
1 

 
 

Media Distribution in a Pervasive Computing Environment 
 
 

Winfried A.H. Berkvens, Arjan Claassen, Joep P. van Gassel, Alexander Sinitsyn 
Philips Research 

{winfried.berkvens, arjan.claassen, joep.van.gassel, alexander.sinitsyn}@philips.com 
 
 

Abstract 
 

Distribution of media in the fast growing world of 
digital stored content and multimedia supporting devices 
with connectivity, calls for a new media distribution 
architecture. The user should be provided with the 
experience of having an overview of his full media 
collection, regardless of the time, the place, and the 
connectivity. The architecture presented in this paper, 
fulfils these needs and can cooperate furthermore with 
non-compliant devices. 
 
 
1. Introduction 
 

We believe that in the near future our homes will have 
distributed networks of intelligent devices that provide us 
with information, communication, and entertainment. 
Furthermore, these systems will adapt themselves to the 
user and even anticipate on users need. This concept, 
called Ambient Intelligence (AmI) [1], calls for attention 
of researchers. Noteworthy features of this new concept 
are ubiquitous computing, natural interaction, and 
intelligence. Recent developments in technology, the 
Internet, the consumer electronics market, and social 
developments indicate that this concept might become 
reality soon. 

The Connected Planet (CP) [2], as a first step towards 
realization of AmI, is an environment that puts people at 
the center of technology offering greater control, 
convenience, freedom, and productivity. It is an 
environment in which devices and appliances seamlessly 
communicate with one another and the outside world, to 
enhance people's daily activities. It is becoming a reality 
because of the available technologies (e.g. low-cost 
wireless connectivity, broadband Internet, high-capacity 
storage, etc.) and what consumers are beginning to 
demand (easy access to content and to other people – at 
an affordable price and from many devices). The CP will 
be enabled by an integrated network of displays, media 
storage and connectivity devices. They will cooperate to 
allow users to access, share and store media; 
communicate better; control and monitor security, 

lighting, utilities and services from anywhere within the 
home or the world (via mobile devices and the Internet). 

Besides, the next generation consumer electronics 
devices, the Personal infotainment Companion (PiC) is 
expecting to play a crucial role in this CP vision. 

In our vision the PiC is a small personal mobile device 
that stores and processes digital media (audio, video, still 
pictures and other data), for use both at home and away. 
The device contains a large-capacity embedded storage 
and has advanced (wireless and wired) networking 
capabilities. 

This paper highlights challenges in the media 
distribution area that need to be taken into account when 
developing middleware for the CP environment. It 
presents an architecture for media distribution in next 
generation of consumer electronics products. 
 
2. Problem description 
 

The proliferation in wireless networking technologies 
is enabling a new class of applications that allows users to 
access their personal data anytime and anywhere. 

Developing these types of applications, however, 
presents challenging problems to designers. Mobile 
devices, like the PiC, face temporary and unannounced 
loss of network connectivity when they move. They have 
usually short connection sessions. And they need to 
discover surrounding devices in an ad-hoc manner. 
Furthermore, they have scarce resources like limited 
battery power, processing power and memory. 

In order to cope with these limitations, many research 
efforts have focused on designing new middleware 
capable of supporting the requirements imposed by 
mobility. As a result of these efforts, a number of 
middleware systems has been produced (e.g. Sun J2ME 
[5], Microsoft .NET Compact [6], UPnP [7], Jini [8]). 
Some of these middleware systems are targeted at support 
for disconnected operations and data-sharing (Coda [9], 
Odyssey [10], Bayou [11], Xmiddle [12]). However, 
many issues still require research. The major one is how 
to provide the user with the experience of having all 
media he needs available at any time, in any place, 
regardless of connection availability in the heterogeneous 
environment. 
 

Dagstuhl Seminar Proceedings 05421
Data Always and Everywhere - Management of Mobile, Ubiquitous, Pervasive, and Sensor Data
http://drops.dagstuhl.de/opus/volltexte/2006/762

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 
 

3. Media distribution architecture 
 

Scenario-based architecting [3] is the process that has 
been followed to come up with an architecture for media 
distribution. As starting point for the process a number of 
user scenarios has been derived from different projects in 
our lab and some important ones have been identified by 
our market experts. Based on the selected user scenarios, 
the requirements have been identified and an architecture 
has been developed. 
 
3.1. User scenarios 
 

A set of scenarios is used as the basis of the process. 
The most relevant ones for this paper, covering most of 
the functionality of the system, are described here: 

“John and Rob meet after work in a pub. Rob would 
like to have the photos of last week’s party. John takes his 
PiC and drags these photos to Rob’s device, represented 
on Johns display. Rob directly sees the added new photos 
on his device even before the content is completely 
transferred.” 

“John is on a holiday trip. During the flight he starts 
organizing his music collection on his home server via his 
PiC without being connected. Returning home, the PiC 
propagates the changes to the home server, which carries 
through these changes.” 

“John is transferring a home movie from Rob’s PiC. 
Rob has to leave, causing the movie transfer to be 
interrupted. When John meets Rob and Harry the next 
day, the movie transfer continues automatically. Because 
Harry's PiC also contains the home movie, John’s PiC 
recognized the availability and starts downloading in 
parallel from Harry’s device.” 
 
3.2. Requirements 
 

From these user scenarios, requirements have been 
extracted. 

One of the requirements is to support the user in 
handling large sets of digital assets. Digital assets are 
pieces of electronically stored information valuable for 
the end user. In general, a digital asset consists of two 
parts: content (e.g. music, photo, video) and metadata 
describing this content (e.g. creator, title, album). This 
paper concentrates only on multimedia-related digital 
assets. Other types, like bank account and agenda 
information, are excluded. 

In order to offer the user yet bigger freedom to 
manage his digital collections the architecture needs to 
support both on-line and off-line digital asset exchange 
and synchronization providing the user with views of non 
connected devices/collections. So, the user should be able 
to manage assets, which may be currently unavailable due 
to device disconnection, as if they are available. Apart 

from that, changes made to the organization of assets 
should be reflected in the views immediately. 
Furthermore, the device connection and disconnection 
processes should be transparent for the user. 

Content transfer should be possible between all types 
of devices such as, stationary and portable devices, large 
and small size devices, devices implementing the 
architecture (e.g. home media center, PiC) but also legacy 
and peripheral devices (e.g. photo camera, MP3 player) 
that do not support it.  

In order to perform efficient, scalable and robust 
information management across multiple heterogeneous 
data sources our middleware system needs an abstraction 
layer from both underlying storage technologies (e.g. file 
systems, databases) and communication protocols. The 
system also should be robust, interruptible, priority-based 
(i.e. the most valuable asset is served first), and resource-
aware. 

To summarize, the media distribution system should 
support at least the following functions: 
• Large asset collection management; 
• Both online and off-line asset exchange and 

synchronization; 
• Separation of metadata transfers from content 

transfers; 
• Connectivity via multiple communication protocols 

with various types of devices from different vendors; 
• Robust, multi-target, priority-based, resource-aware 

content transfer management; 
• Configurable by the user;  
• Minimal interaction with the user during asset 

exchange. 
 
3.3. Architecture 
 

Based on the requirements, as described in the 
previous paragraph, an architecture for media distribution 
can be defined. This high level architecture, depicted in 
Figure 1, shows that the media distribution system 
interacts with applications on one side and with an 
abstraction of a device on the other side. Typical 
applications that can be thought of are for instance a 
browser application and a synchronization application. 
The device abstraction provides operating system 
functionality, storage, and connectivity. 

 



3 
 
 

 
Figure 1. High level architecture for media distribution 

This media distribution system provides means for 
transparent and consistent management of assets. The 
system separates the responsibilities for the handling of 
metadata from the handling of the content. Reason to do 
this, will become clear in the remainder of this section. 

The next paragraphs discuss the three components of 
this system in more detail. 
 
3.3.1. Media Distribution Management.   The media 
distribution management component offers the single 
point of abstraction for the applications running on the 
local device. All distribution related operations performed 
by applications on assets, like queries, copies, moves, and 
deletions, are handled by this component. Where 
necessary this component creates operations for the 
underlying media store or content distribution 
components. 

By providing this middleware abstraction, firstly, all 
applications can be kept unaware of where operations on 
metadata are routed and they do not necessarily need to 
know whether these operations are handled by a local 
metadata store or by a remote metadata store. At the 
moment an application requests for metadata, the media 
distribution management component addresses the 
convenient metadata store. So, a metadata request for a 
remote device can be forwarded to the remote device if it 
is present. If a representation of the metadata database, a 
so-called snapshot, of a remote device is available on the 
local device, such request can also be executed on this 
snapshot. This, because the access time to the local 
snapshot is expected to be shorter than accessing the 
remote device. When the remote device is not present, but 
a snapshot is available, a request can in this case also be 
executed on the snapshot. The decision on where the 
request will be handled is made by the media distribution 
management component. How the snapshot is kept up to 
date is discussed in Section 3.3.2. 

Secondly, all operations on assets are interpreted by 
the media distribution management component, which has 
the capability to decide whether an operation results in a 
request for metadata change, a request for content 
transfer, or a request for both or none of them. Operations 
requested by applications based on user actions performed 
on assets, provide the inputs for deciding whether changes 
in the content distribution are required. If changes in the 
content distribution are required, a content distribution 
component is informed. This is done by means of so-
called content distribution actions of which the following 
types are currently supported: copy content, move 
content, and delete content. Which content distribution 
component is informed, depends on the types of devices 
involved. If the destination device is compliant with the 
proposed architecture, the content distribution subsystem 
in this compliant device will control the transfer. If the 
destination device is a non-compliant device, e.g. legacy 
or peripheral device, the content transfer is controlled by 
the compliant source device. The reason for controlling 
the actions primarily from the destination device is to 
enable the destination device to have control over its own 
resources and to allow it to initiate the transfer of content 
from multiple sources simultaneously. 
 
3.3.2. Metadata Store.   The metadata store component 
deals with storing of metadata and making this metadata 
available to local or remote applications via the media 
distribution management component. 

One option to store this metadata is to tag each content 
file of an asset with its metadata (e.g. ID3-tag [4]) and 
query this metadata when requested by an application. 
Because this is very time consuming, due to the need to 
read these tags from the files, it has been chosen to 
separate metadata from the content. A Database 
Management System (DBMS) is being used for storing 
the metadata. Using a database furthermore allows the 
system to perform more complex queries. 

On top of the DBMS a metadata abstraction layer is 
included, to provide access to the metadata via an asset 
oriented interface. Furthermore, the abstraction makes it 
possible to implement whatever DBMS underneath 
without the need to change the interface. 

Allowing that the content storage is not mapped one-
to-one on the metadata organization, enables that a user 
can be presented with a user view that does not match the 
physical organization of the content. So, such a user view 
can even be provided if the content is not available on the 
device. Furthermore, assets need to be stored only once 
on a device but could be available at the same time in 
multiple places of a view. It even helps in providing the 
user with a direct response on organizational changes, 
giving the user feedback that an action is understood by 
the system, but allowing that the content redistribution 
which is possibly required is performed at a more 
convenient time. 



4 
 
 

Because content independent metadata storage is used, 
it is easy to include the use of snapshots in the system. By 
using snapshots, the information about assets of a device 
that is currently not available is still available to the user. 
This makes it possible to perform actions on these assets 
even when the device is not available. To make sure that 
the changes performed during an offline period are carried 
through on the original metadata database, the snapshots 
needs to be synchronized with the original database. 
 
3.3.3. Content Distribution.   The content distribution 
component takes care of handling the distribution of the 
content that belongs to the digital assets. It performs 
operations on content, based on the content distribution 
actions obtained from the media distribution management 
component. The different modules that are part of this 
component are shown in Figure 2. 
 

 
Figure 2. Detailed architecture of the content 

distribution component 

Each content distribution action received is stored in a 
transfer base, which is a pool of pending content 
distribution actions, and is carried out by the content 
distribution component at an appropriate time. Whether it 
is the appropriate time is decided by the transfer handler 
based on a number of conditions. 

The first condition that is used, is the availability of 
the device from which the content has to be retrieved and 
possible other resource constraints. The availability is 
checked via information stored in a device list manager, 
which receives this information via some service 
discovery mechanism (for instance UPnP Service 
Discovery). If the source device is accessible and 
sufficient resources are free a second condition, the 
priority of an action, can be used to select the appropriate 
content distribution action. The priority can be set based 
on the importance of the action which can depend on the 
(type of) application that generated the operation resulting 
in the content distribution action. For instance, it could be 
chosen that a user performed operation will result in a 

higher priority action than an automatically generated 
synchronization action. 

At the moment the action is selected, the transfer 
engine factory is requested to create a suitable transfer 
engine. This engine executes the actual requested content 
distribution. If the content can be transferred from 
multiple sources simultaneously, for each source device a 
transfer engine is created which transfers a specified 
segment of the content. When the transfer is finished, or 
when the transfer is stopped due to disconnection of one 
of the devices involved, the metadata for this asset is 
updated in the DBMS. In case of a transfer interruption, 
storing the transfer progress information makes it possible 
to resume the transfer later-on from the point where it was 
interrupted. Furthermore, by doing this, the user can be 
provided with feedback about the availability level of the 
content. 
 
4. Implementation 

 
The presented architecture was validated through a 

working prototype. The demonstrator code was written in 
C++ and runs under Linux on PC and Transmeta Crusoe 
platforms.  

The metadata store provides an object-oriented 
interface implemented on top of the relational database 
system MySQL [13]. Device and service discovery as 
well as remote action invocation was implemented using 
the UPnP framework [7]. The media distribution 
management component was build and positioned as an 
UPnP CDS extension service. To support media 
distribution with peripheral devices a device storage 
abstraction layer was build on top of USB Mass Storage 
[14], FireWire [15] and Bluetooth [16]. A transfer engine 
supporting HTTP based content transfers was build. 
 
5. Future work 
 

A basic architecture for media distribution, complying 
with the given requirements, has been presented. This 
architecture can however be extended with extra 
functionalities that will enhance the user’s capabilities in 
handling large sets of digital assets (e.g. [17]). User 
interaction models which improve the experience will 
provide other inputs for future work. 

To increase flexibility for programmers and enabling 
them to tune the proposed architecture the following 
policies have been envisioned: interface selection if a 
connected device has more than one; picking a suitable 
network technology and matching transfer protocol; 
scheduling and deletion of transfer actions in the Transfer 
Base. 

The proposed architecture does not explicitly deals 
with assets protected by digital rights management. The 
handles required for this will be added to the current 



5 
 
 

architecture. Eventually, the core parts of the architecture 
can be formalized and standardized, thereby enabling it to 
be added to future middleware systems. 
 
6. Conclusions 
 

Transparent distributed data management is crucial to 
Ambient Intelligent applications. The proposed media 
distribution architecture offers a possible solution. It 
provides the user with the experience of having all his 
media collections available at any time, in any place, and 
managing them regardless of connection availability in 
the heterogeneous environment. This experience is 
enabled in our system by the separation of metadata and 
content handling. Other features are efficient handling of 
snapshots, usage of various database technologies, and 
leveraging device and service discovery mechanisms. 
 
7. References 
 
[1] Philips Ambient Intelligence vision, 
http://www.philips.com/research/ami  
[2] Philips Connected Planet vision, 
http://www.philips.com/connectedplanet/ 
[3] H. Obbink, P. America. Towards Evergreen 
Architectures: On the usage of scenarios in system 
architecting. In Proceedings of the Int. Conference on 
Software Maintenance, pages 298-303, September 2003. 
[4] ID3 informal standards, http://www.id3.org/, 2003.  
[5] Sun Microsystems, Inc. Java Micro Edition. 
http://java.sun.com/products/j2me/, 2001. 
[6] Microsoft. .NET Compact Framework. 
http://msdn.microsoft.com/vstudio/device/compactfx.asp, 
2002. 
[7] UPnP Forum. Universal Plug and Play. 
http://www.upnp.org, 1998. 
[8] K. Arnold, B. O'Sullivan, R.W. Scheifler, J. Waldo, 
and A. Wollrath. The Jini[tm] Specification. Addison-
Wesley, 1999. 
[9] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, 
E. Siegel, and D. Steere. Coda: A Highly Available File 
System for a Distributed Workstation Environment. IEEE 
Transactions on Computers, 39(4):447–459, Apr. 1990. 
[10] M. Satyanarayanan. Mobile Information Access. 
IEEE Personal Communications, 3(1):26–33, Feb. 1996. 
[11] D. Terry, M. Theimer, K. Petersen, A. Demers, M. 
Spreitzer, and C. Hauser. Managing Update Conflicts in 
Bayou, a Weakly Connected Replicated Storage System. 
In Proceedings of the 15th ACM Symposium on Operating 
Systems Principles (SOSP-15), pages 172–183, Cooper 
Mountain, Colorado, Aug. 1995. 
[12] C. Mascolo, L. Capra, S. Zachariadis, and W. 
Emmerich. XMIDDLE: A Data-Sharing Middleware for 
Mobile Computing. Int. Journal on Personal and 
Wireless Communications, April 2002. 

[13] MySQL, http://www.mysql.com 
[14] Universal Serial Bus, http://www.usb.org 
[15] FireWire, http://www.apple.com/firewire/ 
[16] Bluetooth, http://www.bluetooth.com/ 
[17] A. Sinitsyn. A Synchronization Framework for 
Personal Mobile Servers. Second IEEE International 
Conference on Pervasive Computing and 
Communications, pages 208-212, March 2004. 
 
 

http://www.philips.com/research/ami
http://www.philips.com/connectedplanet/
http://www.id3.org/
http://java.sun.com/products/j2me/
http://msdn.microsoft.com/vstudio/device/compactfx.asp
http://www.upnp.org/
http://www.mysql.com/
http://www.usb.org/
http://www.apple.com/firewire/
http://www.bluetooth.com/

