
Reconfigurable Architectures and Instruction Sets
Programmability, Code Generation, and Program Execution

Rainer Buchty

Universität Karlsruhe (TH), Institut für Technische Informatik
76128 Karlsruhe, Germany

E-Mail: buchty@ira.uka.de

Abstract. Within Self-reconfiguring systems two basic problems arise: on instruction level, reconfigurable instruc-
tion sets make program generation and execution inherently difficult. In addition, reconfiguration must not violate
certain restrictions vital for the running application. In this paper we describe a combined low-overhead approach
which targets both problems by instrumenting an attributed low-overhead run-time environment which is able to
dynamically map application-specific instructions to a variety of implementation alternatives while strictly adhering
to given application demands. Our approach can be used application-independent and is suitable for use within the
adaptive planning stage of a Self-X system as demonstrated by a reference implementation.

1 Introduction and Motivation

Self-X capabilities are introduced into computer systems for several reasons. Existing implementations usu-
ally deal with large-scale reconfiguration dealing with availability and fault-tolerance optimization, such
as task and service migration, storage systems, or network communication. These are typical problems of
server and cluster computing.

If Self-X is introduced to architecture level – as required for e.g. power vs. performance optimizations
in embedded systems – different problems arise. In this paper we want to concentrate on two basic problems
resulting from system reconfiguration on instruction level with respect to running applications.

Firstly, reconfigurable instruction sets make program generation and execution inherently different be-
cause of the changing mapping of functionality to reconfigurable instruction opcodes. For obvious reasons
it is not suitable to enforce an application recompilation with every hardware reconfiguration. Instead, we
propose an easy mapping technique to map dedicated instructions to either hardware or software modules,
so that this sort of translation takes place on-the-fly without requiring adopting the compiler infrastructure,
application recompilation, or application stopping and resuming.

Secondly, it must be ensured that reconfiguration efforts do not harm a running application, i.e. re-
configuration must be robust with respect to application requirements such as e.g. computation accuracy
or throughput. Therefore, some method must be implemented which guides the reconfiguration process to
let reconfiguration only take place within given application boundaries. To solve this problem, we propose
a method of attributing not only the application itself on a high-level, but also the application’s building
blocks, i.e. software and hardware modules.

We apply these methods to an example application where we demonstrate, how both methods can be
combined into a single building block ensuring binary compatibility and being part of the system’s adaptive
planning infrastructure.

This paper is organized as follows: Section 2 will describe our approach in detail, whereas Section 3
illustrates an example application. The paper is concluded with Section 4.

Dagstuhl Seminar Proceedings 06141
Dynamically Reconfigurable Architectures
http://drops.dagstuhl.de/opus/volltexte/2006/733

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Concept Outline

The concept of our approach is two-fold. Firstly, a method for maintaining binary compatibility within a
system offering a reconfigurable instruction set is presented. Then, we discuss our approach on adhering to
given application requirements.

2.1 Achieving Binary Compatibility
One major topic in reconfigurable architectures is the introduction of reconfigurable instruction sets to enable
dynamic application-specific instruction set enhancements. First architectures were introduced in the 1990s
which were either extending static instruction sets with application-specific functionality [2,1], or were data
graph-oriented [6,5].

In this work we want to concentrate on the first group, i.e. static instruction sets enriched with applica-
tion specific functions. With the Virtex-4FX [4,3] a commercial product exists featuring a general purpose
processor core which supports dynamic instruction set extension through a dedicated interface.

The imminent problem with such extensible, reconfigurable instruction sets is how to maintain binary
compatibility among various configurations of the dynamic instruction set. This problem can be targeted
using Just-in-Time (JiT) translation. The Java Virtual Machine (JVM) is a well-known approach to translate
an independent byte-code into the target processor’s instruction set. However, Java not only defines such
byte-code but also an entire run-time system, so the entire Java infrastructure becomes rather heavyweight.

Our approach condenses this concept to the core function, i.e. direct mapping of an arbitrary byte-code
to the desired target representation. This process can be even done easily in hardware, especially if the
input and target representation are pretty close: if only the reconfigurable part of the instruction set, i.e.
the application-specific instructions (ASI), need to be mapped, the translation process will be rather simple.
Hence, we divide the instruction set into a static and a reconfigurable part. On hardware level, a number
of opcodes is reserved for reconfigurable instructions (providing the ASIs), triggering the execution of a
desired application-specific function (ASF).

On software level, any ASF appears as a defined exception which is resolved by the translation process:
if the ASF is present as a hardware implementation , the associated reconfigurable instruction (e.g. a so-
called user-defined instruction, UDI, for the PPC405 core present in Xilinx Virtex-4FX FPGAs) will be
executed, otherwise a call to an assigned library function or subroutine is inserted into the instruction stream.
This is illustrated by Figure 1: here, the application-specific function #5 (ASF #5), taking two parameters
and returning a single result, is executed within a small code fragment. Upon occurrence of the ASF, the
following actions take place:
1. It is resolved, which functionality is associated with

ASF #5. This is necessary, because ASFs are just enu-
merated during program generation. Same ASF num-
bers in different tasks or programs not necessarily rep-
resent same functionality.

2. It is checked, whether this function is already present
in hardware, or if the associated functionality can or
should be added to the instruction set as a user-defined
instruction (UDI). If either is the case, ASF #5 gets
replaced with the opcode assigned to the UDI.

PUSH r1,r0
CALL asf_5
POP r0

LOAD r0,arg
LOAD r1,arg
ASF #5

UDI_5 r0,r0,r1

Fig. 1. Exemplary Instruction Translation Process

3. If the associated function is not present in hardware and/or can/should not be loaded then ASF #5 gets
replaced by a call to the corresponding library function. This is the case when e.g. all available UDIs are
already occupied and none can be replaced without violating another task’s constraints.

2



It must be noted, that it is possible to supply several implementations for a single ASF depending on
the application demands as described in the following section. For instance, a required computation can be
performed with different accuracy, i.e. single or double precision floating-point, or fixed-point/integer.

2.2 Granting Application Demands

In a reconfigurable system it must be ensured that application demands are granted, so that the application
does not break because of reconfiguration. This means that any adaptive planning and hence hereon based
reconfiguration must take application demands into consideration as another objective function.

For this, we like to introduce the concept of attribution. Such attribution takes place on application
level as well as within the application’s building blocks such as software libraries, hardware accelerators
etc. This means, that the application source code is enriched by certain attributes defining the application’s
requirements such as required minimum throughput, data sizes, or computation accuracy. Alternative im-
plementations of the aforementioned ASFs, in term, contain similar attributes providing information about
their respective performance.

During start-up and run-time, application and ASF attributes are weighed against each other and thus
appropriate ASF implementations are chosen for initial start-up and later to adopt to changed requirements.
This weighing process is driven by additional objective functions and environmental influences (such as e.g.
temperature or mode of power supply) and eventually leads to system reconfiguration, i.e. exchanging ASF
implementations as required.

Attributes

Impl. #2

Code

Attributes

Impl. #1

Code

Attributes

Impl. #3

Code

Library

Code

Attributes

Application

LOAD r0,arg
LOAD r1,arg
ASF #5

Fig. 2. Attribution Concept

VM

Adaptive
CPU

VM
Layer

HW−Library

SW−Library

Code

FEs

Code
Layer

HW
Layer

(Sensors)
Generic System Hardware

Univ. Binary
Compiler

Virtual Machine

Hardware

Predefine
ACPU

PPM

Fig. 3. Example Implementation

Figure 2 visualizes how the translation process is guided. We see an application on the left which carries
code and attributes. The application contains a part invoking an ASF. Now the application attributes are

3



weighed against the various implementations. In this little example three alternatives are given: #1 makes use
of hardware acceleration by invoking a user-defined instruction. #2 and #3 provide software implementations
using the fixed instruction set and perform the computation with different precision. Depending on the
outcome of the weighing process, one of these three implementations will be selected and inserted into the
instruction stream.

3 Example Implementation

We applied the aforementioned concepts to the design of an architecture focusing on power vs. performance
optimization. This example implementation as depicted in Figure 3 consists of three logical building blocks:
on lowest level, an adaptive CPU (ACPU) provides the actual reconfigurable computing hardware. The
CPU divides into a standard RISC processor which can be enhanced by user-defined instructions provided
by so-called functional elements (FE).

On top of the ACPU sits a VM responsible for mapping a uniform binary to the current system config-
uration. Upon processing an ASF exception, this VM decides whether this ASF should be mapped to a cor-
responding HW instruction (eventually forcing a reconfiguration cycle to load the dedicated ASI into hard-
ware), or call an appropriate software implementation. This software representation can use either the static
instruction set or, depending on the ACPU’s configuration, less specific (but still application-supporting)
instructions.

Since our example implementation focuses on power vs. performance optimization, we therefore in-
troduce a specific logical instance called Performance-Power-Management (PPM). The PPM is physically
distributed among program generation, where it aids to generate an initial ACPU configuration (and there-
fore the start configuration for the FEs), and, integrated into the VM, the run-time environment. During
program execution, it evaluates the current system configuration by ASF attributes and additional parame-
ters against given objective functions derived from user input and application attributes. The outcome of this
evaluation process might lead to system reconfiguration.

4 Conclusion & Outlook

In this paper we briefly discussed two major problems arising from system reconfiguration on instruction
level. These problems are binary compatibility and avoid violation of application requirements by the re-
configuration process itself. We delivered a light-weight and easy to implement solution for this dilemma,
which is also suitable for use within embedded systems. Finally, we introduced an example architecture,
currently under development, based on the described solutions.

References
1. P.M. Athanas and H.F. Silverman. Processor reconfiguration through instruction-set metamorphosis. In IEEE Computer, vol-

ume 26, pages 11–18. IEEE, Mar 1993.
2. J.R. Hauser and J. Wawrzynek. Garp: a MIPS processor with a reconfigurable coprocessor. In Proceedings of the 5th Interna-

tional IEEE Symposium on FPGAs for Custom Computing Machines, pages 12–21. IEEE, Apr 1997.
3. Xilinx Inc. Powerpc 405 processor block reference guide.

http://direct.xilinx.com/bvdocs/userguides/ug018.pdf.
4. Xilinx Inc. Virtex-4 family overview.

http://direct.xilinx.com/bvdocs/publications/ds112.pdf.
5. X.-P. Ling and H. Amano. WASMII: a data driven computer on a virtual hardware. In Proceedings of the IEEE Workshop on

FPGAs for Custom Computing, pages 33–42. IEEE, Apr 1993.
6. M.J. Wirthlin and B.L. Hutchings. A dynamic instruction set computer. In Proceedings of the 3rd International IEEE Symposium

on FPGAs for Custom Computing Machines, pages 99–107. IEEE, Apr 1995.

4


