
Exploiting Branch Constraints without Exhaustive Path Enumeration

Ting Chen Tulika Mitra Abhik Roychoudhury Vivy Suhendra
School of Computing, National University of Singapore

{chent,tulika,abhik,vivy}@comp.nus.edu.sg

Abstract

Statically estimating the worst case execution time
(WCET) of a program is important for real-time soft-
ware. This is difficult even in the programming language
level due to the inherent difficulty in detecting and exploit-
ing infeasible paths in a program’s control flow graph. In
this paper, we propose an efficient method to exploit in-
feasible path information for WCET estimation of a loop
without resorting to exhaustive path enumeration. The ef-
ficiency of our approach is demonstrated with a real-life
control-intensive program.

1. Introduction

Static analysis of a program for obtaining the Worst Case
Execution Time (WCET) is important for hard real-time
embedded systems. WCET analysis typically consists of
three phases: flow analysis to identify loop bounds and in-
feasible flows through the program; architectural modeling
to determine the effect of pipeline, cache, branch predic-
tion etc. on the execution time; and finally estimation to find
an upper bound on the WCET of the program given the re-
sults of the flow analysis and the architectural modeling. In
this paper, we concentrate on the estimation problem.

There exist mainly three different approaches for WCET
estimation: tree-based, path-based, and implicit path enu-
meration. The tree-based approach estimates the WCET
of a program through a bottom-up traversal of its syntax
tree and applying different timing rules at the nodes (called
“timing schema”) [5]. This method is quite simple and ef-
ficient. But it has limitations in exploiting the results re-
turned by flow analysis. In particular, it is difficult to ex-
ploit infeasible paths due to branch constraints (dependen-
cies among branch statements) in this approach as the tim-
ing rules are local to a program statement. Implicit path enu-
meration techniques (IPET) [4] represent the program flows
as linear equations or constraints and attempt to maximize
the execution time of the entire program under these con-
straints. This is done via an Integer Linear Programming

(ILP) solver. Attempts have been made to integrate special
flow information in IPET [2]. However, the kind of flow in-
formation that can be handled by IPET is inherently lim-
ited. This is because the usual ILP formulation introduces
formal variables for the execution counts of the nodes and
edges in the Control Flow Graph (CFG) of the program.
Since the variables denote aggregate execution counts of
basic blocks, it is not possible to express certain infeasible
path patterns (typically denoting a sequence of basic blocks)
as constraints on these variables.

Path-based techniques estimate the WCET by computing
execution time for the feasible paths in the program and then
searching for the one with the longest execution time. Thus,
path-based techniques can naturally handle the various flow
information. Healy et al., in particular, detect and exploit
branch constraints within the framework of path-based tech-
nique [3]. Originally, path-based techniques were limited to
a single loop iteration. However, Stappert et al. [6] have ex-
tended it to complex programs with the help of scope graphs
and virtual scopes.

One of the main drawbacks of path-based techniques is
that they require the generation of all the paths. In the worst
case, this can lead to 2n paths where n is the number of de-
cisions in the program fragment. In control-intensive pro-
grams, we have encountered up to 6.55 × 1016 paths in a
single loop iteration (see Table 1). Research by Stappert et
al. [6] has sought to avoid this expensive path enumeration
by finding (a) the longest program path π, (b) checking for
the feasibility of π, and (c) removing π from CFG followed
by the search for a new longest path if π is infeasible. This
technique is a substantial improvement over exhaustive path
enumeration. However, if the feasible paths in the program
have relatively low execution times, then this approach still
has to examine many program paths. Indeed, for our bench-
mark only a small fraction (less than 0.1%) of the paths are
feasible, making this approach quite costly (see Table 1).

In this paper, we present a technique for finding the
WCET of a program in the presence of infeasible paths
without performing exhaustive path enumeration.

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis Page 46 of 49

ECRTS 2005
5th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/816

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62912083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. WCET Estimation Algorithm

In this section, we present a method for finding the
WCET path of a single loop. Once this is obtained, the
WCET path of the program can be obtained by compos-
ing the WCET paths of individual loops through the well-
known timing schema approach [5]. Of course, this will
mean that infeasible path information across loops can-
not be taken into account. We assume that state-of-the-art
WCET analyzers such as aiT[1] can be used to estimate the
worst-case execution time of each basic block.

Given a fragment of assembly code corresponding to a
loop in a source program, we first construct the directed
acyclic graph (DAG) capturing the control flow in the loop
body (i.e., the CFG of the loop body without the loop back-
edge). We assume that the DAG has a unique source node
and a unique sink node. If there is no unique sink node, then
we add a dummy sink node. Each path from the source to
the sink in the DAG is an acyclic path — a possible path in
a loop iteration. Our algorithm finds the worst case execu-
tion path for a single iteration of the loop, i.e., we find the
heaviest acyclic path. If the estimated execution time of the
heaviest acyclic path is t and the loop-bound is lb, then the
loop’s estimated WCET is lb ∗ t.

We find the heaviest acyclic path accurately by taking
into account infeasible path information and yet we avoid
enumerating all the acyclic paths in a loop. Clearly, the in-
feasible path information that we work with may not always
be complete; so the accuracy of our heaviest acyclic path
detection depends on the accuracy of the infeasible path in-
formation. First, we discuss the infeasible path information
used and then explain how it is efficiently exploited in our
WCET calculation.

2.1. Infeasible path information

Our infeasible path information consists of
two binary relations capturing conflicting pairs of
branches/assignments: AB conflict and BB conflict. The re-
lation AB Conflict is a set of (assignment, branch-edge)
pairs, that is, if 〈a, e〉 ∈ AB Conflict then a is an as-
signment instruction and e is an outgoing edge from a
conditional branch instruction; on the other hand, the rela-
tion BB Conflict is a set of (branch-edge, branch-edge)
pairs.

We do not detect conflicts between arbitrary branches
and assignments to avoid an inefficient conflict detection
procedure. The only conditional branches whose edges ap-
pear in our BB conflict and AB conflict relations are of the
form variable relational operator constant. Similarly,
the only assignments which appear in AB Conflict are of
the form variable := constant. For such assignments and
branches we can define pair-wise conflict in a natural way

(see [3] for a full discussion). For example, x := 2 conflicts
with x > 3, but not with x < 3; similarly x > 3 conflicts
with x < 2 but not with x > 5. Now, for such restricted
branches and assignments, we put an assignment a conflict-
ing with a conditional branch-edge e into the AB Conflict
relation (i.e., 〈a, e〉 ∈ AB Conflict) iff there exists at
least one path π from a to e which does not contain assign-
ments to the common variable appearing in a, e. Similarly,
we put two conflicting conditional branch-edges e′, e into
the BB Conflict relation (i.e., 〈e′, e〉 ∈ BB Conflict)
iff there exists at least one path π from e′ to e which does
not contain assignments to the common variable appearing
in e′, e. If 〈e′, e〉 ∈ BB Conflict, there may be another
path π′ from e′ to e that contains an assignment to the com-
mon variable appearing in e′, e. Such paths should not be
considered as infeasible paths.

The computation of the AB Conflict and
BB Conflict relations can be accomplished in
O((|V | + |E|) ∗ |E|) time where |V |, |E| are the
number of nodes and the number of edges in the con-
trol flow DAG; this is because for each branch-edge we
need to perform a depth-first like search to find conflict-
ing branch-edges and/or assignments.

Example: A loop-free program fragment (which can be the
body of a loop) and its control flow DAG are shown in Fig-
ure 1. In this example, the relation AB Conflict contains
only one pair – the assignment at basic block B6 (which
sets x to 1) and the branch-edge B7 → B9 (which stands
for x ≥ 2). The relation BB Conflict contains the branch-
edge pair 〈B1 → B2, B7 → B8〉 that captures the condi-
tions x > 3 and x < 2.

2.2. WCET calculation

We now present our WCET estimation algorithm for
finding the heaviest feasible path in an iteration of a loop.
We do not enumerate the possible paths in an iteration and
then find the heaviest. At the same time, we do not con-
sider all paths in the loop’s control flow graph to be feasi-
ble – we consider the infeasible path information captured
by AB Conflict and BB Conflict relations.

Our algorithm traverses the loop’s control flow DAG
from sink to source. However, to take into account the in-
feasible path information, we cannot afford to remember
only the “heaviest path so far” as we traverse the DAG.
This is because the heaviest path may have conflicts with
earlier branch-edges or assignment instructions resulting in
costly backtracking. Instead, at a basic block v, we main-
tain a set of paths paths(v) where each p ∈ paths(v) is a
path from v to the sink node. paths(v) contains only those
paths which when extended up to the source node can poten-
tially become the WCET path. For each path p ∈ paths(v)
we also maintain a ”conflict list”. The conflict list contains

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis Page 47 of 49

x > 3

z = z + 1 x = argv[1]

y == 4

y = y + 1 x = 1

x < 2

-

z = z / 2 z = z - 1

if(x > 3)
 z = z + 1;

else
 x = argv[1];

if(y = = 4)
 y = y + 1;

else
 x = 1;

if(x < 2)
 z = z /2;

else
 z = z – 1;

Y N B3

Y

Y

N

N B9

B1

B2

B4

B5 B6

B7

B8

B10

Figure 1: A loop body with its Control Flow Graph

the branch-edges of p that participate in conflict with ances-
tor nodes and edges of v.

During our traversal from sink to source, consider a sin-
gle step traversal from v to u along the edge u → v in
the control flow DAG. We first construct paths(u) from
paths(v) by adding the edge u → v at the beginning of the
paths in paths(v). Also, for each path p ∈ paths(u) we up-
date its conflict list to contain exactly those edges in p which
have conflicts with branch-edges/assignments “prior to” u
(in topological order). At this stage we may add the branch-
edge u → v to p’s conflict list or we may remove an edge
e from p’s conflict list if all branch-edges/assignments con-
flicting with e appear “after” u (in the topological order).
If as a result, we have identical conflict lists for two paths
p, p′ ∈ paths(u), then we maintain the heavier path among
p and p′. Finally, if the conflict list of a path p ∈ paths(u)
becomes empty and p is the heaviest path in paths(u), we
assign the singleton set {p} to paths(u). Details of the al-
gorithm are omitted for space considerations.

In the worst case, the complexity of our algorithm is ex-
ponential in |V |, the number of nodes in the loop’s control
flow DAG. This is because the number of paths in paths(v)
for some block v may be O(2|V |) due to different deci-
sions in the branches following v. In practice, this exponen-
tial blow-up is not encountered because (a) branch-edges
which do not conflict with any assignment/branch-edge do
not need to be kept track of, and (b) a branch-edge which
conflicts with other branch-edges/assignments need not be
remembered after we encounter those conflicting branch-
edges/assignments during the traversal.

Illustration We demonstrate our WCET calculation method
by employing it on the control flow DAG of Figure 1. As
mentioned, we traverse the DAG from sink to source and
maintain a set of paths paths(v) at each visited node v. For
each path p ∈ paths(v) we also maintain the conflict list, a
set of branch decisions drawn from branch decisions made

so far. Thus each path p in paths(v) is written in the form
pconflict list.

Starting from node B10 in Figure 1, our traversal is rou-
tine till we reach node B7 (φ denotes empty set).

paths(B10) = {〈B10〉φ}
paths(B9) = {〈B9, B10〉φ}
paths(B8) = {〈B8, B10〉φ}

The outgoing edges from node B7 appear in conflict rela-
tions capturing infeasible path information. Consequently,
our method maintains two paths in paths(B7) — the heav-
iest path starting with B7 → B8 and the heaviest path start-
ing with B7 → B9.

paths(B7) = { 〈B7, B8, B10〉{B7→B8}
〈B7, B9, B10〉{B7→B9} }

Now, from node B7 we traverse to nodes B5 and B6. The
assignment in node B6 conflicts with B7 → B9. There-
fore, we do not consider any path in paths(B7) which con-
tains B7 → B9 in its conflict list. This is how infeasible
path information is accounted for in our WCET calculation.
Thus we have

paths(B6) = {〈B6, B7, B8, B10〉φ}

We drop B7 → B8 from the conflict list of
〈B6, B7, B8, B10〉 as we have encountered an as-
signment to program variable x in B6. The assign-
ment implies that the conflict between B7 → B8 and
B1 → B2 does not hold along any extension of the par-
tial path 〈B6, B7, B8, B10〉.

At node B5, we first add B5 to the two partial paths
from B7. Then, we notice that the edge B7 → B9 is in-
volved only in a conflict with B6 and we have already
traversed B6. Therefore, we can drop this edge from the
conflict list of the partial path 〈B5, B7, B9, B10〉 and this
path now becomes completely conflict free. Assuming that

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis Page 48 of 49

Function Basic Blocks Total Paths Feasible paths BB-Conflicts AB-Conflicts Enumerated Paths
statemate 334 6.55x1016 1.09x1013 74 15 121,831
statemate1 44 19,440 7,440 6 0 15
statemate2 73 902 36 26 0 14
statemate3 161 1,459,364 69,867 15 0 40
statemate4 17 10 10 0 0 1
statemate5 43 256 58 2 0 4

Table 1: Efficiency of our WCET calculation method.

Function WCET Estimation (cycles)
w/o infeasibility with infeasibility

statemate 44,800 41,520
statemate1 29,400 28,960
statemate2 2,750 2,270
statemate3 7,300 7,000
statemate4 1,070 1,070
statemate5 2,370 2,090

Table 2: Accuracy of WCET estimation with and without
considering infeasibility.

〈B5, B7, B9, B10〉 is heavier than 〈B5, B7, B8, B10〉, we
have

paths(B5) = {〈B5, B7, B9, B10〉φ}
On the other hand, if 〈B5, B7, B8, B10〉 is heavier, we still
need to maintain both the partial paths (as the heavier path
may become infeasible later). Continuing in this way we
reach node B1; we omit the details for the rest of the tra-
versal. Note that the control flow DAG of Figure 1 has three
branches and 23 = 8 paths. However, when we visit any
basic block v of the control flow DAG, paths(v) contains
at most two paths (i.e., the exponential blow-up is avoided
here in practice).

3. Experiments

In this section, we present preliminary experiment results
for the proposed method. The benchmark used in our exper-
iment is a car window lift control program taken from the
C-Lab benchmark suite. It is automatically generated by the
Statemate tool based on a state-chart specification. We re-
port results for the entire program (statemate) as well as
program fragments corresponding to all the five functions
(statemate1 to statemate5).

An enumeration-based WCET estimation method typi-
cally examines each possible path, filters out the infeasible
paths and selects the feasible path with the maximum ex-
ecution time. Table 1 shows that the total number of paths
through a single iteration of the loop body can be quite large
(6.55×1016 possible paths out of which at most 1.09×1013

are feasible for statemate). In fact, a naive WCET cal-
culation method, which enumerates all these possible paths

for one loop iteration and chooses the longest feasible one,
runs out of memory even on a PC with 1 GB main memory.
The column Enumerated Paths shows the maximum num-
ber of paths that need to be maintained by our estimation
technique at any point of time. The results are quite encour-
aging; even for the entire statemate program, we only
need to keep at most 121, 831 paths at any point of time
during the estimation. As a result, our estimating technique
requires less than 1 minute for the entire statemate pro-
gram on a Pentium4 1.7Ghz platform with 1GB memory.
Finally, Table 2 shows that, as expected, our method pro-
duces more accurate estimation compared to a method that
does not take infeasibility information into account. The
only exception is statemate4, which does not have any
infeasible path.

4. Discussion

In this paper, we have reported preliminary results on ex-
ploiting (limited) infeasible path information during WCET
estimation of a loop without resorting to path enumeration.
The efficacy of our technique has been demonstrated on a
substantial real-life car window control benchmark. In near
future, we will develop WCET estimation methods that can
take into account infeasible path patterns of arbitrary length
without compromising efficiency.

References

[1] AbsInt. aiT: Worst case execution time analyzer, 2004.
http://www.absint.com/ait/.

[2] A. Ermedahl. A Modular Tool Architecture for Worst-Case Ex-
ecution Time Analysis. PhD thesis, Uppsala University, 2003.

[3] C. Healy and D. Whalley. Automatic detection and exploita-
tion of branch constraints for timing analysis. IEEE Transac-
tions on Software Engineering, 28(8), 2002.

[4] Y.-T. S. Li and S. Malik. Performance analysis of embedded
software using implicit path enumeration. In DAC, 1995.

[5] C. Park. Predicting program execution times by analyzing
static and dynamic program paths. Real-time Systems, 5(1),
1993.

[6] F. Stappert, A. Ermedhal, and J. Engblom. Efficient longest
execution path search for programs with compelx flows and
pipeline effects. In CASES, 2001.

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis Page 49 of 49

