
Analysis of Mojette Transform Implementation on Reconfigurable Hardware

József Vásárhelyi, Péter Serfőző
Department of Automation,

University of Miskolc,
Miskolc-Egyetemváros, Miskolc, Hungary,

{vajo, serfozo1}@mazsola.iit.uni-miskolc.hu

Abstract: In the last ten years there were intensive
researches to find new methods for image processing.
One of these methods is the Mojette transform
(MOT). This transform is an exact discrete Radon
transform defined for a set of specific projections.
The MOT is used mainly in image processing
applications. There were several implementation
using personal computers [8] and [9]. There are some
applications where real time computing is a must, but
the implementations before referred can not
accomplish this requirement. There is analysed the
Mojette algorithm implementation for images of
256x256 pixels. There is also analysed the
implementation of Mojette transform and Inverse
Mojette transform (IMOT) in Field Programmable
Gate Arrays using reconfigurable platform. The
paper tries to outline the development work in order
to create an embedded reconfigurable hardware
based on Xilinx ML310 board [13].

Index Terms: Field Programmable Gate Arrays
(FPGAs) image processing, Mojette transform,
embedded systems, run-time reconfiguration.

I. INTRODUCTION

The “word” Mojette comes from France (Poitiers),
where - in old French - it describes the class of white
beans. These white beans where used to teach children to
start computing basics of arithmetic (addition and
subtraction). Guédon named the transform Mojette after
the analogy of beans and bins. The bins contain the sum
of pixel values of the respective projection line [10].
Inscribing invisible marks (watermarking) into an image
has different applications such as copyright,
steganography or data integrity checking. Many different
techniques have been employed for the last years in
different spaces (Fourier, wavelet, Mojette domains, etc.)
[1-10]. The applications come from different field such
as computer tomography [11], internet distributed data
bases [4], encoding, multimedia error correction [12],
etc.

Until today the aim of the researches was software
implementation of the Mojette and inverse Mojette

transform. This kind of implementation can be used only
on still images, because they can not process the data in
real-time. Motion pictures and video streams require run-
time processing of the frames. Only specialized hardware
or embedded systems with real-time operating systems
can ensure this.

II. DIRECT MOJETTE TRANSFORM

The main idea behind the Mojette transformation
(similarly to the Radon transformation) is to calculate a
group of projections on an image block. [3].

The Mojette transform (MOT) (see [5], [6] and [7])
projects the original digital 2D image:

F = { F(i,j); i = 1, …, N; j = 1, …, M} (1.)

onto a set of K discrete 1D projections with:

M = { Mk(l); k = 1, …, K; l = 1, …, lK } (2.)

MOT is an exact discrete Radon transform defined
for a set S = {(pk, qk), k = 1,…, K} specific projections
angles:

() ()
∑

∈

−−=

==

Lji
kkl

lkkK

jpiqbjiF
bqpprojlM

),(
)(),(

,,
δ (3.)

where proj (pk, qk, bl) defines the projection lines pk,
qk; δ(x) is the Dirac delta with the form:

() 0_,1
1_,0{ =

== xif
xifxδ (4.)

and

}0);,{(=−−= kkl jpiqbjiL (5.)

is a digital bin in the direction θk and on set bl.

So the projection operator sums up all pixels value
which centres are intersected by the discrete projection
line l. The restriction of angle θk leads both to a different
sampling and to a different number of bins in each
projection (pk, qk).

Dagstuhl Seminar Proceedings 06141
Dynamically Reconfigurable Architectures
http://drops.dagstuhl.de/opus/volltexte/2006/746

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

For a projection defined by θi, the number of bins ni

can be calculated by:

1)1()1(+−+−= iii qMpNn (6.)
The direct MOT is depicted in Fig. 1 for a 3x3 pixel

image and for 3x3 pixel unary image. The set of three
directions S = {(-1, 1), (1, 1), (1, 0)}, giving the thirteen
bins for integer valued (*.pgm files – Portable Grey Map
format file with 256 grey tones) and unary image.

1 1

1

1

1

1 1

1

1 1

2

3 4

5

6

7

8

4

4
11

19

8

16

16

3

3

3

3
2

2

1

11

1

2

2
3

4
7

15
7

7

3
3

p,q = (1,1), (-1,1), (0,1)
Fig. 1. The direct Mojette transform for real valued (left)

and unary (right) image

The MOT can be either performed by directly
addition of the image grey values or by additio-modulus
(to preserve the magnitude of the computed spectral
coefficients). For binary images operation XOR may be
used (see [5], [6] and [7]).

III. INVERSE MOJETTE TRANSFORM

The inverse Mojette transform (IMOT) back-projects
the bins of the different projections onto the
reconstructed image. That means a single pixel bin
correspondence must be found at each iteration in order
to reconstruct a pixel value. When it has been done, this
pixel value is subtracted from each projection. The
Inverse Mojette Transform means to iterate this process
until the image is completely reconstructed. For the
reconstruction one need two projection sets, one is the
MOT of the image and the other is the MOT of a unary
image (each pixel value is 1). Fig. 2 shows the first step
of the reconstruction process.

17

19-7=12

16-7=11 3-1=2

3-1=2

17

p,q = (1,1), (-1,1), (0,1)

Fig. 2. Inverse Mojette Transform: (left) reconstructed
image, (right) correspondence finding in unary image

A. The condition of reconstruction

The key of the transform with regard to the controlled
redundancy is that the number of computed projections
can be larger than one need for the reconstruction
(inverse transform). Thus, we can control a first step of
redundancy with the number of projections. The question
is then to know how many projections and which
projections give an adequate set to reconstruct the image
(compute the Inverse Mojette Transform). The result was
given by Katz in 1979 for rectangular image [5].

According to Katz’s lemma [5], an image F of
dimension NxM pixels can be reconstructed with the set
of K projections M = {Mk} if

∑
=

=≤
K

k
kK pPN

1

 or ∑
=

=≤
K

k
kK qQM

1

 (7.)

were N x M is the image size, pk is the direction
coordinate of x axis (N), qk is the direction of coordinate
y axis (M). This means that for the reconstruction one
need as many projections as the sum of the absolute
value of the projection coordinates have to be equal or
greater then the dimension of the image in the same
direction. There is no need that both sums satisfy the
criteria, it is sufficient if one of the sums does.

The order of complexity of the MOT is linear both in
the number of projections and the number of pixels. In
order to obtain the same complexity for the IMOT, a
specific list of single pixel-bin correspondence has to be
created and managed [6, 7].

The main characteristic of the MOT is the
redundancy, which can be measured by the following
parameter:

1−=
∑
∑

pixels
bins

R
 (8.)

Due to the ill-posed nature of the IMOT important
degradation occurs when the bins have been slightly
modified during the transfer (i.e. before the IMOT
process start). [5], [6] and [7].

IV. “MOTIMOT” CO-PROCESSOR
IMPLEMENTATION

The “MOTIMOT” co-processor denotes the hardware
implementation of the direct and inverse Mojette
transform as co-processing elements of an embedded
processor.

To construct a new hardware for a special task is
difficult and expensive both in time and costs. Estimating
the hardware and software needs to implement a

2

MoTIMoT processing system there is necessary to map
the tasks what such a system should implement. These
tasks are not limited to the direct and inverse Mojette
transformation, but also posses embedded computer
functions with or without (subject of later analyses) real
time operating system kernel.

The images are received in real-time thru an Ethernet
connection or from a digital camera connected to the
platform via an USB port, after processing the image or
the frames these are returned to the sender or sent to a
client (PC, PDA, etc.).

The MOT and IMOT functions are implemented as
separate hardware co-processors of the main processor.
This is possible in two ways. The main processor can be
an off-chip or an on-chip solution. The co-processors can
be implemented in an ASIC chip or in Field
Programmable Gate Array (FPGA). The implementation
is motivated by this two solutions as in this way the
algorithm is implemented in parallel processes and using
relatively low frequencies (100-300MHz) and can be
obtained very high processing speeds.

As stated in [15] real time image processing needs
very high computing performances with relatively low
power dissipation, which condition can not accomplished
by PC and fixed point DSP. Also the ASIC solution is
not suitable for an academic research. While using FPGA
the advantage is of using embedded on-chip processors
with on-chip memory and on chip system bus. For this
reason and for the flexibility the Virtex IIP FPGA chip
will be used. During the design process the ML310 board
is used. This board is a Xilinx embedded system board
and for details see [14].

Just to summarize the ML310 board hardware
possibilities some characteristics are mentioned: the
Virtex-II Pro™ FPGA with the embedded PPC405, the
ML310 board features the following:

• Virtex-II Pro™ XC2VP30 FPGA
• ATX form factor motherboard
• 256 MB DDR DIMM
• System ACE™ CF controller
• 512 MB Compact Flash card
• Onboard 10/100 Ethernet network interface card

(NIC)
• RS-232 mini-cable
• Standard JTAG connectivity
• ALi South Bridge Super I/O controller (parallel and

serial ports, USB, etc.)
• ATX power supply

The System ACE™ CF controller is the power on
configuration manager with multiple configuration

possibilities. System ACE supports multiple bitstream
management, FPGA microprocessor cores, and system
reconfiguration/update over a network. They also provide
an easily scalable and reusable configuration platform, a
built in interface to a system processor, and the ability to
centralize configuration for the entire system, simplifying
debug and minimizing board space.

The main advantage using FPGAs is the flexibility of
development tools, the hardware-software co-design
solution, and hardware in the loop simulation.

Starting from a 256x256 pixel sized greyscale image
this requires 64KB memory. In order to process in
parallel all the projection lines (in the case of the direct
MOT) one need as many 64KB sized memory blocks
(i.e. Block RAM) as many projection lines we have for
this image size. The bin vectors are stored in the external
memory in a so called “MOT memory file”. The
dimension of the MOT memory file is given by the
product between the image slices, the number of bins ni
(see eq. 6.) and the maximum size of a bin. , which is
given below:

)mod,modmin(iii qMpN=λ (9.)

],1max[{_ wisizebin i == λ (10.)

)2mod_()_max(xsizebinCnrbit ++= (11.)
where

⎩
⎨
⎧

∈+=
∈=

=
+

+

Zkksizebinif
Zkksizebinif

x
,12_1

,2_0

)_max(_ nrbitnnmem
i

islicessizefile ⋅⋅= ∑ , (12.)

where N, M, pi, qi were specified in eq. (6), λi is the
maximum number of pixels contained by a bin in the ith
projection line, w is the number of projection lines, C is
the colour depth of the original images (8 bits for a
*.pgm), bin_size is the maximum number of pixels
contained by a bin for any projection line, ni is the
number of bins in the projection line i and nslices is the
number of image slices. An image slice is obtained by
the division of the image by an even number.

The division of the original image in slices is
motivated by the fact that during the transmission of the
MOT file this can be corrupted. From the corrupted
MOT file the image can not be reconstructed without
damaged area. While applying the Mojette transform to
slices the effect of the MOT corruption is diminished.
Also the memory necessary to calculate the MOT and
IMOT is smaller in the case of slices. Processing the
whole image would result in the need for reconfiguration

3

in order to calculate all the projections, because to load
the 256x256 image in the embedded memory need
256KB only for 4 projection lines (the XC2VP30 has
1.7Mb Block RAM ≈ 212KB). For this reason the
256x256 pixel image is divided in 4 slices (128x128).

While processing the IMOT (for the same image size)
one needs to read the MOT memory file from the
external memory and to reconstruct the image. For the
reconstruction one need to generate the MOT file of the
same size unary image with the same projection lines.
From eq. (10) the bin size means the maximum pixel
numbers contained by a bin and also defines the number
of bits needed for the unary bins of the unary MOT file.
During the back projection (IMOT) the bins which
contain only one pixel value are substituted to their
corresponding position. These pixel values contained by
other bins (in other projections) also and those bin values
have to be decreased with the current pixel value. To
calculate the positions of the bins in the projections and
to calculate the correspondence in the image of a single
pixel bin the unary image is needed. It results when the
value of a single pixel bin is substituted and the other bin
values are decreased, the changes also have to be
validated in the unary MOT file. The unary MOT file
contain unary bins. These bins contain not only the
current pixel number contained by the bin in the MOT
file but the corresponding position in the image of these
pixels to.

Since there is no need to process at the same time the
MOT and the IMOT there is the possibility to activate
only one co-processor at a time by using partial run-time
reconfiguration. The reconfiguration is activated by the
embedded Power PC processor using the ICAP interface,
since the ML310 board based system is intended to be an
independent working platform dedicated for Mojette
transform.

The proposed MOT/IMOT hardware is strongly
dependent by the ML310 board structure given in [13].
This dependency constrain only the communication
channels to the devices from which the images are
received, but do not impose limits to the co-processor
implementations. Fig. 3 shows the internal block schema
of a MOT/IMOT computing hardware. In the figure the
MOT/IMOT is represented as a single block, since the
implementation area needed for one of them will be used
to implement the other one, this may explain why partial
reconfiguration is needed.

Fig. 3 summarise only the main parts of the image
processing system. This are: the PowerPC as the main
processing unit, the MOT unit and the IMOT unit. Both
MOT and IMOT processors are connected to the

PowerPC via the internal PLB bus, because their work is
running under the main processor control.

Power
PC

I/O

I/O

I/O

I/O

External OnBoard Memory
(512 Mb)

MoTIMoT co-processor

Mojette
Transform

Inverse Mojette
Transform

SD-RAM
Controler

OPB

PLB

PLB: Processor Local Bus
OPB: On-Chip Peripheral Bus

128x128
byte dual
memory
128x128
byte dual
memory
128x128
byte dual
memory
128x128
byte dual
memory

Fig. 3. MoTIMoT Processor Block Scheme

The image processing algorithms are memory costly
therefore the onboard external memory will be used as a
dual memory for temporary store the image while MOT
is applied and for the image reconstruction while IMOT
is applied.

The PowerPC is the embedded hard core of the
Virtex II chip and provides the tasks which are needed by
the system. Also the main processor will supply the data
to the MOT and receive data from IMOT units by
transferring the 128x128 pixel size image slices from and
to the external memory.

A. MOT Block Scheme

Fig. 4 shows the block scheme of the MOT computing
unit. The dual memory unit with the size of 4x128x128
byte enables to decrease the I/O operation between the
onboard external memory and the MOT processor. The
128x128 image window is loaded in the dual memory 4
times, as 4 projection lines are processed in parallel at
once. In this way the quarter of the Mojette memory file
(MoTF) is computed at one instance. The SD-RAM
controller is responsible for the organisation of MoTF
structure. Each record in the file is a projection line of
the transform. A part of the image, a 128x128 pixel size
window will be transformed, so the transform will be
applied to the original image for four times. The
advantage of this method compared to other
implementations [8] and [9] is the parallel computing of

4

each projection line, which results in the increase of
processing speed on lower working frequencies
(100MHz). Another advantage as was mentioned is the
diminution of damages in the picture when the bins get
crashed. Also as mentioned when applying the transform
on 256x256 pixel size image and a bin get crashed, the
reconstructed image contain only distortions in the
columns of the bin and in the close neighbourhood.
Using only a 128x128 pixel size slice of image, the
vertical size of the damaged bin area is decreased by
50%.

Index computing
(p1,q1)

16 bit adder

Bin
Computing

(p1,q1)

Dual
Memory

Unit
(128x128

byte)

SD-RAM controller

Data Out

Dual
Memory

Unit
(128x128

byte)

Dual
Memory

Unit
(128x128

byte)

Dual Memory Unit
(Block RAM)

Memory Control Unit

Register
2

16x16
bits

Index computing
(p2,q2)

16 bit adder

Bin
Computing

(p2,q2)

Memory Control Unit

Index computing
(p3,q3)

16 bit adder

Bin
Computing

(p3,q3)

Memory Control Unit

Index computing
(p4,q4)

16 bit adder

Bin
Computing

(p4,q4)

Memory Control Unit

Register
1

16x16
bits

Register
3

16x16
bits

Register
4

16x16
bits

Mojette Transform Computing Unit

Dual
Memory

Unit
(128x128

byte)

Data In

Fig. 4. MOT Computing Unit

The index computing units has a starting address
(increased by a counter) and computes the memory
address of the corresponding pixels. After that the pixel
values are summed up by the 10-bit adder, the output
result the bin (ten bits long).

The code sequence calculating the bins of a
projection (p=1, q=32, im_size=127) is shown in Fig. 5.
The result is stored in a 16x16 bits size register where the
lower 10 bits are the bins, and the higher 4bits are the
unary bins (ubins) inserted as correspondence
information. When the registers are full, the bins are sent
to the external memory for storage.

for (i=0; i<=im_size+3p; i++)
 {
 for (j=0; j<=q-1; j++)
 {
 if (i= =0) do
 bin[i+j]=im[i,j];

 if (i = =1) do
 bin[i+j]=im[i,j]+im[i-p, j+q];
 if (i = =2) do
 bin[i+j]=im[i,j]+im[i-p, j+q]
 +im[i-2p,j+2q];
 if ((i = =3) && (i<=im_size) do

bin[i+j]=im[i,j]+im[i-p, j+q]
+im[i-2p,j+2q] +im[i-3p,j+3q];

 if (i= =im_size+p) do
 bin[i+j]= im[i-p, j+q]+im[i-2p,j+2q]
 +im[i-3p,j+3q];
 if (i= =im_size+2p) do
 bin[i+j]= im[i-2p,j+2q] +im[i-3p,j+3q];
 if (i= =im_size+3p) do
 bin[i+j]= im[i-3p,j+3q];

}

}
Fig. 5. Code sequence of projection line computation

B. IMOT Block Scheme

The inverse Mojette after configuration becomes
active and waits from the central processor the enable the
start of the IMOT processing. The quarter of the MoTF
file read from the SD-RAM is loaded in a temporary on
chip memory, this is necessary because the memory
MOT file have to be accessed as a whole and in parallel
for all the back projections.

The IMOT computing co-processor is somehow
similar to the MOT one, but instead of the bin storage
registers is need for a temporary memory. The size of
this memory (divided in 4 blocks) results from eq. (6)
completed with the corresponding ubin file, as was
described in the previous section (A).

During the back projection process when a single
pixel bin is found, the pixel value is replaced into the
blank image and is subtracted from the corresponding
bins of each projection record of the MOT file. The
reconstructed image is stored in the dual memory. The
reconstruction needs a register access arbiter in order to
compute the pixel position size. This results from the bin
position in the MOT file and the corresponding ubin
value. The arbiter decides which of the reconstruction
module can access the temporary registers. The pixel
reconstruction unit will use (the analogue of the bin
computing unit) value contained in the temporary storage
register to reconstruct its pixel and to update the bin
values.

5

V. SIMULATION RESULTS

The simulations were made on PC hardware
environment using a portable grey map 256x256 image
without transmission and no bit-corrupted errors.

Fig. 6 a. shows the original image and Fig. 6 b shows
the reconstructed image without any errors.

a) original image; b) reconstructed image

Fig. 6. Simulation result of original and MOT/IMOT
transformed image

The simulation proved the correctness of the
implemented algorithms and the functionality of the
proposed hardware.

VI. CONCLUSIONS

The paper outlined the hardware requirements for the
implementation of Mojette direct and inverse
transformation in the embedded system using FPGA.
Original contribution is the calculation of the dimension
of MoTF, the definition and analysis of the hardware
structure as a whole, with the simulation results.

Future work is needed to finalise the implementation
of the co-processors as a whole with run-time
reconfiguration.

AKNOWLEDGMENT

The authors gratefully acknowledge the donations of
Xilinx Inc. and Celoxica Inc. which made possible the start of
this research.

The research is part of the Hungarian-Research Project
GVOP 3.1.1-2004-05-0333/3.0.

REFERENCES

[1] Hartung, F., Kutter, M.: Multimedia Watermarking
Techniques, Proc. IEEE, vol. 87, No7, 1999.

[2] Turán, J.: Fast Translation Invariant Transforms
and Their Applications, ELFA, Kosice, 1999.

[3] Normand, N., Guedon, J. P.: La transformee
Mojette: une representation recordante pour

l’image, Comptes Rendus Academie des Sciences de
Paris, Theoretical Comp. SCI. Section, 1998, pp.
124 – 127.

[4] Guedon, J. P., Parrein, B., Normand, N.: Internet
Distributed Image Databases. Int. Comp. Aided
Eng., Vol. 8, 2001, pp. 205 – 214.

[5] Katz, M.: Questions of uniqueness and resolution in
reconstruction from projections. Springer Verlag,
Berlin, 1977. pp.

[6] Autrusseau, F., Guedon, J. P.: Image Watermarking
for Copyright Protection and Data Hiding via the
Mojette Transform, Proceedings of SPIE, VOL.
4675, 2002, pp. 378 – 386.

[7] Turán, J., Ovsenik, L., Benca, M., Turán, J. Jr:
Implementation of CT and IHT Processors for
invariant Object Recognition System,
Radioengineering, Vol. 13, No 4 2004. dec. page 65-
71

[8] Autrusseau F.: Modélisation psychovisuelle pour le
tatouage des images, Ph. D. Dissertation, Nantes,
France, 2002., pp.

[9] Szoboszlai P.: Digital Watermarking with Mojette
and Wawelet transforms, Diploma work, University
of Miskolc, Department of Automation, 2006, pp.
58.

[10] Guédon J-P., Normand N.: The Mojette Transform:
The First Ten Years, Proceedings of DGCI 2005,
LNCS 3429, 2005, pp. 79-91.

[11] Guédon J-P., Normand N.: Spline Mojette
Transform Application in tomography and
communication, In EUSIPCO, sep. 2002.

[12] Parrein B., Normand N., Guédon J-P.: Multimedia
Forward Error Correcting Codes For Wireless Lan,
Annals of Telecommunications (3-4) 448-463
March-April, 2003.

[13] Xilinx, ML310 User Guide, pp73, http:\\xilinx.com
[14] Bobda C., Huebner M., Niyonkuru A, Blodget B., Majer

M., Ahmadinia A.,: Designing Partial and Dynamically
Reconfigurable Applications on Xilinx Virtex-II FPGAs
using Handel-C, “http://www.celoxica.com/
cup/registered_users/community/default.asp“, pp. 16.

[15] Amilcar do Carmo L., Heithecker S., Rolf E.,
FlexFilm An Image Processor for Digital Film
Processing, Dagstuhl Seminar on Dynamically
Reconfigurable Architectures, 2-7.04.2006.
http://www.dagstuhl.de/06141/Materials/

[16] Heithecker S., Rolf E., FlexFilm: A Quality of Service
Capable Scheduling SDRAM Controller, Dagstuhl
Seminar on Dynamically Reconfigurable
Architectures, 2-7.04.2006.
http://www.dagstuhl.de/06141/Materials/

6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

