
Using Abstraction in Modular Verification of
Synchronous Adaptive Systems

Ina Schaefer and Arnd Poetzsch-Heffter

{inschaef|poetzsch}@informatik.uni-kl.de
Software Technology Group

Technische Universtiät Kaiserslautern
Germany

Abstract. Self-adaptive embedded systems autonomously adapt to
changing environment conditions to improve their functionality and to
increase their dependability by downgrading functionality in case of fail-
ures. However, adaptation behaviour of embedded systems significantly
complicates system design and poses new challenges for guaranteeing
system correctness, in particular vital in the automotive domain. Formal
verification as applied in safety-critical applications must therefore be
able to address not only temporal and functional properties, but also
dynamic adaptation according to external and internal stimuli.
In this paper, we introduce a formal semantic-based framework to model,
specify and verify the functional and the adaptation behaviour of syn-
chronous adaptive systems. The modelling separates functional and adap-
tive behaviour to reduce the design complexity and to enable modular
reasoning about both aspects independently as well as in combination.
By an example, we show how to use this framework in order to verify
properties of synchronous adaptive systems. Modular reasoning in com-
bination with abstraction mechanisms makes automatic model checking
efficiently applicable.

1 Introduction

In the automotive sector, self-adaptive embedded systems are used for instance
as antilock braking (ABS), vehicle stability control (VSC), and adaptive cruise
control (ACC) systems. They autonomously adapt to changing environment con-
ditions in order to meet high quality requirements, e.g. to offer the best possible
service in any kind of driving condition. Furthermore, adaptation increases de-
pendability and fault-tolerance of systems by autonomously up- and downgrad-
ing the functionality according to the available resources. This can for instance
be changing qualities of environment sensors. However, adaptation in embedded
systems significantly complicates system design and poses new challenges for
guaranteeing system correctness, in particular vital in the automotive domain.
Therefore, formal verification as applied in safety-critical applications must be
able to address not only temporal and functional properties, but also dynamic
adaptation according to external and internal stimuli.

INTERREG IIIC/e-Bird
Workshop "Trustworthy Software" 2006
http://drops.dagstuhl.de/opus/volltexte/2006/699

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper, we introduce a formal semantic-based framework to model,
specify and verify functional and adaptation behaviour of self-adaptive embed-
ded systems. The modelling framework is based on state-transition systems and
describes adaptation of module behaviour in terms of an adaptation aspect on
top of a set of predetermined module configurations. Restricting adaptation to
predetermined reconfiguration makes systems predictable and improves analy-
ses results. Our models are synchronous systems as those can capture simulta-
neously invoked actions by true concurrency. Most approaches formalizing self-
adaptation [1] so far focus on structural and architectural adaptation such as
adding and removing components instead of behavioural adaptation of single
system modules. Furthermore, they intertwine functionality and adaptation. In
contrast, the proposed modelling framework decouples functional and adaptive
behaviour and provides a clear formal account of both aspects in separation.
This reduces the design complexity and enables explicit and uniform reasoning
about purely functional, purely adaptive as well as combined properties. We de-
velop a high level modelling framework in which the special features of dynamic
reconfiguration, i.e. the behavioural adaptation and the separation of adaptation
and functionality, can be observed and reasoned about directly. If these special
properties of the considered class of systems would be encoded into another
formalism, this high level specific properties are typically lost and cannot be
exploited for tailored analyses.

On top of the formal model, we define a specification logic that allows to ex-
press functional, adaptive and temporal properties of the system. Since we can
describe the behaviour of our systems by a set of execution traces we will adopt a
variant of first-order LTL [3] for our purposes. The proposed framework enables
modular reasoning through modular specification of systems. A global system
property can be decomposed into local properties of single modules entailing
the global property. Furthermore, the model allows to incorporate abstraction
mechanisms, for instance to reduce unbounded data domains to finite discrete
domains. Modularity combined with appropriate abstraction mechanisms facili-
tates the efficient integration of existing automatic verification techniques such
as model checking into the verification process of synchronous adaptive systems.
Thus, the verification effort can be reduced by discharging sub-proof goals au-
tomatically.

In this paper, we present the application of our modelling, specification and
verification framework at an example system confronted with changing qualities
of sensor values. This scenario is quite common in the context of embedded
automotive systems. Due to restricted hardware resources, the system has to
deal with changing sensor qualities by adapting its functionality to the available
resources instead of halting the system. Redundant hardware is not applicable
due to the inherent limitations in embedded systems. We show how to model
such a sensor quality adaptation as synchronous adaptive system. Afterwards,
we verify the safety property that despite problems with the sensors the quality
of the system output is below a threshold only for a restricted period of time.
This exemplary verification shows the use of modular reasoning and abstraction

2

techniques and gives an intuition which mechanisms are necessary for efficient
automatic verification of synchronous adaptive systems.

The paper is structured as follows: Section 2 gives a short overview of re-
lated work on formal analysis of self-adaptive systems. In Section 3, we will
introduce our formal semantic-based model of synchronous adaptive systems il-
lustrated with the running example. In Section 4, we introduce an LTL based
logic for specifying properties over these models. In Section 5, we show how to
use abstraction techniques and modular verification in order to proof the safety
property over the running example, before we conclude the paper in Section 6
with an outlook to future work.

2 Related Work

From a general point of view dynamic adaptation is a very diverse area of re-
search including real time systems [5], agent systems [8] and component middle-
ware [4], just to name a few representatives. There are a number of approaches
for modelling self-managed dynamic software architectures in a more or less for-
mal manner, e.g. using graphs, logic or process algebra; for a survey, consult [1].
However, most of these approaches consider mere modelling of systems instead
of their verification. Additionally, the focus lies mainly on architectural adapta-
tion instead of behavioural adaptation as considered here. Moreover, adaptive
and functional behaviour are often intertwined which does not allow separated
reasoning about both aspects.

In [10], models of adaptive synchronous systems separate adaptation from
functionality by endowing data flow with qualities. The configuration behaviour
of one module only depends on the quality transmitted with the input and out-
put variables. Considering the qualities, an abstract model of the adaptation
behaviour is extracted from the system which is analysed via model checking.
However, functional behaviour is completely discarded whereas our approach al-
lows to reason about adaptive, functional and combined behaviour as in systems
where adaptation depends on functional data. In [12], the authors use a model
driven approach to modularly define adaptive systems coming close to the mod-
ularity considered here. Starting from a global model and global requirements of
the overall system, single domains of adaptation are identified which are designed
to satisfy local requirements entailing the global ones. However, the notion of
adaptivity is more coarse-grained than in synchronous adaptive systems due to
three fixed types of adaptation.

With respect to verification of adaptive systems, in [11] a linear temporal logic
is extended with an ’adapt’ operator for specifying requirements on the system
before, during and after the adaptation. In [6], the authors use an approach
based on a transitional-invariant lattice. Using theorem proving techniques they
show that before, during and after the adaptation the program is always in a
correct state in terms of satisfying the transitional-invariants. However, both
approaches use a more coarse-grained notion of adaptation than predetermined
behavioural reconfiguration as considered here.

3

3 Formal Models of Synchronous Adaptive Systems

Synchronous adaptive systems are composed from a set of modules where each
module has a set of predetermined behavioural configurations it can adapt to.
The selected configuration depends on the status of the module’s environment.
It is determined by an adaptation aspect defined on top of the functional be-
haviour. The modules are connected via links between input and output vari-
ables. Data and adaptation flow are decoupled and do not follow the same links.
Adaptations in one module may trigger adaptations in other modules by internal
adaptation signals via the adaptation links. That may lead to a chain reaction of
adaptations through the system. The systems are assumed to be open systems
with non-deterministic input provided by an environment. Furthermore, they are
modelled synchronously as their simultaneously invoked actions are executed in
true concurrency.

3.1 Running Example

Before we start with the formal definitions, we will illustrate the general be-
haviour of synchronous adaptive systems at an example system dynamically
reconfiguring dependant on the quality provided by its input sensors. Figure 1
shows an overview of the system structure.

The system consists of two modules. They receive input from three sensors
and control one actuator. The sensors may produce results with varying quality
due to changing environment conditions. Hence, the sensor input is associated
with a confidence level. This confidence level is an integer value which reflects
the sensor’s input quality. The higher the confidence level is the higher is the
reliability of the value. In our example, a confidence level below 50 models low
confidence, between 50 and 100 medium confidence and above 100 high confi-
dence. The confidence level can be determined by enhancing the mere sensor
with a functional module. This module for instance records the sensor values
over some period of time and monitors its changes. If the sensor value changes
by a great amount over a short period of time confidence in this sensor is re-
duced. Another possibility to calculate the confidence level may be to monitor
other system parameters. By performing a plausibility check the sensor module
can infer the confidence of the input.

The first two sensor inputs are fed into the first system module which selects
one of the sensor inputs according to their confidences. In the considered sce-
nario, sensor 1 produces very good results reflecting the value to be measured
very closely. But sensor 1 is also very likely to produce very bad results because
of environment changes. This is reflected in the attached confidence level. If the
confidence falls below 50, the value is no longer guaranteed to be good enough.
Then, the second sensor becomes important. It measures the same input source
as the first sensor in general providing lower confidence. Hence, the first sensor
is mostly preferred over the second. However, the second sensor is more robust
which is reflected by the assumption that the confidence never falls below 50.
Thus, if the first sensor produces data with low confidence over some period of

4

Fig. 1. Graphical Representation of the Running Example System

time the system adapts to use the second sensor in order to ensure sufficient
confidence of the output. In detail, the adaptation works as follows: If the confi-
dence level of the first sensor is smaller than 50 for more than 2 subsequent cycles
the module switches to the value of the second sensor. Sensor 2 is then used as
long as the confidence of the first sensor is smaller than 100. If the confidence
of sensor 1 is above 100 for 3 subsequent cycles it is assumed that sensor 1 has
recovered. Then, the system will return to using sensor 1 in order to use better
quality inputs in general.

According to the selected sensor a different functionality is used to produce
the module output. This can for instance be necessary in order to transform
the input from a different unit of measurement. The output together with the
confidence level of the selected sensor is passed on to the second module which
receives another data value and a respective confidence from a third sensor. This
sensor is assumed to be of the same type as sensor 2 always producing a medium
quality value with confidence above 50. The second module uses its two input
values to trigger the actuator. Therefore, it only needs a single configuration. For
the confidence level it simply computes the minimum confidence of the received.

An interesting property of this system is that the confidence should never
fall below 50 for more than two subsequent cycles. This property depends on the
assumption that the second and third sensor are more robust always providing
confidence above 50. Ensuring this property is important because the actuator
may break down putting the system in a dangerous situation if it gets input
with low confidence for more than 2 subsequent cycles. However, it is desirable
to use the best possible sensor input. So the adaptation is designed to use sensor
1 whenever appropriate.

3.2 Syntax

In this section, we define the syntax of our formal modelling language for syn-
chronous adaptive systems (SAS). It is based on state-transition systems and

5

incorporates ideas from aspect-oriented software engineering in order to decou-
ple functional from adaptive behaviour. We assume that we are given a set of
variable names Var and a set of values Val . It would also be possible to en-
hance this with variable types and associated variable domains. The smallest
construction element is a module. It contains a set of different predetermined
configurations the module can adapt to dependent on the current status of its
environment. The adaptation is realised by an adaptation aspect. Before the
execution of the actual functionality the adaptation aspect evaluates the config-
uration guards and determines the configuration to use.

Definition 1 (Module and Adaptation). An SAS module m is a tuple
m = (in, out, loc, init, confs, adaptation) with

– in ⊆ Var, the set of input variables, out ⊆ Var, the set of output variables,
loc ⊆ Var, the set of local variables and init : loc→ Val their initial values

– confs = {conf j = (guardj , next statej , next outj) | j = 1, ..., n} the confi-
gurations of the module, where
• guardj: a first-order formula over {in, loc, adapt in, adapt loc} deter-

mining when the configuration j is applicable
• next statej: (in ∪ loc→ Val) → (loc→ Val) the next state function for

configuration j
• next outj: (in ∪ loc → Val) → (out → Val) the output function for

configuration j

The adaptation is defined as a tuple adaptation = (adapt in, adapt out,
adapt loc, adapt init, adapt next state, adapt next out, adapt trigger) where

– adapt in ⊆ Var, the set of adaptation in-parameters, adapt out ⊆ Var, the
set of adaptation out-parameters, adapt loc ⊆ Var, the set of adaptation
local state variables and adapt init : adapt loc→ Val their initial values

– adapt next state : (adapt in ∪ adapt loc → Val) → (adapt loc → Val) the
adaptation next state function

– adapt next outi : (adapt in ∪ adapt loc → Val) → (adapt out → Val) the
adaptation output function

– adapt trigger : (in∪ loc∪ adapt in∪ adapt loc→ Val) → {1, ..., n} for n the
number of configurations

Because the first module in our running example has the more interesting
adaptation behaviour we will focus on this module for illustrating the modelling
framework. Module m1 possesses two functional inputs sensor1 and sensor2 and
the functional output data12. Furthermore, it receives the confidence levels from
sensor 1 confidence1 and from sensor 2 confidence2 as adaptation inputs and
produces confidence12 as adaptation output propagating the confidence of the
selected sensor. A functional local state does not exist because the module solely
transforms input to output according to two configurations, namely configuration
conf 1 standing for the use of sensor 1 and conf 2 for the use of sensor 2.

In Figure 2, the adaptation behaviour, as defined by the adapt next state1
function, is depicted as a state transition diagram. The adaptation local state

6

Fig. 2. State Transition Diagram for Adaptation Behaviour of Module 1

consists of two counters c1 and c2. If sensor 1 is used counter c1 counts the
subsequent cycles in which confidence1 falls below 50. This counter is initialised
to 2. Counter c2 counts the cycles in which confidence1 is above 100 if sensor 2
is used. It is initialised to 3. The counter c1 is set to 3 in order to reflect the use
of sensor 2. Thus, the guard for use of sensor 1 in conf 1 is c1 ≤ 2 and the guard
for sensor 2 in conf 2 is c1 = 3. If sensor 1 is used confidence12 := confidence1

and if sensor 2 is used confidence12 := confidence1. In Figure 2, the grey circles
denote states in which sensor 1 is used and the white ones states where sensor 2
is used.

An SAS system is composed from a set of modules that are interconnected
with their input and output variables. The system is an open system with an
environment providing non-deterministic input and output via connections from
environment input and output to module input and output variables. For tech-
nical reasons, we have to assume that the variable names of all modules in a
composed system are pairwise disjoint. This can be easily achieved by indexing
the module variables with the respective module index. By an injective connec-
tion function, we link module output variables to other module’s input variables.
Furthermore, we link environment input variables to module input variables and
module output variables to environment output variables. This means that one
variable is connected to one other variable only. If we want to transfer the same
output to several places we have to simulate this by duplicating the output vari-
able. Note that in this definition adaptation and functional input and output
are decoupled. Adaptation and data flow do not follow the same links such that
a module can forward its data to one module and notify a different module to
adapt.

Definition 2 (System). A synchronous adaptive system (SAS) is a tuple

SAS = (M, inputa, inputd, outputa, outputd, conna, connd)

7

where

– M is a set of modules M = {m1, . . . ,mn} where mi =
(ini, outi, loci, initi, confsi, adaptationi)

– inputa ⊆ Var are adaptation inputs and inputd ⊆ Var functional inputs to
the system

– outputa ⊆ Var are adaptation outputs and outputd ⊆ Var functional outputs
from the system

– conna is an injective function connecting adaptation outputs to adaptation
inputs and also environment adaptation inputs to module adaptation in-
puts and module adaptation outputs to environment adaptation outputs, i.e.
conna : (adapt outj → adapt ink) ∪ (inputa → adapt ink) ∪ (adapt outk →
outputa) for j, k = 1, ..., n

– connd is an injective function connecting outputs of modules to inputs and
also environment inputs to module inputs and module outputs to environment
outputs, i.e. connd : (outj → ink) ∪ (inputa → ink) ∪ (outk → outputa) for
j, k = 1, ..., n

We can model the running example as

SAS = (M, inputa, inputd, outputa, outputd, conna, connd)

where M = {m1,m2}. The adaptation inputs are inputa = {confidence1,
confidence2} and the functional inputs are inputd = {sensor1, sensor2}. The
adaptation outputs are outputa = {confidenceout} and the functional outputs
are outputd = {output}. The connections between the modules are as depicted
in Figure 1.

3.3 Semantics

The semantics of an SAS is defined in a two layered approach. Firstly, we define
the local semantics of single modules similar to standard state-transition systems.
From this, we secondly give the global semantics of the composed system.

A local state of a module is defined by the evaluation of the module’s vari-
ables, i.e. the input, output and local variables and the adaptation counterparts.
A local state is initial, if its functional and adaptation variables are set to their
initial values and input and output are undefined. A local transition between
two local states evolves in two stages: Firstly, the adaptation aspect computes
its new local state and its new adaptation output from the current adaptation
input and the previous adaptation state. The adaptation aspect further selects
the configuration with the smallest index and valid guard with respect to the
current input and the previous functional and adaptation state. Since the con-
figurations are prioritised according to their index we do not require them to
be disjoint. The system designer should ensure that the system has a build-in
default configuration which becomes applicable when no other configuration is.
The selected configuration is used to compute the new local state and the new
output from the current functional input and the previous functional state.

8

Definition 3 (Local States and Transitions). A local state s of an SAS
module m is defined as evaluation of the module’s variables.

s : in ∪ out ∪ loc ∪ adapt in ∪ adapt out ∪ adapt loc→ Val

A local state s is called initial if s|loc = init, s|adapt loc = adapt init and
s|V = undef for all V = in ∪ out ∪ adapt in ∪ adapt out. A local transition
between two local states s and s′ is defined as s→loc s

′ iff

s′|adapt loc = adapt next state(s′|adapt in ∪ s|adapt loc)
s′|adapt out = adapt next out(s′|adapt in ∪ s|adapt loc)

s′|loc = next statei(s′|in ∪ s|loc) and s′|out = next outi(s′|in ∪ s|loc)

and adapt trigger(s′|in∪ adapt in ∪ s|loc∪ adapt loc) = i
iff s′|in ∪ s|loc ∪ s|out ∪ s′|adapt in ∪ s|adapt out ∪ s|adapt loc |= guardi

∀ 0 < j < i, s′|in ∪ s|loc ∪ s|out ∪ s′|adapt in ∪ s|adapt out ∪ s|adapt loc 6|= guardj

A global system state is the union of the local states of the system modules
together with an evaluation of the system’s environment input and output. A
global system state is initial if all local states are initial and the system input
und output are undefined. A transition between two global states is performed
in three stages. Firstly, each module reads its input either from another mod-
ule’s output of the previous cycle or from the environment in the current cycle.
Secondly, each module synchronously performs a local transition. Thirdly, the
modules directly connected to the system output write their results to the output
variables.

Definition 4 (Global States and Transitions). A global state σ of an SAS
consists of the module’s local states {s1, . . . , sn} where si is the local state of
mi ∈M and an evaluation of the functional and adaptive input and output, i.e.
σ = s1 ∪ . . . ∪ sn ∪ ((inputa ∪ inputd ∪ outputa ∪ outputd) → Val). A global
state σ is called initial if all local states si for i = 1, . . . , n are initial and the
system’s input and output are undefined. Two states σi and σi+1 perform a global
transition, i.e. σi →glob σ

i+1 iff

– for all x, y ∈ Var \ (inputd ∪ inputa) with connd(x, y) or conna(x, y):
σi+1(y) := σi(x) and for all x ∈ inputa and y ∈ Var with conna(x, y):
σi+1(y) := σi+1(x) and for all x ∈ inputd and y ∈ Var with connd(x, y):
σi+1(y) := σi+1(x)

– for all si
j ∈ σi and for all si+1

j ∈ σi+1 si
j →loc s

i+1
j

– for all x ∈ Var and y ∈ outputd with connd(x, y): σi+1(y) := σi+1(x) and
for all x ∈ Var and y ∈ outputa with conna(x, y): σi+1(y) := σi+1(x)

A sequence of global states σ0σ1σ2 . . . of an SAS is a system trace if firstly
σ0 is an initial global state and secondly, for all i ≥ 0 : σi →glob σ

i+1. The set
Runs(SAS) = {σ0σ1σ2 . . . |σ0σ1σ2 . . . is a system trace} gives the semantics of
the SAS.

9

4 A Logic for Synchronous Adaptive Systems

In this section, we will introduce a specially tailored logic for reasoning about
synchronous adaptive systems. The properties of the system behaviour can be
classified in three dimensions: functional behaviour, adaptation behaviour and
combined properties. Combined properties equally refer to functional and adap-
tive system aspects, for instance if adaptation depends on functional values. The
environment input is assumed to be non-deterministic such that the behaviour
of a system can be described by a set of possible execution traces as infinite
sequences of states. Hence, we adopt a variant of the linear time logic LTL [3] by
adding special basic predicates for the considered systems to standard first-order
and LTL connectives.

For a module, we need predicates to describe its local state, the input and
output values and the respective adaptation counterparts. Therefore, equality
and the less-than-or-equal relation over terms build from the relevant variables
are employed. Furthermore, the configuration currently used is described by the
predicate use conf t2(t1) which is true if the module denoted by term t2 uses
the configuration denoted by t1 in the current state. On system level, we have
predicates in order to speak about the connections between output and input
variables implemented by the predicates is connd(x1, x2) and is conna(x1, x2)
which are true if there is a functional or an adaptive connection between x1 and
x2.

Definition 5 (Linear LSAS). The grammar of linear LSAS is defined as fol-
lows:

t ∈ Terms ::= x ∈ Var | v ∈ Val | f(t1, . . . , tn)
a ∈ Atoms ::= t1 = t2 | t1 ≤ t2 | is conn [a|d](x1, x2) | use conf t2(t1)

ϕ ∈ StFmlae ::= true | a | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ∃x. ϕ | ∀x. ϕ
ψ ∈ Fmlae ::= ϕ | X ψ | F ψ | G ψ | ψ1 U ψ2

A Formula ϕ ∈ LSAS is interpreted over a path π where π is an infinite
sequence of global states π = σ0, σ1, . . . which forms a system trace as defined in
the previous section. We denote that a system trace of a synchronous adaptive
system SAS π ∈ Runs(SAS) is a model for a formula ϕ by π |=SAS ϕ.

The interpretation of the temporal and first-order formulae complies to stan-
dard first-order LTL semantics [3]. Terms are evaluated by simply extending the
variable assignments of a state σ to σ̂. Equality and less-than-or-equal relation
are interpreted standardly. The predicates is conna(x1, x2) and is connd(x1, x2)
are valid if there is a connection via the respective connection functions. For
reasoning purposes only, we enhance the local state of module i with an ad-
ditional state variable config i which captures the configuration that is used in
this state. Its value is determined during the global transition σ → σ′ by using
the adapt trigger function as defined in Definition 1 which selects the applicable
configuration.

σ′(config i) = adapt trigger i(s
′
i|in∪ adapt in ∪ si|loc∪ adapt loc)

10

Then, we are able to define the predicate use conf over a state σ by
use conf t2(t1) ≡ true iff σ(config σ̂(t2)) = σ̂(t1).

Furthermore, the boolean connectives are interpreted standardly. The next
operator, Xϕ, determines that ϕ is true in the next state, i.e. over the path π1

which is the state sequence σ1, σ2 A formula is globally true, Gϕ, iff for all
i ≥ 0, ϕ holds over πi, the path π starting in the i-th state. The formula Fϕ
is true is there exists i ≥ 0 such that πi |=SAS ϕ. The until operator ϕ1 Uϕ2

denotes that there exists j ≥ 0 such that πj |=SAS ϕ2 and for all 0 ≤ i < j,
πi |=SAS ϕ1. We say that a formula ϕ ∈ LSAS is valid for an SAS if π |=SAS ϕ for
all paths π ∈ Runs(SAS) and that it is satisfiable if there exists π ∈ Runs(SAS)
such that π |=SAS ϕ.

5 Towards Modular Verification using Abstraction

Having defined a specification logic on top of the formal model we are now
able to formally verify properties specified in LSAS . This verification process
should incorporate automatic verification techniques such as model checking
whenever possible. For an intuition how the proposed framework can be applied
we consider the running example of the sensor quality adaptation as described
in Section 3.1. The safety property to be shown is that the quality of the output
at the actuator is never below 50 for more than 2 subsequent cycles. Otherwise,
the actuator may break down causing the system to enter a dangerous situation.
In LSAS , this property can be expressed by the formula ϕ that is required to
hold for all paths π ∈ Runs(SAS).

ϕ = G¬(confidenceout ≤ 50 ∧X confidenceout ≤ 50 ∧XX confidenceout ≤ 50)

For verification we proceed as follows. Firstly, we abstract the unbounded
integer domain of the confidence level to three discrete values low, med (for
medium) and high. This is necessary because automatic model checking tech-
niques to be applied later can in general only deal with finite state systems. The
abstraction has to preserve the properties of the concrete system, i.e. if the ab-
stract property holds over the abstract system, also the concrete property holds
over the concrete system. For our example, we can construct an abstract SAS#

along the lines of [2]. We use the following surjection h for mapping concrete
confidence integer values to abstract values:

h(confidence) =

 low if confidence ≤ 50
med if 50 < confidence ≤ 100
high if confidence > 100

For the paths of the abstract system SAS# we have to ensure two conditions
such that SAS# approximates SAS and preserves its LSAS properties. Firstly,
the set of concrete initial states must be mapped to the set of abstract initials
states. Secondly, the concrete transition relation must be contained in the ab-
stract transition relation. In our example, this means that we must abstract all

11

Fig. 3. State Transition Diagram for the Abstract Adaptation Behaviour of Module 1

conditions in configuration guards, adaptation next state and adaptation output
functions that depend on confidence1, confidence2, confidence12 and confidence3

by the corresponding expressions using the abstract values low, med and high.
For an example consider the abstracted transition diagram for module 1 in Figure
3. Additionally, the functions for calculating the confidence outputs have to be
abstracted. This is easy for module 1 since it just propagates the relevant confi-
dence already abstract in the abstract system. For module 2, the adapt next out
function is defined as confidenceout := min{confidence12, confidence3}. Here, we
have to give an abstract minimum function min# which reflects the intuitive
ordering that low is smaller than med which is smaller than high. The abstract
property reads as follows: ϕ# =

G¬(confidenceout = low ∧ X confidenceout = low ∧ XX confidenceout = low)

Verification of the abstract property ϕ# over the abstract system SAS# imme-
diately implies validity of ϕ over SAS by construction of the abstraction using
the results of [2].

Secondly, we modularly verify the abstract property over the abstract system.
Therefore, we decompose the global property into two local properties over the
two modules. From their validity can infer validity of the overall system property.
The global property ϕ# can be decomposed as follows. For module 2, we use
the definition of the adapt next out function and show ϕ#

2 = (where c is used
as abbreviation for confidence)

G¬(min#{c12, c3} = low∧Xmin#{c12, c3} = low∧XXmin#{c12, c3} = low)

By assumption on sensor 3 that its confidence is always greater than 50 or greater
than low this property boils down to ϕ#

2 =

G¬(confidence12 = low ∧X confidence12 = low ∧XX confidence12 = low)

12

This is actually a property over module 1. So it suffices to prove ϕ#
1 ≡ ϕ#

2

over module 1. We can enter this property together with the abstract module
description into a model checker, for instance [9]. This will explore all paths of
the abstract system and return the result that for all paths π of the abstracted
module 1, π |=m#1 ϕ

#
1 . This can also be seen in the abstract transition graph as

depicted in Figure 3. If the confidence of sensor 1 is low for 2 subsequent cycles
the system adapts to use sensor 2. Sensor 2 by assumption has a confidence of
greater than 50 or in the abstract greater than low. So, the property ϕ#

1 holds
on all execution paths. As a consequence, we can conclude by combining the
results of abstraction and modularity that the example SAS satisfies the initial
property ϕ.

6 Conclusion and Future Work

In this paper, we have introduced a formal semantic-based framework to model,
specify and verify the functional and the adaptation behaviour of synchronous
adaptive systems. The modelling framework separates functional and adaptive
behaviour in order to reduce the design complexity and to allow modular reason-
ing about both aspects independently but also in combination. We have shown
how to apply this framework for the verification of a safety property by the
example of a sensor quality adaptation system.

As we have observed in the running example, modularity combined with
abstraction reduces the complexity of sub-proof goals necessary to infer the de-
sired overall system property. For these sub-goals, model checking algorithms
such as [9] become efficiently applicable. Hence, for future work, we want to
further investigate the use of modular verification in combination with abstrac-
tion mechanisms. In this direction, we want to integrate an automatic theorem
prover dealing with modularity and abstraction with automatic model checking
methods. Furthermore, we plan to equip our modelling framework with means
for expressing hierarchy in order to be able to compose complex systems from a
number of subsystems and to exploit this hierarchy for verification. In addition to
that, we want to implement a translation from UML-like models of synchronous
adaptive systems in the GME [7] framework to SAS models in order to provide
GME models with a firm semantic basis and to make our approach end-user
compatible by a graphical modelling front end.

References

1. J.S. Bradbury, J.R. Cordy, J. Dingel, and M. Wermelinger. A survey of self-
management in dynamic software architecture specifications. In Proc. of the In-
ternational Workshop on Self-Managed Systems (WOSS’04), 2004.

2. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems (TOPLAS), 16(5):1512–
1542, 1994.

13

3. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science: Volume B: Formal Models and Semantics, pages
995–1072. Elsevier, Amsterdam, 1990.

4. W. Gilani, N. Naqvi, and O. Spinczyk. On adaptable middleware product lines. In
Proc. of 3rd Workshop an Adaptive and Reflective Middleware, page 207213, 2004.

5. O. Gonzalez, H. Shrikumar, J. Stankovic, and K. Ramamritham. Adaptive fault-
tolerance and graceful degradation under dynamic hard real-time scheduling. In
Proc. of IEEE Real-Time Systems Symposium (RTSS), pages 79–89, 1997.

6. S.S. Kulkarni and K.N. Biyani. Correctness of component-based adaptation. In
Proc. of Intl. Symposium on on Component Based Software Engineering, pages
48–58, 2004.

7. A. Ledeczi and al. The Generic Modeling Environment. In Proc. of IEEE Inter-
national Workshop on Intelligent Signal Processing (WISP), 2001.

8. O. Marin, M. Bertier, and P. Sens. DARX - a framework for the fault tolerant
support of agent software. In Proc. of IEEE International Symposium on Software
Reliability Engineering (ISSRE), pages 406–418, 2003.

9. K. Schneider and T. Schuele. Averest: Specification, verification, and implementa-
tion of reactive systems. In Proc. of Conference on Application of Concurrency to
System Design (ACSD), 2005.

10. K. Schneider, T. Schuele, and M. Trapp. Verifying the adaptation behavior of em-
bedded systems. In Proc. of Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), 2006.

11. J. Zhang and B.H.C. Cheng. Specifying adaptation semantics. In Proc. of ICSE
2005 Workshop on Architecting Dependable Systems (WADS 2005), pages 1–7,
2005.

12. J. Zhang and B.H.C. Cheng. Model-based development of dynamically adap-
tive software. In Proc. of the International Conference on Software Engineering
(ICSE’06), 2006.

14

