detailedInfo >> stereotype. Stereotype
attributes are normally attached to models as tagged values, but they have also been
included as comments in the illustration in order to show their values. In it the
attributes for detailedInfo indicate that the property will be performed optionally
instead of the execution of the named operation; it is not a well-known property;
policyID is DetailedInfo _ao4ws and policyDoc is null (omitted for clarity). The
remaining property values would be similarly interpreted; however, for those
properties where ack is true, the function which will be invoked to include the
additional functionality would also be specified.

4 PSMs

In this section we will show, first of all, the metamodel proposed for service specific
models, then those proposed for extra-functional properties and, finally, the specific
models obtained from the case study PIM will be discussed.

Fig. 5. Jax_Rpc services proposed metamodel.

8

4.1 Service PSM metamodel

We intend for our extra-functional property proposal to be used for different service
models and implementations; however, we provide one example of service specific
model generation to show the proposal’s value. We decided to generate a specific
model oriented to JAX-RPC services to be compiled and deployed with Java Web
Service Developer Pack. In this regard the metamodel will be formed by the service
java interface and its implementation plus the necessary configuration files: web,
config-interface and jaxrpc-ri; these elements and their corresponding attributes are
shown in Figure 5. The metamodel, as shown in the said figure, is EMF-compliant
instead of MOF-compliant, since it allows the developer to edit the generated EMF
specific models to easily check and modify the property attributes when necessary.

The different elements shown in the named figure correspond to a simplified Java
metamodel plus the three configuration files, which contain the main attributes
necessary for their description.

4.2 Extra-Functional Property PSM Metamodels

As far as extra-functional properties are concerned, our specific models will be based,
first of all, on an aspect-oriented [5] approach to specify the property functionality,
secondly on what we have called a soap tags-based approach, to lay down the
necessary elements to be included or checked in the SOAP message header and,
finally, a policy-based one for property description.

Fig. 6. PSM metamodels.

This way property implementation remains encapsulated and decoupled from the
main functionality thanks to aspect-oriented techniques (further information on
aspect-oriented techniques can be found at [5] and [7]). Besides, SOAP Tags will be

9

used to select optional properties and transfer the additional data necessary due to the
property inclusions in a transparent way. To end with, policies allow us to describe
the properties, independently of the implementation of the service and of the property
itself and also remain decoupled from the service description file.
EMF-compliant metamodels are depicted in Figure 6 and explained below:
• Every aspectClass will have an attribute target which indicates the method for the

property to be applied, a second attribute, actionType, which informs of when it has
to be applied; ack indicates whether the property is well-known or not and, finally,
an action refers to the corresponding functionality. Besides, all additional
characteristics from the particular property will be included as attributes.

• New tags are included in the SOAP Header to select –in the client side– or check –
service side– relevant properties, when optional, or to deliver any other necessary
information. Every SoapTag element will have an attribute target which instructs
the method for the property to be applied, a second attribute, value, to indicate the
tag to be included; finally, side indicates whether the tag is to be included by the
client or checked by the service.

• A policy will be generated for each property. The policy element will contain the
policy name, whether the property is optional, well-known or domain-specific
(ack); targetType indicates whether the policy is to be applied to a portType or an
operation and targetName gives the name of the latter.

Fig. 7. Specific models of the case study web services.

10

4.3 Specific Models in our Case Study

Once the transformation rules are applied to the PIM, the specific models containing
information on the services and properties are obtained. We show some of the
model’s elements and their properties in Figures 7 and 8, where service and property
models can be examined, respectively.

Fig. 8. Specific models of the case study extra-functional properties.

11

Only some branches of the tree structure in the figures have been deployed in order to
make the illustration easier to understand. All the elements can be examined in the
upper sections of the illustrations, whereas at the bottom, only properties of the
selected item are shown and can be modified.

Figure 7 shows the created web services with their corresponding generated
elements, namely service Java interfaces and configuration files. We have deployed
the examOpportunity service package, where we can see the Java interface
examOpportunityServiceIF with its corresponding methods and parameters. We can
also see the properties corresponding to the three configuration files in the three parts
of the figures.

Figure 8 shows the property models obtained, where we have deployed the
elements corresponding to the detailedInfo property – aspect, policy, soap Tags
exam_Opportunity_bringForwardExam_detailedInfo, which are explained as follows:
• An aspect, examOpportunity_bringForwardExam_detailedInfo, will be generated

for detailedInfo in the service side; its attributes target and actionType will have
the values examOpportunity.bringForwardExam and instead, respectively and ack
will be false.

• Regarding the policy element, its name will be detailedInfo_ao4ws; its optional
value will be true. Finally, for policyAttachment, targetType will be operation and
targetName bringForwardExam.

• Due to its optional nature, we ought to include code whose function is to check
whether detailedInfo has been selected: the corresponding SOAPTag target will be
bringForwardExam, its value detailedInfo and it will operate as a side service.

5 Generated Code

Once we have our models for the case study we may also apply additional rules to
generate code from them. From the service specific model, where additional attribute
values can be added or modified (e.g. deployment endpoint), the JAX-RPC service
skeleton code for JWSDP compilation and deployment is generated. In this sense, the
Java interface and implementation skeleton will be generated and complete
configuration files created. Figure 9 shows the java interface generated for
examOpportunityService.

From the property models, transformation rules will generate skeleton code for the
three extra-functional property model elements: Figure 9 shows the code generated
for detailedInfo. However, in the case of well-known or user-defined properties, a
repository with specific code may be maintained to generate additional code for the
three of them. In these cases, in which ack is true, it is possible to generate the advice
functionality and further policy content.

Regarding property implementation, Java code will be generated to check if soap
tags are included in the SOAP message and AspectJ has been chosen for the
implementation of the property’s functionality, consequently properties remaining
well modularised and decoupled from implemented applications, as demonstrated in
[7]. An AspectJ aspect will be generated for each aspect class in our model. AspectJ
pointcuts will be determined by the execution of the target element. Concerning the

12

advice, depending on the actionType attribute value, before, after or instead, the
advice type will be before, after or around, respectively; its name will be the one in
the action attribute. With regard to property description, it is proposed to generate the
WS-Policy and WS-PolicyAttachment documents for each property, which are
integrated with the aspect-oriented generated properties as explained in [7]. In this
sense, an xml file based on the WS-Policy standard is generated and attached to the
service by the file based on the WS-PolicyAttachment standard. The policy is
attached to the stereotyped element in the PIM model, which is represented in the
policy specific model by the attribute targetName .

Fig. 9. Code obtained from the transformation.

6 Conclusions

This paper has shown a model-driven approach for web services and their extra-
functional properties. Services are described at PIM level by using an UML profile
based on the Service Component Architecture specification and properties are
included by using an additional UML profile. Additionally, thanks to an ATL
transformation, the initial PIM has been converted into four specific models which
conform to four provided metamodels, the first one to model JAX-RPC-based
services and the rest, based on soap tags information, aspect oriented elements and
policy based ones, for property selection, implementation and description,
respectively. Moreover, an ATL transformation can also be used to generate the
skeleton code related to the JAX-RPC services on the one hand and on the other to

***DETAILED INFO ASPECT**
public aspect opportunityExam_bringForwardExam_detailedInfo {

pointcut bringForwardExam_detailedInfoP (data: hashMap, Email:String): execution(public *
 opportunityExam_bringForwardExam (HashMap, String)) && args(data, Email);

String around ((data: hashMap, Email:String): bringForwardExam_detailedInfoP (data, Email){
 if ((((String)opportunityHandlerHandler.operDetailedInfo.get("operationName")).
 compareTo("bringForwardExam")==0)&&
 (((String)opportunityHandler.operdetailedInfo.get("propertyName")).compareTo("detailedInfo")==0)) {
 [...] [functionality to be completed] [...]}
 else result=proceed(data, Email) […]}

*********** DETAILED INFO POLICY****
<wsp:Policy name=detailedInfo_ao4ws
xmlns:wsl="... "> <[to be completed]/>
</wsp:Policy>
<wsp:PolicyAttachment >
<wsp: AppliesTo>[…]
 <wsp:Operation Name=
 bringForwardExam/>
[…] </wsp:AppliesTo>
</wsp:PolicyAttachment>

/**********************SERVICE SIDE SOAP CODE*************
if element.getElementName().getLocalName().equals
 ("operationName"))
 String operationName = element.getValue();
 operdDetailedInfo.put("operationName",operationName);

Iterator iter2= element.getAllAttributes() ;[…]
 If (name.getLocalName().equals("propertyName")) {
 String propertyName = Element.getAttributeValue(name);
 operDetailedInfo.put("propertyName",propertyName); } }

***************************************EXAMOPPORTUNITY SERVICE INTERFACE************************
 package examOpportunity;
public interface ExamOpportunityServiceIF extends Remote {
 public ArrayList courseList (String Qualification) throws RemoteException;
 public String bringForwardExam(HashMap data, String EMail) throws RemoteException;
 public String cancelExam(HashMap data, String Email) throws RemoteException;}

13

their extra-functional property implementation with AspectJ, their property
description with WS-Policy, and their property selection by Java.

Thus, this proposal allows properties to remain well encapsulated and decoupled at
all stages of development, providing the possibility of generating properties and
services automatically and independently. Besides, disunion of concerns lets us
benefit from good traceability, since any extra-functional property in the model can be
located in the code clearly, avoiding its being tangled with the main functionality
code and vice versa.

7 References

[1] Bajaj, S., Box, D., Chappeli, D., et al.. Web Services Policy Framework (WS-Policy),
ftp://www6.software.ibm.com/ software/developer/library/ws-policy.pdf, September 2004

[2] Bajaj, S., Box, D., Chappeli, et al. Web Services Policy Attachment (WS-
PolicyAttachment), ftp://www6.software.ibm. com/software/developer/library/ws-polat.pdf,
September 2004

[3] Beisiegel, M., Blohm, H., Booz, D.,et al. Service Component Architecture. Building
Systems using a Service Oriented Architecture. http://download.boulder.ibm.com/ibmdl/
pub/software/dw/specs/ws-sca/SCA_White_Paper1_09.pdf, November 2005

[4] Bézivin, J., Hammoudi, S., Lopes, D. et al. An Experiment in Mapping Web Services to
Implementation Platforms. N. R. I. o. Computers: 26, 2004

[5] Elrad, T., Aksit, M., Kitzales, G., Lieberherr, K., Ossher, H.: Discussing Aspects of AOP.
Communications of the ACM, Vol.44, No. 10, October 2001.

[6] Grønmo, R, Solheim, I Towards Modeling Web Service Composition in UML. Int.
Workshop Web Services: Modeling, Architecture and Infrastructure, Porto, Portugal, 2004.

[7] Kiczales, G. Aspect-Oriented Programming, ECOOP’97 Conference proceedings,
Jyväskylä, Finland, June 1997

[8] Ortiz G., Hernández J., Toward UML Profiles for Web Services and their Extra-Functional
Properties, Proc. Int. Conf. on Web Services, Chicago, EEUU, September 2006 (awaiting
publication).

[9] Ortiz, G., Leymann, F. Combining WS-Policy and Aspect-Oriented Programming. Proc. of
the Int. Conference on Internet and Web Applications and Services, Guadeloupe, French
Caribbean, February 2006

[10] Papazoglou, M. Van Den Heuvel, W. Service-oriented design and development
methodology, International Journal in Web Engineering and Technology, Volume 2, Issue 4,
2006.

[11] Roman, D et al. Requirements Analysis on the ASG Service Specification Language.
Deliverable D1.1-1, DERI Innsbruck, 2005.

[12] Smith, M., Friese, T. Freisbelen, B. Model-driven Development of Service-Oriented Grid
Applications. Proc. of the Int. Conference on Internet and Web Applications and Services,
Guadeloupe, French Caribbean, February 2006

[13] Thöne, S. Depke, R, Engels, G.. Process-Oriented, Flexible Composition of Web Services
with UML. Int. Workshop on Conceptual Modeling Approaches for e-business: A Web
Service Perspective, Tampere, Finland, 2002

[14] Weerawarana, S. Curbera, F. Leymann, F., et al. Web Services Platform Architecture:
SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging, and
More, Ed. Prentice Hall, ISBN 0-13-148874-0, March 2005

[15] Zimmermann, O., Krogdahl P, Gee, C. Elements of Service-Oriented Analysis and Design,
http://www-128.ibm.com/developerworks/webservices/library/ws-soad1/, May 2004

14

