
Floating Point Geometric Algorithms for

Topologically Correct Scientific Visualization

E. L. F. Moore, T. J. Peters∗

July 28, 2006

Abstract

The unresolved subtleties of floating point computations in geometric mod-
eling become considerably more difficult in animations and scientific visu-
alizations. Some emerging solutions based upon topological considerations
will be presented. A novel geometric seeding algorithm for Newton’s method
was used in experiments to determine feasible support for these visualization
applications.

1 Computing the pipe surface radius

Parametric curves have been shown to have a particular neighborhood whose
boundary is non-self-intersecting [4]. It has also been shown that specified
movements of the curve within this neighborhood preserve the topology of the
curve [8, 7], as is desired in visualization. This neighborhood is defined by a
single value, which is the radius of a pipe surface, where that radius depends
on curvature and the minimum length over those line segments which are
normal to the curve at both endpoints of the line segment [4]. The focus of
this paper is efficient and accurate floating point techniques to compute that
radius.

∗Department of Computer Science & Engineering, University of Connecticut, Storrs,

CT 06269-2155, tpeters@cse.uconn.edu.

1
Dagstuhl Seminar Proceedings 06021
Reliable Implementation of Real Number Algorithms: Theory and Practice
http://drops.dagstuhl.de/opus/volltexte/2006/717

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Definition 1.1 For a non-self-intersecting, parametric curve c, where

c : [0, 1] → R
3,

and for distinct values s, t ∈ [0, 1], the line segment [c(s), c(t)] is doubly
normal if it is normal to c at both of the points c(s) and c(t).

Definition 1.2 The global separation is the minimum over the lengths of
all doubly normal segments. (For compact curves, this minimum has been
shown in be positive [5].)

An example cubic B-splines curve is given in Figure 1, with

1. control points: (0.0 0.0 0.0) (-1.0 1.0 0.0) (4.5 5.5 2.0) (5.0 -1.0 8.5)
(-1.5 2.5 -4.5) (4.5 6.0 8.5) (3.5 -3.5 0.0) (0.0 0.0 0.0) and

2. knot vector: {0 0 0 0 0.2 0.4 0.6 0.8 1 1 1 1}

For this curve, there exist many doubly normal segments, as shown in Fig-
ure 1. The problem is how to efficiently find all these doubly normal segments,

Figure 1: Many doubly normal segments exist on this curve.

and then find the pair which represents the global separation distance. A
pair of distinct points at s and t on a parametric curve will be endpoints of
a doubly normal segment if they satisfy the two equations [4]:

[c(s) − c(t)] · c′(s) = 0 (1)

2

[c(s) − c(t)] · c′(t) = 0 (2)

where, s, t ∈ [0, 1]
In principle, the system given by Equations 1 and 2 could be solved

algebraically by writing them in their power basis form [9]. The power basis
represents the curve in the following expression, where u ∈ [0, 1] and each ai

is a point in R
3.

c(u) = (x(u), y(u), z(u)) =
n

∑

i=0

aiu
i.

Despite the straigtforward conceptual appeal of such an algebraic strat-
egy, it is well-known that these power basis forms lead to algorithmic difficul-
ties [9]. Hence, alternative techniques, as will be presented, which rely upon
Bézier or spline representations are preferred. The method presented here
relies upon first converting a spline curve into its equivalent representation
as a composite Bézier curve [9].

For example, the B-spline curve in Figure 1 with knot vector

U={0 0 0 0 .2 .4 .6 .8 1 1 1 1}

is decomposed into its five Bézier segments by inserting interior knots until

U={0 0 0 0 .2 .2 .2 .4 .4 .4 .6 .6 .6 .8 .8 .8 1 1 1 1}

and re-computing the new control polygon, which contains the control points
for each Bézier segment with

U={0 0 0 0 1 1 1 1}.

This is shown graphically in Figure 2, where each of the five segments are
shown in a different color and labeled 1 through 5. The control points for
each of the five segments are as follows:

• curve 1 (yellow): (0 0 0) (-1 1 0) (1.75 3.25 1) (3.2083 3.2917 2.5833)

• curve 2 (cyan): (3.2083 3.2917 2.5833) (4.6667 3.3333 4.1667)
(4.8333 1.1667 6.3333) (3.8333 0.6667 5.25)

• curve 3 (magenta): (3.8333 0.6667 5.25) (2.8333 0.1667 4.1667)
(0.6667 1.3333 -0.1667) (0.5833 2.5 -0.1667)

3

Figure 2: B-spline curve represented by its Bézier segments.

• curve 4 (red): (0.5833 2.5 -0.1667) (0.5 3.6667 -0.1667) (2.5 4.8333
4.1667) (3.25 3.0417 4.2083)

• curve 5 (blue): (3.25 3.0417 4.2083) (4 1.25 4.25) (3.5 -3.5 0) (0 0 0)

A primary motivation for this work is to perform ambient isotopic ap-
proximations at speeds that will support scientific visualization of molecular
simulations. Towards that goal, Newton’s method for two variables is a very
efficient and general numerical algorithm [6] that was applied to Equations 1
and 2. The experiments reported on prototype code suggest that this ap-
proach could be sufficiently rapid to support scientific visualization. These
experiments were performed on a 64-bit AMD processor with Red Hat Linux
Fedora Core 2 and OpenGL with double buffering. As always, the integration
with a specific graphics subsystem is highly dependent upon the underlying
architecture, and incorporation of this code on any platform would require
further development and experimentation.

The application of Newton’s method for equations 1 and 2 follows. Com-
pute

[

sn+1

tn+1

]

=

[

sn

tn

]

− J−1(sn, tn)

[

f(sn, tn)
g(sn, tn)

]

, n = 0, 1, ... (3)

4

until |J−1(sn, tn)[f(sn, tn) g(sn, tn)]T | is less than some ε > 0, where J−1(sn, tn)
is the inverse Jacobian matrix. Hence,

J(sn, tn) =









∂f

∂s

∂f

∂t

∂g

∂s

∂g

∂t









(4)

J−1(sn, tn) =
1

∂f

∂s

∂g

∂t
−

∂f

∂t

∂g

∂s









∂g

∂t
−

∂f

∂t

−
∂g

∂s

∂f

∂s









(5)

and, from equations 1 and 2 above, (with f being given by the left-hand side
of Equation 1 and g being given by the left-hand side of Equation 2),

∂f

∂s
= [c(s) − c(t)] · c′′(s) + c′(s) · c′(s) (6)

∂f

∂t
= −c′(t) · c′(s) (7)

∂g

∂s
= c′(s) · c′(t) (8)

∂g

∂t
= [c(s) − c(t)] · c′′(t) + c′(t) · −c′(t) (9)

As is typical, the ‘art’ required for the successful use of Newton’s method
is highly dependent upon the determination of reasonable initial estimates.
Any such estimates are clearly data dependent, but a viable approach is
presented and verified on an illustrative example. The general idea is to
generate a modest number of line segments, each connecting two distinct
points on the curve. There is no a priori reason to expect that any such
segment will be doubly normal and, indeed, many of them would be far from
meeting that criterion. Fortunately, many of these failures can be excluded
from further consideration by an easy culling technique based upon a lack of
normality at one end point or the other. This culling is accomplished in two
steps, with respective positive values of ε1 and ε2.

Let p1 and p2 be the endpoints of one of the generated segments and let
< p1, p2 > denote the vector of unit length, formed by taking the vector
between p1 and p2 and dividing that vector by its norm. The first test is

5

to determine if the unit vector < p1, p2 > is normal to the curve c at p1.
Suppose p1 = c(s1) for some s1 ∈ [0, 1] and then comparison is made as to
whether

< p1, p2 > · c′(s1) < ε1, (10)

where c′(s1) is the unit tangent vector at c(s1).
If the result of the preceding comparison is false, then this segment is not

sufficiently close to being normal to the curve to warrant further consideration
and it is excluded. Otherwise, it is retained for a similar culling comparison
at the other endpoint. Specifically, this second test is to determine if the dot
product of the vector < p2, p1 > with the unit tangent vector to the curve
c, where p2 = c(s2) for some s2 ∈ [0, 1] is approximately zero. Namely, the
comparison is made as to whether

< p2, p1 > · c′(s2) < ε2. (11)

If the result of the preceding comparison is false, then this segment is rejected.
Otherwise, it is sufficiently close to being doubly normal to serve as an initial
estimate for Newton’s method. In the ensuing algorithmic description, the
use of Inequalities 10 and 11 will be called the ‘doubly normal test’.

Values of ε1 = 0.001 and ε2 = 0.01 were found experimentally to give
the best results for the curve depicted in Figure 2 when a large number of
parametric values (i.e. n = 2000) were chosen. Values smaller than these
would result in critical doubly normal segments not being found. Values
greater than these would result in too many double normal segments being
found. Similarly, values of ε1 = ε2 = 0.4 were found to give good results when
a small number of parametric values (i.e. n = 10) were chosen for computing
candidate points for input to Newton’s method, as discussed below.

Let c be a composite C2 Bézier curve composed of sub-curves

ci, where i = 1, . . . , m for some positive integer m.

It should be clear that the analysis for doubly normal segments should be
conducted on all pairs of sub-curves, ci, cj, where i, j ∈ {1, . . . , m}, inclusive
of the case where i = j. When i = j, care must be taken to ensure that there
are distinct parameter values. The principles should be sufficiently clear
from this discussion to now summarize them in an algorithm developed to
provide initial estimates for Newton’s method. This approach was found to
be quite efficient by experimentation. Furthermore, the accuracy was quite
acceptable, as verified by an independent (but much slower) computation

6

that is summarized later. Now, the initial estimate algorithm is presented.
In practice, a value of n = 10 for the number of parametric values chosen,
yielded accurate and efficient results.

Initial Estimate Algorithm for Newton’s Method

Input: n, and sub-curves ci, where i = 1, . . . , m
1. For k = 1, . . . , n − 1

s = 1/n + (k - 1)/n.
2. For ` = 1, . . . , n − 1

t = 1/n + (` - 1)/n.
3. For i = 1, . . . , m

4. For j = 1, . . . , m
5. If i = j and s 6= t, cull versus doubly normal test.
6. If i 6= j, cull versus doubly normal test.

Output: all segments not culled.

Figure 3: Initial Estimates for Newton’s Method

It is notable that the parametric values chosen deliberately avoided the
end-points of each sub-curve, as these points may not meet the differentia-
bility assumptions required for Newton’s method. However, it is trivial to
explicitly test all the possible cases based upon these sub-curve endpoints.
This is an easy, but required, step to ensure that a minimal length doubly
normal segment is not precluded from consideration.

The composite Bézier curve shown in Figure 1 was used as an example
input to perform these calculations. Each of the five cubic Bézier segments
in Figure 2 are shown labeled 1 through 5 with their corresponding control
polygons. The above Newton iteration was performed for all pairs of Bézier
segments, ci and cj, i = j = 1, ..., 5 with ε = 0.0001, and ε1 = ε2 = 0.4.
(Note: ε is defined after Equation 3, while ε1 and ε2 are defined, respectively,
in Inequalities 10 and 11.) The points on the B-spline at the endpoint of
a doubly normal segment having minimal length occur at s = 0.4774 on
Bézier segment 1 and t = 0.7845 on Bézier segment 3. The distance between
these two points is 0.4427, which is the global separation for this curve.
The candidate double normal points for Newton’s method were found by

7

computing points on each Bézier segment at parameter values,

0.1, 0.2, . . . , 0.9,

where the endpoints at parameter values 0.0 and 1.0 were given special con-
sideration as discussed previously. These candidate double normal points
are shown graphically in Figure 4 with line segments connecting the pairs of
candidate points for each pair of Bézier segments. Pairs of Bézier segments
that do not have a connecting line segment, mean that no candidate points
were found. Pairs of Bézier segments that have only one connecting line
segment, mean that Newton’s method did not converge for those particular
points. Pairs of Bézier segments that have two pairs of connecting line seg-
ments mean that Newton’s method did converge, and the resulting pair of
minimum double normal points is one of the two line segments from each
pair. Typically, convergence with ε = 0.0001 occured after 3 or 4 iterations.
Note that Figure 4 depicts the same curve as in Figure 1 and 2, however,
the curve is rotated about the y-axis to get a better view of doubly nor-
mal points, with the global separation distance illustrated in the zoomed-in
section of Figure refnewtons-method-color.

Figure 4: Newton’s method.

A conceptually easier method for finding approximate solutions for s and
t is to test for mutually perpendicular normals between a very large number
of pairs of points. This is reflective of an exhaustive method to simply com-
pute the dot product in equations 1 and 2 for all pairs of points. Although
this approach is computationally inefficient, it serves as an independent ver-
ification of the accuracy of the values returned by Newton’s method. To do

8

so, the “Initial Estimate Algorithm for Newton’s Method” would be run with
a very large value of n, experimentally chosen to be 2,000. This results in
consideration of

(2000)(1999)(5)+(2000)(2000)(4+3+2+1) = 1.999×107+4×107 ≈ 60million

tests for doubly normal segments. These nearly 60 million computations have
performance that is not acceptable for the intended graphics applications.
However, even with this slow performance, it serves as an ‘off-line’ check of
the accuracy of the value computed via Newton’s method. A comparison
of the methods used to compute the global separation is shown in Table 1.
Note that tests 1 through 4 used a large value of n to compute the global
separation with the Initial Estimate Algorithm (IEA) for Newton’s method.
Test number 2 shows that n = 2000 is sufficient to compute the global
separation of 0.4427 based on the result of test number 1 with n = 10000.
Comparing test number 3 to test 2 shows the importance of carefully choosing
the values of ε1 and ε2, since test number 3 does not compute the correct
value for the global separation. Similarly, test 4 shows that n = 1000 is not
sufficient to compute the correct global separation. Test number 5 shows the
benefit of using Newton’s method, since the computation time for computing
the global separation was found to be negligible.

Test # Method Partition Size, n eps1 eps2 Time(s) Global Sep

1 IEA 10,000 0.001 0.01 85 0.44268
2 IEA 2,000 0.001 0.01 6 0.44268
3 IEA 2,000 0.001 0.001 6 0.81230
4 IEA 1,000 0.001 0.01 2 0.91921
5 Newton 10 0.4 0.4 Negligible 0.44268

Table 1: Comparison of Numerical Methods

As a verification of the Newton’s code produced, the global separation
for this experimental curve was implemented independently [2]. In this cor-
roborating implementation, the culling technique to get starting values for
Newton’s method was implemented similarly, with the minor differences that

• values of ε1 and ε2 were chosen to both be equal to 0.1, and

9

• the starting values retained after the previous search were heap-sorted
to use the shorter candidate doubly normal segments.

It is worthwhile to note that

• the final minimum distance obtained was verified to be 0.44268, and

• this method found this minimum to occur for two different pairs of
points in close proximity to one another.

The agreement regarding 0.44268 can likely be attributed to the robustness
of Newton’s method, where that is more dominant than minor differences in
coding or starting values. The other minor differences remain as small issues
to consider relative to optimizing performance.

Regarding the combinatorial complexity incurred by breaking the spline
curve into m Bézier segments, it is clear that this results in O(m2) com-
putations of Newton’s method. Usually, m will be small, so the quadratic
complexity will not be a significant concern. However, much of this work
is directed towards supporting scientific visualization for high performance
computing (HPC) architectures. Then, it is obvious that the O(m2) calcu-
lations could be conducted in parallel. These HPC platforms will often be
massively parallel, where the primary platform under consideration can have
as many as 10,000 nodes [1, 3]. Hence, the combinatorial complexity incurred
is not expected to be prohibitive.

Acknowledgements: The authors were partially supported by NSF grants
DMS-9985802, DMS-0138098, CCR-022654, CCR-0429477 and by an IBM
Faculty Award. All statements here are the responsibility of the authors,
not of the National Science Foundation nor of IBM. Both authors thank
the Dagstuhl Seminar organizers and the Dagstuhl staff for providing the
intellectually stimulating environment for refinement of these ideas, which
were initially based upon the dissertation of E. L. F. Moore.

The helpful comments on an anonymous referee, are acknowledged with
appreciation. In particular, an alternative proposed to exploit the parallelism
possible using normal planes and culling is of interest but beyond the scope
of this paper.

10

References

[1] G. S. Almasi, C. Cascaval, J. G. Castanos, W. D. M. Denneau, M. Eleft-
heriou, M. Giampapa, D. L. H. Ho, J. E. Moreira, D. Newns, M. Snir,
and H. S. Warren. Computational topology for reconstruction of surfaces
with boundary: integrating experiments and theory. In M. Spagnuolo,
A. Pasko, and A. Belyaev, editors, International Conference of Shape
Modeling and Applications, pages 288–297, Los Alamitos, CA, June 13 -
17, 2005 2005. IEEE, IEEE Computer Society.

[2] J. Bisceglio. Personal communication. justin.bisceglio@gmail.com, Oc-
tober 2005. UConn department of CS&E alumni, Computer graphics
engineer at Blue Sky Studios.

[3] R. S. Germain, B. Fitch, A. Rayshubskiy, M. Eleftheriou, M. C. Pit-
man, F. Suits, M. Giampapa, and T. J. C. Ward. Biochips and bioin-
formatics: Blue matter on blue gene/l: massively parallel computation
for biomolecular simulation. In Proceedings of the 3rd IEEE/ACM/IFIP
international conference on Hardware/software codesign and system syn-
thesis CODES+ISSS, September 2005.

[4] T. Maekawa and N. M. Patrikalakis. Shape Interrogation for Computer
Aided Design and Manufacturing. Springer, New York, 2002.

[5] T. Maekawa, N. M. Patrikalakis, T. Sakkalis, and G. Yu. Analysis and
applications of pipe surfaces. Computer Aided Geometric Design, 15:437–
458, 1998.

[6] J. H. Mathews. Numerical Methods for Computer Science, Engineering
and Mathematics. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1987.

[7] E. L. F. Moore. Computational Topology of Spline Curves for Geometric
and Molecular Approximations. PhD thesis, The University of Connecti-
cut, 2006.

[8] E. L. F. Moore, T. J. Peters, and J. A. Roulier. Preserving compu-
tatational topology by subdivision of quadratic and cubic bézier curves.
dagstuhl, to appear.

[9] L. Piegl and W. Tiller. The NURBS Book. Springer, 2nd edition, 1997.

11

