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Abstract

We present stochastic process algebra models of a Circadian clock
mechanism used in many biological organisms to regulate time-based
behaviour. We compare modelling techniques from different modelling
paradigms, PEPA and stochastic π-calculus.

1 Introduction

Many biological systems make use of a Circadian clock to keep track of the pas-
sage of time. The Circadian clock has evolved to create periodic concentrations
of chemicals, in such a way that cells can regulate its behaviour according to
the time of day or season of the year [1, 2].

With recent innovations in the use of stochastic process algebras to generate sys-
tems of ODEs or simulation models for huge state spaces, we will use the model
of the Circadian clock to compare the biological modelling process in PEPA
and stochastic π-calculus. This will be with a view to comparing simulation
and numerical solution results of the same model in due course.

2 Circadian Clock

Figure 1 (taken from [1]) shows a biological graphical description of a Circadian
clock with two DNA molecules for proteins A and R interacting through their
respective mRNA molecules.

In the diagram, there are two DNA molecules, DA and DR, which describe
proteins A and R. These DNA molecules generate mRNA molecules which in
turn generate their respective proteins. High concentrations of the R protein
absorb the A molecules and therefore R acts as a repressor for A. In the absence
of A, R will degrade naturally. However, as A also acts as an activator for the
generation of mRNA for both A and R molecules, we have several opportunities
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Fig. 1. The biological network for the Circadian clock.

for constructive and destructive feedback within the system. The result is that
the concentration of A should oscillate in anti-phase to the concentration of R.
The spikes in the concentration of A act as the ticks of a clock for an organism.

We use Figure 1 to create both stochastic π-calculus and PEPA models of the
gene network.

3 Model

3.1 Modelling experience

3.1.1 Molecule creation

The major difference between modelling in stochastic π-calculus and PEPA
is the way in which new molecules are generated. In stochastic π-calculus,
it is succinct to have new molecules spontaneously appear in parallel out of
individual molecule descriptions, as in:

DA
def= ταA .(DA | MA) (1)

Here, after an exponential delay at rate αA, a DA molecule becomes a DA and
an MA molecule. In effect, this means that the DA molecule remains and an
MA molecule is spontaneously created.

In contrast, PEPA has a notion of a bounded component structure which encour-
ages the creation of independent molecule lifecycles which capture an individual
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Fig. 2. An equivalent unbounded Petri net model of the gene/protein network

molecule’s state, even if one of those states is just the potential to create the
molecule. The PEPA equivalent of Equation (1) is given by:

DA
def= (transA, αA).DA

M ′
A

def= (transA,>).MA (2)

Here the state M ′
A represents the concept of there being sufficient resources in

the system that, when driven by a transA action from the DNA molecule DA,
an MA molecule is instantiated.

3.1.2 Molecule creation: Ramifications

This single modelling difference between the formalisms has large implications.

1. To start with the stochastic π-calculus model can grow unboundedly, gen-
erating an indefinite number of MA molecules. Whereas in the PEPA
model, we would have to pre-specify the number of MA molecules that
the system was capable of creating using the following system equation:

DA ¤¢
{transA}

(M ′
A || · · · || M ′

A)︸ ︷︷ ︸
n

Such a system would have the capacity to generate n molecules of MA

and no more.
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As to which approach is appropriate, that will depend on the modelling
situation and the facets of the system that the modeller is trying to cap-
ture.

2. The unbounded nature of the stochastic π-calculus model generates an in-
finite stochastic state space, which would make probabilistic model check-
ing, in all but the most fortunate of cases, virtually impossible. So if tools
such as PRISM, PEPA Workbench or ETMCC are to be employed to per-
form probabilistic analysis on biological systems, it would seem that the
PEPA style of modelling has more potential.

It should be noted though that if explicit state-space representation tech-
niques are used by the tool, then even if a bounded and finite model is
generated, only a very small version will be capable of being analysed as
the state space quickly becomes unmanageable.

The only practical way to analyse such large models is through continu-
ous state-space representation via numerical ODE solution or stochastic
simulation. As yet there is no model checking framework in which these
techniques can be used.

3.1.3 Predefined synchronisation rate

Again comparing the same snippets of process model from Equation (1) and (2),
we note that the rate of delay prior to molecule generation is defined as αA. As
discussed earlier this process is a succinct way of representing a synchronisa-
tion between the environment (the amino acids that are the building blocks of
proteins and mRNA) and the DNA molecule. It could be said that as there
was no explicit definition of how the individual processes participated in the
synchronisation, that this does not produce a composable model. However, a
counter argument would quite reasonably suggest that the action was τ -action
anyway and not observable by other processes and that the above example was
an abstraction of underlying cooperation.

3.2 Stochastic π-Calculus Model

DA
def= bindAγA

.DA′ + ταA
.(DA | MA)

DA′
def= τθA .(DA | A) + ταA′ .(DA′ | MA)

DR
def= bindRγR

.DR′ + ταR
.(DR | MR)

DR′
def= τθR .(DR | A) + ταR′ .(DR′ | MR)

MA
def= τδMA

.Ø + τβA
.(MA | A)

MR
def= τδMR

.Ø + τβR
.(MR | R)

A
def= bindAγA

.Ø + bindRγR
.Ø + bindCγC

.Ø + τδA
.Ø

R
def= bindCγC

.C + τδR
.Ø

C
def= τδA

.R
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3.3 PEPA Model

DA
def= (bindADA

, γA).ADA + (mkMA, αA).DA

ADA
def= (unbindADA

, θA).DA + (mkMA, αA′).ADA

DR
def= (bindADR

, γR).ADR + (mkMR, αR).DR

ADR
def= (unbindADR

, θR).DR + (mkMR, αR′).ADR

M ′
A

def= (mkMA,>).MA

MA
def= (decayMA

, δMA).M ′
A + (mkA, βA).MA

M ′
R

def= (mkMR,>).MR

MR
def= (decayMR

, δMR).M ′
R + (mkR, βR).MR

A′ def= (mkA,>).A
A

def= (bindADA
, γA).ADA

+ (bindADR
, γR).ADR

+ (bindAR,>).AC

+ (decayA, δA).A′

ADA

def= (unbindADA
,>).A

ADR

def= (unbindADR
,>).A

AC
def= (unbindAR,>).A′

R′ def= (mkR,>).R
R

def= (bindAR, γC).C + (decayR, δR).R′

C
def= (unbindAR, δA).R

The different process definitions represent the different states of the molecules
in the system. The states M ′

A, M ′
R, A′ and R′ represent potential to create the

molecules MA, MR, A and R. The system would start in the state with the
potential to create nX molecules of X for X ∈ {MA,MR, A, R}.
Circadian def= (DA || DR) ¤¢

L
((M ′

A[nMA
] || M ′

R[nMR
]) ¤¢

M
(A′[nA] ¤¢

N
R′[nR]))

L = {bindADA , unbindADA , bindADR , unbindADR ,mkMA,mkMR}
M = {mkA,mkR}
N = {bindAR, unbindAR}

3.4 Parameters

The initial conditions and parameter values for the Circadian clock models are
taken directly from [1]: DA = DR = 1 mol, D′

A = D′
R = MA = MR =

A = R = C = 0, which require that the cell has a single copy of the ac-
tivator and repressor genes: DA + D′

A = 1 mol and DR + D′
R = 1 mol.

αA = 50h−1

αA′ = 500h−1

αR = 0.01h−1

αR′ = 50h−1

βA = 50h−1

βR = 5h−1

δMA = 10h−1

δMR = 0.5h−1

δA = 1h−1

δR = 0.2h−1

γA = 1mol−1hr−1

γR = 1mol−1hr−1

γC = 2mol−1hr−1

θA = 50h−1

θR = 100h−1
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4 Work in progress

We have generated and solved the ODE systems for both stochastic π-calculus
and PEPA models and have reproduced the same results as obtained by Vilar et
al. [1], in both cases. We note that restricting the capacity of the PEPA model
to make key proteins upsets the phase of the Circadian rhythm, but does not
destroy it altogether. We plan to explore this issue in a future publication.

We also intend to study further how the models differ from each other given
the differing philosophies behind bounded (PEPA) and unbounded (stochastic
π-calculus) modelling techniques. We would also like to see how the bounded
capacity rate semantics of PEPA (use of the min function in synchronisation)
compare to the mass action semantics of most biological and chemical modelling
paradigms. We would like to know, in particular, what cooperation semantics
in PEPA correspond to the mass action semantics in the final ODE/simulation
model.
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