
Computing the Worst Case Execution Time of an Avionics Program by

Abstract Interpretation

Jean Souyris* (jean.souyris@airbus.com),
Erwan Le Pavec* (erwan.lepavec@airbus.com),
Guillaume Himbert* (guillaume.himbert@airbus.com),
Victor Jégu* (victor.jegu@airbus.com),
Guillaume Borios** (guillaume.borios@airbus.com)
*Airbus France, **Atos Origin Integration,

Reinhold Heckmann*** (reinhold.heckmann@absint.com)

*** AbsInt GmbH

Abstract

This paper presents how the timing analyser aiT is used for
computing the Worst-Case Execution Time (WCET) of two
safety-critical avionics programs. The aiT tool has been devel-
oped by AbsInt GmbH as a static analyser based on Abstract
Interpretation

1 Introduction

In the field of safety-critical avionics applications, verifying
that a program exhibits the required functional behavior is not
enough. Indeed, it must also be checked that its timing con-
straints are satisfied. Generally these constraints are expressed
in terms of the Worst Case Execution Times (WCETs) of
program tasks.

The WCET of a program (or piece of a program, like a rou-
tine, a task, etc) is the maximum of the execution times of all
program runs. Unfortunately, finding the program run that leads
to the WCET is impossible for real-life programs. What is
achievable is computing an upper bound of the WCET, i.e., a
time greater than the real but incomputable WCET. In that case,
the WCET bound is said to be sound, and the less it is away
from the real WCET – from above – the better it is. A good
method for estimating the WCET of a program must be sound
and precise, i.e. yield tight results, with the ability to demon-
strate both properties.

 For the most safety-critical avionics programs, a pure
measurement-based method is not acceptable, especially if the
dynamic structure of the program was not made as deterministic
as possible, by design.

This paper will show how it became almost impossible to
compute the WCET of two safety-critical avionics programs by
Airbus’ traditional method, due to the complexity of the modern
processor they execute on (sections 2 and 3). Section 4 presents
AbsInt’s aiT for PowerPC MPC755, a tool that computes the
WCET of a program by analyzing its binary file. Section 5 de-
scribes how aiT is currently used for computing the WCET of
the two avionics programs we take as examples along the paper.
Finally, section 6 mentions future work and con-
cludes.Instructions

2 A challenging hardware

Sometime ago, processors behaved in a very deterministic
way. The latency of an instruction was a constant, i.e., it did not
depend on what happened before the execution of that instruc-
tion. This was the case for internal instructions (add, mul, or,
etc.) as well as for those that access external devices like mem-
ory or IO. In order to increase their average computation power,
modern processors are endowed with accelerating mechanisms
causing variable execution times of instructions. Hence, the
duration of an instruction depends on what was executed before
it. This “effect of history” can be very deep and without logical
correlation to the instruction it affects. One example of such a
mechanism is the cache. Indeed, depending on the execution
path leading to, say, a load instruction, the memory line contain-
ing the data to be loaded may already be in the data cache
(HIT), or not, be it that it was not yet loaded (MISS) or already
removed (MISS due to replacement). There are many other ac-
celerating mechanisms like out-of-order execution, branch pre-
diction, speculative accesses, “superscalarity”, duplication of
processing units (e.g., two Integer Units), Store Buffers, pipelin-
ing of addresses, etc.
The board on which the analysed programs execute is made of a
PowerPC MPC755, SDRAM, and IO peripherals connected to a
PCI bus. The MPC755 is a “modern” processor in the sense that
it employs the kind of accelerating mechanisms mentioned
above. SDRAM is also modern because of the sort of cache
associated to each bank of memory: The SDRAM page contain-
ing the most recently accessed memory address is kept “open”,
allowing for faster access in the future. The chipset making
these components “talk” to each other is modern as well, since,
for instance, it optimizes accesses to SDRAM by buffering
certain kinds of writes or by taking profit of the address pipelin-
ing mechanism of the MPC755.
As if this was not enough, the refresh of the SDRAM and the
so-called Host Controller (connected to the PCI bus) steal cy-
cles from the processor asynchronously.

3 A traditional method very hard to apply now

Before the new method based on aiT for PowerPC MPC755
was introduced, Airbus used some “traditional” method for
computing the WCETs of previous generations of the two avi-
onics programs. This method was a mix of measurement and

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis Page 21 of 49

ECRTS 2005
5th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/810

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62912071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

intellectual analysis. Let’s briefly describe how it worked for
each of the two programs.

First avionics program. Basically, the way the WCET is ob-
tained takes profit of the structure of the program, which is
produced by an automatic code generator taking a graphical
specification (SCADE) as input. The generated program almost
entirely consists of instances (or routine calls to) a rather lim-
ited set of small snippets like logical and comparison operators
(multiple input AND, OR, Level Detector), arithmetical opera-
tors (ADD, MUL, ABS, etc), digital filtering operators, etc. The
small size of these basic components makes it possible to meas-
ure their WCETs, as long as the initial execution environment
for each measurement is the worst possible with respect to exe-
cution time. One must also notice that the generated program is
very linear since all conditionals and loops occur in the small
snippets, thus being very local. The program being made of
instances of (or calls to) code snippets, the WCETs of which are
available after the measurement campaign, a simple formula
(more or less a sum) is applied for inferring the whole WCET,
knowing that each (instance of a) code snippet is executed once
and only once.

Second avionics program. The second program also consists,
for the main part, of basic processing units, each based on a
small number of patterns. The size and limited execution paths
inside these patterns make it also possible to measure their
WCETs in the same conditions as for the first program. But the
main difference to the first program is that the basic units form
the implementations of some abstract machine instructions col-
lected in an instruction table (also called configuration table).
The execution of the program is driven by a high-level loop,
reading instructions and parameters from the configuration
table, and then calling the appropriate basic processing units
implementing the instructions. Each basic processing unit being
called multiple times, the resulting WCET is the sum of the
basic WCETs of the instructions present in the configuration
table.

The traditional approach is correct with “deterministic
processors”. As stated in section 1, the computed WCET must
be sound, i.e., an upper bound of the real WCET, and tight, i.e.,
not too far from the real WCET. With processors having no – or
few – history-based accelerating mechanisms, both criteria are
met without too much difficulty since finding the worst possible
initial environment for the measurement of the WCET of each
snippet and producing a – non-formal – demonstration that the
computed WCET is an upper bound of the real WCET is acces-
sible to a human being, and the overestimation is acceptable.

Modern processors. But even for such deterministic programs,
the legacy methods are no more applicable when using hard-
ware components like the ones mentioned in section 2. The first
reason is that it is a lot harder to find the worst possible initial
environment for measuring the WCETs of the small snippets,
and also to get sure that combining these WCETs for computing
the WCET of the entire program is safe. The second reason is
that even if we could solve the first difficulty (worst initial envi-
ronment and safe combination), the resulting WCET would be
too much overestimated for being useful. Both reasons originate
from the history-dependent execution time of each instruction
that makes it impossible to deduce a good global WCET from
any local measurements or computations.

3.1 Asynchronous extra time (SDRAM refresh and Host
Controller (for Input/outputs) activity). When measuring the
WCET of the small snippets the whole program is made of,

only the effect of SDRAM refreshes is measured. It is therefore
not possible to infer a WCET of the program that encompasses
the effect of the Host controller

4 aiT for PowerPC MPC755

 AbsInt's aiT tools form a family of WCET tools for differ-
ent processors, including PowerPC MPC755. aiT tools get as
input an executable, an .ais file containing user annotations, an
.aip file containing a description of the (external) memories and
buses (i.e. a list of memory areas with minimal and maximal
access times), and a task (identified by a start address). A task
denotes a sequentially executed piece of code (no threads, no
parallelism, and no waiting for external events). The names of
the various input files and other basic parameters are bundled in
a project file (.apf file) that can be loaded into a graphical user
interface (GUI).

All instances of aiT determine the WCET of a task in sev-
eral phases: CFG building decodes, i.e. identifies instructions,
and reconstructs the control-flow graph (CFG) from a binary
program. User annotations may help aiT in identifying the tar-
gets of computed calls and branches. Value analysis computes
value ranges for registers and address ranges for instructions
accessing memory. Loop bound analysis determines upper
bounds for the number of iterations of simple loops. Such upper
bounds are necessary to obtain a WCET. Loop bounds that
cannot be determined automatically must be provided by user
annotations. Cache analysis classifies certain memory refer-
ences as cache hits. Pipeline analysis predicts the behavior of
the program on the processor pipeline and so obtains the
WCETs of the basic blocks. Path analysis determines a worst-
case execution path of the program.

Value analysis is based on an abstract interpretation of the
operations of the analyzed task, taking into account variable
values specified by the user (e.g. to restrict the analysis to a
certain operation mode of the analyzed software). The results of
value analysis are used to determine loop bounds, to predict the
addresses of data accesses and to find infeasible paths caused
by conditions that always evaluate to true or always evaluate to
false. Knowledge of the addresses of data accesses is important
for cache analysis. Value analysis usually works so good that
only a few indirect accesses cannot be determined exactly. Ad-
dress ranges for the remaining accesses can be provided by user
annotations.

Cache Analysis uses the results of value analysis to predict
the behavior of the (data) cache. The results of cache analysis
are used within pipeline analysis allowing the prediction of
pipeline stalls due to cache misses. The combined results of the
cache and pipeline analyses are the basis for computing the
execution times of program paths. Separating WCET determi-
nation into several phases makes it possible to use different
methods tailored to the subtasks. Value analysis, cache analysis,
and pipeline analysis are done by abstract interpretation. Integer
linear programming is used for path analysis.

5 WCET computation with aiT for PowerPC MPC755

First avionics program. We first present some more details
about the structure of the program. It consists of 24 uninterrup-
tible tasks that are activated one-by-one by a real time clock in
a fixed schedule: task 1 to task 24, then task 1 again, and so on
until the electrical power of the aircraft is switched off. This
time-triggered scheduling method requires that the WCET of

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis Page 22 of 49

oleg
Rectangle

each task must be less than the period of the real-time clock.
The call graph of each task is basically organized in three lay-
ers. The first layer contains 4 calls to so-called sequencers,
which for each task are selected from a list of 38 possibilities.
These sequencers allow for the activation of pieces of code at
different rates, i.e., 1 over 2 ticks, 4 ticks, 8 ticks or 24 ticks.
Still in this highest layer, some system routines are called be-
fore and after the four sequencer calls. The second layer con-
sists of the routines containing the actual operation code com-
posed of “calls” to code macros, which form the basic compo-
nents referred to in section 3. The third layer consists of the
input/output routines called by some of the basic components
present in the second layer.
As described in section 4, aiT requires some global parameter
settings in the graphical user interface, in a project file (.apf
file), or in a parameter file (.aip file), and user annotations in an
annotation file (.ais file). Global parameters are quite basic and
mainly describe the hardware, so let us concentrate on the work
involved in writing the annotations. As described in section 4,
annotations are mandatory when value analysis fails to find the
iteration bound of some loop or the computed address range for
an external access (load or store) is too imprecise. We now
present the annotations required in the analysis of the first avi-
onics program. As stated above, its functional code consists of
operators implemented as macros and a few input/output and
“system” routines.
Annotations in operators:

• cos(x) and sin(x): The values of these functions are ex-
tracted from some table. The index into this table is com-
puted from the floating-point number x given as argument.
As aiT does not “cover” floating-point calculus, its safe re-
action is not to compute any bounds for the value of the in-
dex. Hence the address range of the table lookup is un-
known. This range, which is in fact a function of the size of
the table, is provided by a user annotation.

• delay family (4 operators): These operators are called once
in the course of each task to store a value into some array.
They also update a static variable containing an index to
this array. Since the periodic updates of the index are trig-
gered by the real time clock and not by a loop inside the
code, aiT cannot compute the range of addresses for this
index. Thus an annotation has to be provided.

If the basic operators were implemented as routines, the num-
ber of annotations as described above would have been very
limited and, thus, affordable easily. Yet the operators are im-
plemented as code macros. Consequently, what would be a
single annotation in case of a routine splits into as many annota-
tions as there are instances of the macro in the code, which is
quite huge.
An automatic generator of annotations. For solving this in-
dustrial problem, it was decided to use the same technique for
annotating as for the coding itself, namely automatic genera-
tion. Indeed, an automatic generator of annotations has been
implemented that reads a generic description of an annotation in
a given macro (basic operator) and produces the actual in-
stances of this annotation for all occurrences of the macro in the
binary.
Annotations in I/O or “system” routines:
• Communication drivers (USB, AFDX): a few pointers in-

volved in the data exchanges via these communication
channels are too dynamic for being computed by aiT auto-

matically. The relevant address ranges must be provided
via annotations.

• Loops: Annotations are required for a small number
of loops whose iteration bounds cannot be determined by aiT.

The second avionics program is also based on uninterrup-
tible tasks activated by a real time clock. The tasks must com-
plete in the allowed time to guarantee proper functioning of the
program. Each task consists of a high-level loop that reads a list
of operation codes with parameters from a configuration table,
and for each operation code, calls the basic blocks implement-
ing the operation. These basic blocks are highly dependent on
parameterisations provided by the configuration table. The
parameterisations influence the timing behaviour because they
may induce specific processing or affect loop bounds and ad-
dresses of external accesses.

Therefore, it is of first importance for aiT to keep track of
these parameters as they are copied from the configuration table
to temporary variables and registers. In the first place, the con-
figuration table has to be recognized by aiT. The configuration
table is located in a specific area of a binary file. aiT supports
an annotation saying that a data area in the analyzed binary is
“read-only” so that the values found there can be used by value
analysis. However, in the program considered here, this con-
stant area is provided as a separate binary because the configu-
ration tables are separate loadable parts. Since aiT can analyse
only single binaries, the binary with the configuration table (this
is Mbytes of data) is translated into .ais file annotations specify-
ing the contents of the table. As the same basic blocks are called
multiple times in one task activation, either directly from the
main loop, or because they are low-level shared services, some
instruction cache hits can be guaranteed. However these cache
hits depend on the ordering of the operation codes in the con-
figuration table and cannot be taken into account by the stand-
alone basic block WCET measurements of Airbus’ “traditional”
approach (simple sum of basic block execution times). Hence
this method cannot take advantage of the improvements of
modern processors, and thus cannot provide WCET results
compatible with the allowed execution time.

The major part of the factors affecting the WCET (condi-
tions, loop bounds, pointers, etc) is found automatically by aiT,
either by code inspection or from the annotations describing the
configuration table. Yet some factors are outside aiT’s knowl-
edge and capacities, and annotations have to be provided to
bound the analysis and achieve a result. These factors are lower
and upper bounds on input data, static data from previous task
activations, or data provided by devices outside of processor
knowledge (DMA for example). For these, maximum loop it-
erations, values read from memory, branch exclusions, etc, have
to be specified to aiT.

There are 256 different configuration tables, corresponding
to different tasks of the same computer, and of different com-
puters in the aircraft. One objective of the separation of soft-
ware in configuration tables (lists of operation codes with pa-
rameters) and the code for interpreting these tables is to shorten
(in terms of delay between specification and deliveries) the
development and validation cycles for the software. This objec-
tive requires an automatic computation of the WCET without
direct human involvement.
WCET determination for the combination of the interpreter
code with each of the 256 configuration tables consists of de-
termining the longest execution path in a quite complex piece of
code. These WCET analyses are to be performed in a period of
time compatible with the industrial constraints associated with
the short development cycle. This however is possible due to

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis Page 23 of 49

oleg
Rectangle

the fact that the analyses for the 256 tables are independent
from each other and can be performed in parallel on many com-
puters.

6 Considerations about the results

The WCETs of the two programs are not yet publishable for
general confidentiality reasons; the authors apologize for that
and hope the reader will understand.
Nevertheless some considerations about the results and how
they were obtained are presented in this section.
First avionics program. This program has a very linear struc-
ture and limited sources of jitters (in number and amplitude).
This allows for valid comparisons between the figures obtained
by measurement during real executions of the tasks and those
produced by using aiT. The comparison shows that the WCET
of a task typically is about 25% higher than the measured time
for the same task, the real but non-calculable WCET being in
between.
Another comparison is worth to mention: the one between aiT’s
results and those of Airbus’ “traditional” method. As predicted
when the decision for using aiT was made, the figures obtained
by the traditional approach are a lot higher than those produced
by the aiT-based method. Actually the overestimation is such
that the “traditional” figures are useless.
Second avionics program. Despite the fact that this program
has not a linear structure and contains a great number of loops
and branches, the sources of jitter are limited. Most of the loop
and branch conditions can be evaluated knowing the configura-
tion table. There are still more sources of jitter than in the first
program, but comparisons between the figures obtained by
measurement of real executions and results produced by aiT are
still possible. The WCETs computed by aiT are about 50%
higher than the corresponding measured execution times. These
higher margins can be explained (at least in part) by the diffi-
culties to set up an environment for running the task that is suf-
ficiently close to the environment leading to the real WCET.
More importantly, the WCETs computed by aiT are much
lower than the results from the “traditional” method and are
compatible with the program’s timing constraints.
Status with respect to some general acceptance criteria.
• Soundness: First of all, aiT was developed in the frame-

work of Abstract Interpretation [2], which is very good for
the soundness of the underlying principles. The soundness
of the actual implementation of the tool, as used on the real
avionics programs, cannot be assessed formally. The way
of getting confident in the tool and its method of use is the
Validation/Qualification process sketched in section 7.

• Ease of use: Users, i.e., normal engineers, always worked
with aiT in an autonomous way. Furthermore, they were
able to develop utilities for making aiT easier to use in the
industrial context, like the automatic generator of annota-
tions (see section 5).

• Resource needs: The WCET computations for the second
avionics program (the most demanding one) take an aver-
age of 12 hours (on a 3+ Ghz Pentium 4) per task (there are
256 tasks). But this workload is dispatched on many com-
puters and is not a real problem. The main concern is about
the space requirement that is, for some analyzed tasks,
close to the current 3 Gbytes limit of the 32-bit architec-
ture. To address this point, a migration to the 64-bit archi-
tecture is under investigation.

7 future work

Validation. By this term the authors mean “getting a high level
of confidence” in the results produced by aiT as used on the
avionics programs referred to in this paper. Although some data
collected during the first industrial usage of aiT are already
available for validation, most of the work is still do be done. It
will have four basic objectives: soundness of the underlying
principles (a), correctness of the models (b), soundness of the
method of use (c), and validity of the results (d).
(a) and (b): most of the analyses performed by aiT (see section

3) have theoretical principles (models and sometimes
proofs) precisely described in theses or scientific papers.
Some effort has already been spent in reading this docu-
mentation. This process will carry on together with some
checking against hardware manuals, e.g., the PowerPC
MPC755 manual [3].

(c): the objective here is mainly to check that the annotations
(loop bounds, register contents at certain program points,
etc) do not make aiT compute an unsafe WCET.

(d): the very detailed results produced by aiT make it possible
to perform useful and automated checks. An example of
such checks is whether real execution traces (got via a
logic analyzer) belong to the set of those computed by aiT.

Qualification. This term comes from DO178B. In the case of
aiT, it is about the qualification of a verification tool. Current
practices consider that the qualification is twofold: in-service
history and qualification tests. Both items of the qualification
will be built from the outputs of the validation process. Also,
one should notice that the qualification of a tool is per avionics
program the tool is used on.

References

[1] Stephan Thesing, Jean Souyris, Reinhold Heckmann,
Famantanantsoa Randimbivololona, Marc Langenbach,
Reinhard Wilhelm, and Christian Ferdinand. An Abstract
Interpretation-Based Timing Validation of Hard Real-Time
Avionics. In Proceedings of the International Performance
and Dependability Symposium (IPDS), June 2003

[2] Patrick Cousot. Interprétation abstraite. Technique et
Science Informatique, Vol. 19, Nb 1-2-3. Janvier 2000,
Hermès, Paris, France. pp. 155-164.

[3] Motorola. MPC750 RISC Processors User’s Manual.

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis Page 24 of 49

oleg
Rectangle

