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Abstract. An overall approach to the problem of error analysis in the
context of solid modelling, analogous to the standard forward/backward
error analysis of Numerical Analysis, was described in a recent paper
by Hoffmann and Stewart. An important subproblem within this over-
all approach is the well-definition of the sets specified by inconsistent
data. These inconsistencies may come from the use of finite-precision
real-number arithmetic, from the use of low-degree curves to approxi-
mate boundaries, or from terminating an infinite convergent (subdivi-
sion) process after only a finite number of steps.
An earlier paper, by Andersson and the present authors, showed how
to resolve this problem of well-definition, in the context of standard
trimmed-NURBS representations, by using the Whitney Extension The-
orem. In this paper we will show how an analogous approach can be
used in the context of trimmed surfaces based on combined-subdivision
representations, such as those proposed by Litke, Levin and Schröder.
A further component of the problem of well-definition is ensuring that
adjacent patches in a representation do not have extraneous intersec-
tions. (Here, ‘extraneous intersections’ refers to intersections, between
two patches forming part of the boundary, other than prescribed inter-
sections along a common edge or at a common vertex.) The paper also
describes the derivation of a bound for normal vectors that can be used
for this purpose. This bound is relevant both in the case of trimmed-
NURBS representations, and in the case of combined subdivision with
trimming.

1 Introduction

One of the fundamental problems in proving rigorous theorems in the area of
robustness of numerical methods, in the field of solid modelling, is that the
data normally provided to the algorithm is not only in error, it may be fun-
damentally inconsistent. These inconsistencies, in the data purportedly defining
a set to be manipulated by a solid-modelling algorithm, come from the use of
finite-precision real-number arithmetic, from the use of low-degree curves to ap-
proximate boundaries, or from terminating an infinite convergent (subdivision)
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process after only a finite number of steps. Representations often have both a
topological component and a geometric component; the geometric component
may itself be internally inconsistent, and it may be inconsistent with the topo-
logical component. One approach to resolving these inconsistencies is to propose
a definition of a set, satisfying strong guarantees of proximity to the given in-
consistent input data, and to take this as specifying the input set. This approach
permits subsequent rigorous proof, of theorems concerning algorithms that ma-
nipulate sets, in terms of well-defined input sets.

It should be noted that we are concerned with the case when the input data
is uncertain and, as mentioned above, possibly inconsistent.

In [1] it was shown how the Whitney Extension Theorem [2] can be used
to perform transfinite interpolation in order to realize the above goal of well-
definition of a given input set, in the context of standard trimmed-NURBS rep-
resentations. In this paper we will show how it can be used in an analogous
way for the well-definition of sets defined by combined subdivision surfaces [3].
Then, later in the paper, we will consider a more general setting, including both
of the special cases just mentioned, and provide a result for bounding normal
vectors. This result can be used to ensure that adjacent patches in a representa-
tion do not have extraneous intersections. (Here, ‘extraneous intersections’ refers
to intersections, between two patches forming part of the boundary, other than
prescribed intersections along a common edge or at a common vertex.)

Assuring the well-definition of input sets is an important subproblem within
the forward/backward error analysis described by Hoffmann and Stewart [4].

2 Transfinite interpolation

A transfinite interpolant is a surface that matches data on the entire boundary
of a two-dimensional domain, rather than just at a finite number of points. Such
surfaces can be obtained, for example, as solutions of the Dirichlet problem,
minimizing the functional

∫∫

D

(f2
x + f2

y )dxdy /

∫∫

D

‖f‖2dxdy

under the Dirichlet boundary conditions [5, p. 110], or by finding area-minimizing
solutions. The shape of such solutions is illustrated by a soap-film stretched over
a wire-frame (see for example [6, frontispiece]).

Transfinite interpolation has been used since the earliest days of geomet-
ric and solid modelling. For example, the Coons patch [7] is a C1-continuous
transfinite interpolant; see also [8]. More recently this kind of interpolation has
been used by Gross and Farin to generalize Sibson’s interpolant to the case of
boundary interpolation [9], and by Shapiro and his students [10] in the context
of modelling heterogeneous materials on a point-by-point basis. As mentioned
in the Introduction, it has also been used in quite a different way, to provide
a definition of a well-formed set in the study of robustness [1, 4]. In this last-
mentioned context, the transfinite interpolant is not actually computed, but is
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introduced only to permit proof of rigorous theorems about a single well-defined
set that can be viewed as the one specified by the inconsistent data provided to
a numerical method. This approach will be described in the following section.

3 Whitney extension to provide transfinite interpolation

in the context of solid modelling

We begin this section by stating a version [1] of the Whitney Extension Theorem
[2] that is appropriate for our purposes.

Suppose that we have a mapping

ε : C → R3, (1)

where C is a compact subset of R2, and suppose that each component ε of ε

satisfies a Lipschitz condition

|ε(p1) − ε(p2)| ≤ L · ‖p1 − p2‖, p1,p2 ∈ C

where

L = sup
p

1
,p

2
∈C, p

1
6=p

2

|ε(p1) − ε(p2)|

‖p1 − p2‖
(2)

is finite. Then [2] we can extend ε to a continuous function on all of R2 that
satisfies a Lipschitz condition with the same Lipschitz constant L.

In fact, let
l(p) = sup

q∈C

{ε(q) − L · ‖p − q‖}, p ∈ R2, (3)

u(p) = inf
q∈C

{ε(q) + L · ‖p − q‖}, p ∈ R2, (4)

and

ε(p) =
1

2
[l(p) + u(p)], p ∈ R2. (5)

It is easy to show [11] that any continuous function satisfying the Lipschitz
condition on R2 is bracketed by the lower function, l(p), and the upper function,
u(p), and [12] that l(p) and u(p) are themselves solutions to the extension
problem. Furthermore [1], ε(p) is a solution to the extension problem satisfying

|ε(p)| ≤ sup
q∈C

|ε(q)|, p ∈ R2.

Theorem 1. (Whitney, 1934) The mapping ε(p) given in (5) is a continuous
function on R2 that coincides with the mapping (1) given on C. Furthermore,
the mapping given in (5) satisfies a Lipschitz condition everywhere in R2, with
Lipschitz constant L defined as in (2), and it satisfies the inequality

|ε(p)| ≤ sup
q∈C

|ε(q)|, p ∈ R2.

The Lipschitz constants for each of the components of ε can be used to define
a Lipschitz constant for the vector-valued function ε.
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3.1 The trimmed-NURBS case

In this subsection we give a summary of the use of Whitney Extension to define
well-formed sets in the case of the standard trimmed-NURBS representation [1,
4].

The data ∆ in the trimmed-NURBS representation of a solid S is in two parts,
the geometric data and the topological data. The geometric data in ∆ comprises
a finite set of compact oriented 2-manifolds-with-boundary, and corresponding
sets of explicit boundary curves and corner vertices. The underlying surface for
each 2-manifold is represented by a spline function over a parametric domain
D0, with range in R3. The spline function is then restricted to a subset D
of D0, as delineated by certain curves in the parametric domain, yielding a
trimmed NURBS patch. (Such trimming may arise, for example, as the result of
the intersection of two surfaces for representing the boundary of the solid.) Thus,
each 2-manifold-with-boundary is represented by a trimmed NURBS patch.

Figure 1 illustrates two trimmed patches which join (approximately) along
the intersection of two surfaces F and F ′, restricted respectively to D and D′.
The part of the representation of the solid corresponding to the intended in-

v

b

D

p

D
′

p′

F F ′

Fig. 1: Two adjoining trimmed NURBS patches

tersection comprises two (almost certainly inconsistent) pre-images, defined by
p-curves, which are parametric curves p and p′ with ranges in the respective
parametric domains. In addition, there is often a third representation, usually
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inconsistent with the other two, which is a parametric curve b, with range in
R3, and which follows closely the images of the p-curves p and p′. Finally, there
may also be an explicit representation of each endpoint v ∈ R3 of the parametric
curve b = b(t), as illustrated in Figure 1. Here, however, we consider the more
usual case where v always coincides with an endpoint of b.

The representation ∆ also contains symbolic information, or topological data,
describing how the faces, edges and vertices of the cellular decomposition of the
boundary ∂S of S fit together. This data defines a topological 2-cycle. Ideally,
the geometric and topological data are consistent: for example, corresponding to
each 2-cell in the topological data is a trimmed surface patch in R3 (two of these,
F [D] = {F (u, v) : (u, v) ∈ D ⊆ D0} and F ′[D′] = {F ′(u, v) : (u, v) ∈ D′ ⊆ D0},
are shown in Figure 1).

Unfortunately, as illustrated in Figure 1, the curve b(t) does not usually
coincide exactly with the corresponding edge of F [D], nor with the corresponding
edge of F ′[D′], and the question therefore arises, which subset of R3 should be
considered to be represented by the given inconsistent data?

In [1], the set considered to actually be represented by ∆, i.e., the realization
S of ∆, is defined by its boundary ∂S. This boundary is made up of slightly
perturbed trimmed-NURBS patches from ∆, where the perturbation is defined
by the Whitney Extension Theorem. The slightly perturbed patches are not
necessarily NURBS patches, but they are mutually consistent with the explicit
boundary curves b(t), and they all fit together in a way that is exactly consistent
with the topological data. This is done by taking C = ∂D and

ε(p) = bk([pk]−1(p)) − F (p), p ∈ ∂D

in Theorem 1, where [pk]−1 is the inverse of the particular p-curve pk for which
pk(t) = p for some t ∈ [0, 1]. Thus, ε is the difference between the edge of
the trimmed patch F [D], and the boundary curves bk, viewed as a function of
p ∈ ∂D. (It is assumed that each bk and each pk is injective, and that distinct
p-curves do not intersect, except at appropriate endpoints.) Then, the Whitney
theorem can be used to extend the patch to all of D.

The meaning of the words ‘slightly perturbed’, in the previous paragraph, is
thus quite satisfactory. The perturbation of the trimmed patch, denoted ε(p), is
continuous, and the magnitude of the perturbation nowhere exceeds the magni-
tude of the largest discrepancy between the edge of the given patch and the given
neighbouring explicit boundary curves b(t). (In other words, the perturbation
is nowhere larger than the largest discrepancy already in the given data, along
the edges of the given patch.) In addition, the perturbation satisfies a Lipschitz
condition throughout the patch, with a Lipschitz constant for each component
ε of ε equal to

L = sup
q
1
,q

2
∈∂D, q

1
6=q

2

|ε(q1) − ε(q2)|

‖q1 − q2‖
.

(In other words, the perturbation satisfies a Lipschitz condition over the entire
patch, with a constant equal to the constant in the Lipschitz condition cor-
responding to the discrepancy present, along the edges of the given patch, in
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the given data.) This Lipschitz condition is important, because it allows us to
bound the change in the normal vector of the perturbed patch, relative to the
normal vector n of the given trimmed patch. Such a bound will be necessary
when we want to preclude the possibility that adjacent patches have extraneous
intersections. This question will be discussed in Section 4, below.

3.2 Combined-Subdivision-with-Trimming case

A representation permitting trimming of subdivision surfaces was proposed in [3],
as an alternative to the classical NURBS representation. The representation is
based on the combined subdivision schemes proposed by Levin [13], which permit
the construction of subdivision surfaces having arbitrary boundary curves (any
piecewise-smooth parametric curve possessing an evaluation procedure). Such
schemes modify the subdivision stencils (for example, the Loop or Catmull-
Clark stencils) near the boundary, using data from a boundary curve c = c(u)
supplied as part of the input [3].

We will refer to the representation of [3] as Combined Subdivision with Trim-
ming (CST). Comparing it with the trimmed-NURBS representation of Subsec-
tion 3.1, the supplied boundary curve c : [0, 1] → R3 corresponds to the combined
closed curve made up from the m given boundary segments b1(t), . . . , bm(t),
joined end to end to form a simple closed curve embedded in R3. Since c is re-
quired only to be piecewise smooth, it is possible to have corner points like those
occurring at a join such as bl−1(1) = bl(0) in the trimmed-NURBS representa-
tion. Beyond this, however, the representations are quite different. The surface
patch in the CST representation is the limit of a modified combined-subdivision
scheme which approximates an initially given input surface, and which, in the
absence of roundoff error, interpolates the boundary curve c = c(u) exactly.
Note that the transfinite interpolation implied by this limiting process forms
part of the actual representation. This is in contrast to the Whitney-Extension
transfinite interpolation used in Subsection 3.1 for the purpose of defining a
theoretical set determined by inconsistent data in a representation. We will,
however, also apply Whitney-Extension transfinite interpolation in the case of
CST representations.

Following [3], a general subdivision-surface control point i, at level j in the
subdivision hierarchy, is denoted p

j
i , and the breakpoint values in the parametric

domain of c are denoted uj
i . A surface called the original surface [3], denoted

here by Σ, is defined by the (given) control points p0
i [3], along with a given

subdivision scheme such as the Loop scheme [3, 13]. The subsequent trimming
algorithm, which produces the actual trimmed-surface ΣT , involves, first, a local
remeshing of the control polyhedron to accommodate the trim curves, together
with a sampling of Σ to choose control points for the trimmed surface. This
information is used in an approximation stage that modifies the surface shape
near the trim curve, in order to ensure proximity to the surface Σ.

The local remeshing will normally cause the assigned initial parameter values
u0

i to be modified. Again following [3], we will continue to denote these modified
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values by u0
i . The surface Σ is then sampled to find points corresponding to the

control points of the original mesh.

The approximation stage of the trimming algorithm fits the trimmed surface
ΣT to Σ. This operation is only required near the trim curve, where the control
mesh was generated by the remeshing algorithm. Away from this region, the
trimmed surface is identical to Σ; within the region, the approximation of Σ is
generated as a hierarchy of detail coefficients d

j
i , which are (additive) modifica-

tions of the control points p
j
i . The depth of the subdivision hierarchy is limited

by the introduction of a finite convergence threshold [3, Sec. 3.3].

The final trimmed-surface representation is therefore defined by a hierarchy
of u-domain control points uj

i , which depends on (the possibly modified versions

of) the original breakpoints u0
i , and a hierarchy of control points p

j
i with asso-

ciated detail vectors d
j
i , which depends on the original p0

i . As observed in [3],
the above trimming algorithm guarantees exact transfinite interpolation of the
desired trimmed curve. This statement assumes that the subdivision process is
continued until convergence, and without roundoff error. In practice, however,
the actual representation will be the result of only a finite number of steps of
the combined-subdivision process, and it will be the result of calculations using
finite-precision floating-point arithmetic.

It follows from this last remark that if we place ourselves in the context of
Subsection 3.1, and seek to prove rigorous mathematical theorems stating that
the representation defines a well-formed subset of R3 which has a boundary that
is in some sense close to a given collection of input surfaces {Σk}k=1,..., then we
must agree on the definition of this subset. One possibility is to define the set in
terms of the exactly defined limiting surfaces specifying its boundary patches.
To do this, however, it would be necessary to preclude extraneous intersections,
as defined at the end of Section 1: intersections between two boundary patches
other than prescribed intersections along a common edge or at a common vertex.
This, in turn, would require bounds on the normals of the limit surface ΣT , which
is defined in terms of the (rather complicated) process described in [3]. It is not
clear whether this approach is feasible.

In this paper we propose an alternative approach, analogous to Subsec-
tion 3.1. The situation is illustrated in Figure 2, where two CST patches are
intended to meet along a common edge. We assume, of course, that ck(u) and
ck′

(u) coincide along this common edge, but in practice, as already mentioned,
the trimming algorithm will terminate after a finite number of steps and, fur-
thermore, ck(u) will be evaluated using finite-precision floating-point arithmetic;
consequently, the edge of Σk

∗ , the computed approximation of Σk
T , will not co-

incide exactly with ck(u). On the other hand (and this is implicit in [3]), it
will be possible to obtain very satisfactory bounds for the difference, which we
denote by ε(p), where p is a point on the boundary of the final control poly-
hedron produced by the combined subdivision process. Assuming such bounds
have been found, the Whitney Extension Theorem can be applied exactly as in
Subsection 3.1 (the set C in Theorem 1 is now taken to be the boundary of the
final control polyhedron) to provide a definition of the boundary of the actual
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Σ

k

T

ck
′

(u)
↘

ck(u)
↙

Fig. 2: Two adjoining CST patches

subset of R3 specified by the inconsistent data that specified each of Σk
∗ and Σk′

∗

separately.
The only remaining issue is the possibility of self-intersection of the combined

patches: the patches provided by Whitney Extension guarantee that adjoining
patches will meet properly at a common edge, but we must exclude the possibility
that there are other intersections (see Figure 3, where the CST patches are shown
in cross-section). In the case of CST patches based on Loop or Catmull-Clark
subdivision, it has been shown [14] that Σk

∗ (respectively Σk′

∗ ) and its derivatives
can be evaluated directly, which means that the normal vector nk (respectively
nk′

) can be estimated, and, say, the method of Volino-Thalmann [15–17] applied.
This is the subject of Section 4, where an analysis will be presented in a setting
that includes both the trimmed-NURBS and CST cases.

4 Bounds on normal vectors

The fundamental step required, in order to apply the Volino-Thalmann method
for detection of self-intersection of the boundary of the set defined by Whitney
Extension, is to bound the normal vector of the perturbed surface in terms of
the normal of the original surface. The well-formed set that we are attempting
to define is specified in terms of the perturbed surface provided by Whitney
Extension, but it is only the normal vector of the original surface that is available
to us.
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nk
′nk

Approximate patches

Whitney Extension

ck(u) = ck
′

(u)

Fig. 3: Extraneous intersection of adjoining CST patches

The following analysis is an extension of that found in [1, Sec. 5].
Denote the original patch by F , and the perturbed patch defined by Whitney

Extension by G = F + ε. (In the trimmed-NURBS case, the notation F here
refers to F [D], the restriction of the NURBS mapping F (u, v) to the trimming
domain D, as in Subsection 3.1. In the CST case, Subsection 3.2, F refers to a
CST patch such as Σk

T .) Also, denote by nF and nG the normal vectors at an
arbitrary parameter point (U, V ). (In the trimmed-NURBS case, see [18]; in the
Loop or Catmull-Clark case, see [14].) In order to use a variational argument,
we will write U = uo + δu, V = vo + δv, and consider the case when U → uo,
V → vo. In the limit, the projection of F (uo + δu, vo + δv) on the tangent plane
of F at (uo, vo) is equal to F (uo, vo), and the normal nF (uo + δu, vo + δv) is
equal to n(uo, vo).

We will now give a bound for the angle φ, between the two normals nF and
nG, expressed in terms of the coefficients

E = ∇uF · ∇uF

F = ∇uF · ∇vF

G = ∇vF · ∇vF

of the first fundamental form:

I(du, dv) = Edu2 + 2Fdudv + Gdv2
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(see for example [19]).
Let f = ∇uF (uo, vo) and s = n(uo, vo)×∇uF (uo, vo). In the orthogonal co-

ordinate system
(

f
‖f‖

, s
‖s‖

)

of the tangent plane of F at (uo, vo), the coordinates

of F (uo + δu, vo + δv) are:

u = F (uo + δu, vo + δv) ·
f

‖f‖

v = F (uo + δu, vo + δv) · s
‖s‖ .

We take u and v as new parameters, and, using the Implicit Function Theorem,
define

m(u, v) =

(

uo + δu
vo + δv

)

.

Then, using Taylor’s theorem, it is easy to show that

m(u, v) =

(

1

‖∇uF ‖

− cos θ

sin θ·‖∇uF ‖

0 1

sin θ·‖∇vF ‖

)(

u − F (uo, vo) ·
f

‖f‖

v − F (uo, vo) ·
s

‖s‖

)

+

(

uo

vo

)

(6)

where
θ = 6 (∇uF (uo, vo),∇vF (uo, vo)) (7)

and

G(u, v) = (u, v, 0)T +(ε(m(u, v))·
f

‖f‖
, ε(m(u, v))·

s

‖s‖
, ε(m(u, v))·

n

‖n‖
)T . (8)

The second term on the right is the perturbation vector expressed in the local

coordinate system
(

f
‖f‖

, s
‖s‖ , n

‖n‖

)

.

To simplify the notation (and to emphasize the correspondence with the
derivation in [1]), let (e1, e2, e3)

T denote the components of ε in the parametric
domain (u, v). Then, from (8),

G(u, v) =





u + e1

v + e2

e3



 ,

and in the limit as δu, δv → 0,

nF (u, v) = (0, 0, 1)T .

It follows that if φ is the angle between nF and nG, then in the limit

cosφ =
(Gu × Gv) · (0, 0, 1)T

‖Gu × Gv‖

where

Gu × Gv =





1 + e1u

e2u

e3u



×





e1v

1 + e2v

e3v



 =





e2ue3v − e3ue2v − e3u

e3ue1v − e3ve1u − e3v

1 + e1u + e2v + e1ue2v − e2ue1v



 .
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It can then be shown, using the same analysis as that in [1], that

cosφ ∼= 1 −
(e3u)2

2
−

(e3v)2

2
. (9)

In order to bound the derivatives e3u and e3v, we use (6) and the fact that
from the Whitney Extension Theorem, if ε satisfies a Lipschitz condition with
constant L on the boundary of the patch, then it satisfies the same Lipschitz
condition everywhere, and consequently

∣

∣

∣

∣

∂e3

∂mi

∣

∣

∣

∣

≤ L, i = 1, 2.

Using this inequality, and (7) and (9), it follows (after some algebra) that

cos φ ≥ 1 −
L2

2

[

E + 2F + G

EG − F 2

]

where E, F and G are the coefficients of the first fundamental form, given above.

Note that if θ = π
2
, then F = 0, and this lower bound becomes 1− L2

2

[

E+G
EG

]

.
If in addition we have ‖∇uF ‖2 = ‖∇vF ‖2 = 1, so that E = G = 1, then the
lower bound becomes 1 − L2. This was the special case treated in [1, Sec. 5].

It would be worthwhile, also, to study the variation of the normals (between
the surfaces Σ and ΣT ) induced by the CST scheme, and to modify the scheme, if
necessary, to reduce this variation. The additional variation introduced by Whit-
ney Extension will normally be small. Indeed, the value of L used for Whitney
Extension will be small provided that the curvature of c is bounded below, and
provided that the spacing uj

i is fine enough, relative to this lower bound. (We

are assuming here, however, that the spacing of the uj
i is still coarse enough so

that roundoff error does not play a major role in the variation of ε.)

5 Conclusion

In this paper we have shown how Whitney Extension can be used in the well-
definition of objects defined by approximate surface patches, in conjunction with
the bounds derived here on the variation of normal vectors. These bounds depend
on the Lipschitz constant defined by the error in the approximate surface patch
along its boundary, and by the (first-normal-form) parameters of the surface.
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