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Abstract

When addressing the formal validation of generated software, two main alternatives consist either to
prove the correctness of compilers or to directly validate the generated code. Here, we focus on directly
proving the correctness of compiled code issued from powerful pattern matching constructions typical of
ML like languages or rewrite based languages such as ELAN, Maude or Tom. In this context, our first
contribution is to define a general framework for anchoring algebraic pattern-matching capabilities in
existing languages like C, Java or ML. Then, using a just enough powerful intermediate language, we
formalize the behavior of compiled code and define the correctness of compiled code with respect to
pattern-matching behavior. This allows us to prove the equivalence of compiled code correctness with
a generic first-order proposition whose proof could be achieved via a proof assistant or an automated
theorem prover. We then extend these results to the multi-match situation characteristic of the ML like
languages. The whole approach has been implemented on top of the Tom compiler and used to validate
the syntactic matching code of the Tom compiler itself.

1 Introduction

Even if we know, since the beginning of the computer science era, that proving program correctness is
profoundly difficult, the quest of software security and dependability due to the general digitalization of
most human activities and process control makes this goal both inescapable and extremely important to
reach.

When we deal with the previous problem, we should address the whole software conception process that
we can reduce, quite schematically, to the following steps: (i) get an informal specification of the software
functionalities, (ii) get a formal description of the algorithms assumed to fulfill the informal specification, (iii)
get a high-level program implementation of these algorithms, (iv) get a low level program implementation
of these programs, (v) get a model of the running hardware.

In this work, we restrict our interest to step (iv) and to high-level languages pattern-matching features.
Therefore we address the specific problem of proving the correctness of compiled code issued from pattern-
matching constructions appearing in high-level programming languages.

Verifiable —compiler versus compiled— code The question of compiler correctness, that is to pre-
serve the properties of the input like its semantics and meta-properties of the underlying algorithm as its
termination or the respect of heap invariants, is as old as the first compiler implementations. This is a very
challenging goal since it consists in proving that any valid input will be correctly compiled. Furthermore, this
proof has to be done every time the implementation of the compiler is modified and moreover, the compiler
has itself to be compiled.

Much efforts have been done on proving correctness of parts and sometimes even complete compilers
either manually [?, ?, ?, ?] or with the help of a proof assistant. But, it is still today mostly out of reach
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to prove that a program has been correctly compiled. In practice, programmers (and therefore applications)
totally rely on the compilers: until one runs the program, we have no idea if the compiler has compiled the
program correctly. Even extensively testing the program of course offers no guarantees. So, currently the
programmer very often must blindly trust the compiler. But, most of largely used C and Fortran compilers
very infrequently generate incorrect code: they are some of the most reliable software tools available. This
is due to the large number of developers working to make these compilers correct, as well as the very large
number of users who use these compiler, and thus contribute to their debugging. But, when designing a
compiler for a new high-level language, the situation is less comfortable: on one side the number of users and
written applications is small, on the other side, the introduction of new high level constructs put a lot on
the compiler, and so make it even more complex to write. Since the consequences of an incorrect compiler
are disastrous (all compiled programs are potentially faulty), this situation contributes to make users less
confident in new languages and compiler implementations.

In this paper, we are concerned by a quite different approach consisting in proving automatically the
correctness of the compiled code. This “skeptical” approach of the code issued from a compiler allows to deal
with two kind of mis-behavior: one is due to the classical presence of an unintentional bug of the compiler.
The second one concern intended hidden-behavior that could be introduced with malicious intention.

Therefore, assuming a high-level program given as input, we are considering the compiler as a black
box escaping our control and we are searching to prove that the generated code is, on its own, correct.
This is typical of the seminal work of [?] and more recently of the so called translation validation [?, ?].
A comparable approach presented in [?] is called credible compilation and able to handle pointers in the
source program. Note that this is different from the so called proof-carrying code method [?, ?] which is not
intended to prove the compiled program to be correct with respect to the source code, but rather on proving
certain properties on the output program, such as type safety, memory safety, or the respect of a certain
safety invariant.

Matching power Rewriting and pattern-matching are of general use in mathematics and informatics to
describe computation as well as deduction.They are central in systems making the notion of rule an explicit
and first class object, like expert and business systems (JRule), programming languages based on equational
logic (OBJ) or the rewriting calculus (ELAN) or logic (Maude), functional, possibly logic, programming (ML,
Haskell, Curry, Teyjus) and model checkers (Murphi). They are also recognized as crucial components of
proof assistants (Coq, Isabelle) and theorem provers for expressing computation as well as strategies.

Since pattern-matching is directly related to the structure of objects and therefore is a very natural
programming language feature, it is a first class citizen of functional languages like ML or Haskell and has
been considered recently as a useful add-on facility in object programming languages [?]. This is formally
backed up by works like [?] and particularly well-suited when describing various transformations of structured
entities like, for example, trees/terms, hierarchized objects, and XML documents.

In this context, we are developing the Tom system [?] which provides a generic way to integrate matching
power in existing programming languages like Java, C or ML. For example, when using Java as the host
language, the sum of two integers can be described in Tom as follows:

Term plus(Term t1, Term t2) {

%match(Nat t1, Nat t2) {

x,zero -> { return x; }

x,suc(y) -> { return suc(plus(x,y)); }

}

}
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In this example, given two terms t1 and t2 that represent Peano integers, the evaluation of plus computes
their sum. This is implemented by pattern-matching: t1 is matched by the variable x, t2 is possibly matched
by one of the two patterns zero or suc(y). When zero matches t2, the result of the addition is x (where x
has been instantiated into t1 via matching). When suc(y) matches t2, this means that t2 is rooted by a suc
symbol: the subterm y is added to x and the successor of this number is returned. This definition of plus is
given in a functional style, but now the plus function can be used elsewhere in a Java program to perform
addition.

The general architecture of Tom, depicted as follows,

Host
Language

+
Patterns

Parser Backend
Host

LanguageCompiler

Tom Compiler

p� t PIL

enlightens that a generic matching problem p � t is compiled into an intermediate language code (PIL)
which we would like to compute a substitution σ iff σ(p) = t. As explained in [?], implementing a language
(possibly domain-specific) as an extension of an existing host language has several advantages. First, we
benefit of the existing functionalities and we do not have to re-implement common language constructs.
Second, the extensions themselves only need to be transformed to the point where they are expressible in the
host language. Third, existing infrastructure can be reused. All these factors result into lower implementation
costs and decrease the risk of building an incorrect compiler.

So, in this work we focus on proving the correctness of compiled code issued from pattern-matching
constructions, and to the best of our knowledge, this is the first attempt to do so. Other works about
pattern-matching compilation address in particular data abstraction e.g. [?], or optimizations for run-time
efficiency or code size e.g. [?, ?].

Roadmap of the paper When considering the notion of pattern-matching, we consider a term data-
structure against which some patterns are matched. Since the host language is not fixed and could be
typically either C, Java or ML, the data-model is unknown. We therefore introduce in Section 2, the notion
of formal anchor which formally describes the relationship between the host language data-model and the
algebraic notion of term and pattern.

In our language, the host language is also generic, so we have to consider an abstraction which describes
the minimal set of functionality the host language should have to express the compilation of pattern-matching.
This abstraction is called the intermediate language (PIL) and we define its syntax and its big-step semantics
in Section 3.

Then Section 4 uses the proposed framework to define the correctness of a single pattern compilation and
to show how this correctness can be reduced to the validation of a first-order proposition.

This result is then extended in Section 5 to support Caml or Tom multi-match constructs, and before
concluding, Section 7 provides details about the implementation of these concepts in the current version of
Tom.

2 Formal anchor

When considering the problem of proving that the behavior of a program is compatible with its semantics,
we have to consider two kinds of entities. On the one side, we consider algebraic constructions, such as
ground terms (t ∈ T (F)), patterns (p ∈ T (F ,X )), and matching problems (p � t, with p ∈ T (F ,X ) and
t ∈ T (F)). On the other side, we consider programs, expressed in the PIL intermediate language, which are
supposed to solve matching problems. We also consider data which are supposed to represent a term or a
pattern. In this section, we define the notions of representation and formal anchor which define the link
between algebraic entities and considered data.
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2.1 Preliminary concepts

We assume the reader to be familiar with the basic definitions of first order term given, in particular, in [?].
We briefly recall or introduce notation for a few concepts that will be used along this paper.

A signature F is a set of function symbols, each one associated to a natural number by the arity function
(ar : F → N). Fn is the subset of function symbols having n for arity, Fn = {f ∈ F | ar(f) = n}.
T (F ,X ) is the set of terms built from a given finite set F of function symbols and a denumerable set

X of variables. A term t is said to be linear if no variable occurs more than once in t. Positions in a term
are represented as sequences of integers and denoted by Greek letters ε, ν. The empty sequence ε denotes
the position associated to the root, and it is called the root (or top) position. The subterm of t at position
ν is denoted t|ν . Symb(t) is a partial function from T (F ,X ) to F , which associates to each term t its root
symbol f ∈ F .

The set of variables occurring in a term t is denoted by Var(t). If Var(t) is empty, t is called a ground
term and T (F) is the set of ground terms.

Two ground terms t and u of T (F) are equal, and we note t = u, when, for some function symbol f ,
Symb(t) = Symb(u) = f , f ∈ Fn, t = f(t1, . . . , tn), u = f(u1, . . . , un), and ∀i ∈ [1..n], ti = ui.

A substitution σ is an assignment from X to T (F), written, when its domain is finite, σ = {x1 7→
t1, . . . , xk 7→ tk}. It uniquely extends to an endomorphism σ′ of T (F ,X ): σ′(x) = σ(x) for each variable
x ∈ X , σ′(f(t1, . . . , tn)) = f(σ′(t1), . . . , σ′(tn)) for each function symbol f ∈ Fn.

Given a pattern p ∈ T (F ,X ) and a ground term t ∈ T (F), p matches t, written p � t, if and only if
there exists a substitution σ such that σ(p) = t. Its negation is written p 6� t.

2.2 Object representation

Definition 1 Given a tuple composed of a signature F , a set of variables X , booleans B and integers N,
given sets ΩF , ΩX , ΩT , ΩB, and ΩN, we consider a family of representation functions pq that map:

• function symbols f ∈ F to elements of ΩF , denoted pfq,

• variables v ∈ X to elements of ΩX , denoted pvq,

• ground terms t ∈ T (F) to elements of ΩT , denoted ptq,

• booleans b ∈ B = {>,⊥} to elements of ΩB, denoted pbq,

• natural numbers n ∈ N to elements of ΩN, denoted pnq.

In other words, the representation function pq maps algebraic entities (from F , X , T (F), B, and N) to
objects manipulable by the intermediate language PIL (elements of ΩF , ΩX , ΩT , ΩB, and ΩN). We note
pT (F)q the set containing the representations of terms: pT (F)q = {ptq|t ∈ T (F)}, and we therefore have
pT (F)q ⊆ ΩT .

Example 1 Let us consider F = {e, s} (with ar(e) = 0 and ar(s) = 1), and the function pq such that
peq = 0 ∈ ΩF , psq = 1 ∈ ΩF . pq maps the symbols e and s respectively to “machine integers” 0 and 1 (i.e.
the notion of integer in the intermediate language), where we assume an infinite memory. Similarly, pq can
be extended to map the constant e ∈ T (F) to 0 (peq = 0 ∈ ΩT ), and any term of the form s(x) to the result
of the addition of 1 and the representation of x (ps(x)q = 1 + pxq ∈ ΩT ).

This representation is a way to map Peano integers to “machine integers”. Another well-known represen-
tation is the encoding of algebraic terms into e.g. n-ary trees.
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2.3 Object mapping

In Definition 1, the notion of representation mapping has been introduced to establish a correspondence
between algebraic objects and their representation in the intermediate language. However, we did not put
any constraint on the representation of objects. In particular, the function pq does not necessarily preserve
structural properties of algebraic objects (all terms could for example be represented by a unique constant).

Definition 2 Given a tuple 〈F ,X , T (F), B, N〉, a representation function pq, and the mappings eq : ΩT ×
ΩT → ΩB, is fsym : ΩT × ΩF → ΩB, and subtermf : ΩT × ΩN → ΩT (f ∈ F). A formal anchor is a
mapping d e : T (F)→ pT (F)q such that the structural properties of T (F) are preserved, in pT (F)q, by the
semantics of eq, is fsym, and subtermf .
∀t, t1, t2 ∈ T (F),∀f ∈ F ,∀i ∈ [1..ar(f)] we have:

eq(dt1e, dt2e) ≡ dt1 = t2e
is fsym(dte, dfe) ≡ dSymb(t) = fe
subtermf (dte, die) ≡ dt|ie if Symb(t) = f

In the following, we always consider that the representation function is also a formal anchor. Therefore,
from now on, the notation pq denotes representations that are also formal anchors.

Example 2 In C or Java like, the notion of term can be implemented by a record (sym:integer, sub:array

of term), where the first slot (sym) denotes the top symbol, and the second slot (sub) corresponds to the
subterms. It is easy to check that the following definitions of eq, is fsym, and subtermf (where = denotes
an atomic equality) provide a formal anchor for T (F):

eq(t1, t2)
4
= t1.sym = t2.sym ∧ ∀i ∈ [1..ar(t1.sym)],

eq(t1.sub[i], t2.sub[i])

is fsym(t, f) 4
= t.sym = f

subtermf(t, i)
4
= t.sub[i] if t.sym = f and i ∈ [1..ar(f)]

Defining a correct formal anchor is a key point to allow for the formal verification of the pattern matching
code. But since this can be quite technical, we use in practice an external tool which generates for us the
mapping for a given signature, as described in Section 7.

3 Intermediate language

We now describe the syntax of PIL, introduce the notion of environment, and give a formal big-step semantics
(7→bs) to PIL. Informally, this intermediate language is a subset of C ∩ Java ∩ML that is expressive enough
to describe pattern matching procedures. This language is very close to the host language fragment it will
be translated into at the end of the compilation process, and involves only a renaming of the syntactic
constructions, so that proving this part of the compilation process should not present difficulties.

3.1 Syntax

Given F , X , T (F), B, N, eq, is fsym, subterm, and a formal anchor pq as defined above, the syntax of the
intermediate language PIL is defined in Figure 1.

The set of terms 〈term〉 is built over the representation of T (F), and the construct subtermf which
retrieves the ith child of a given term. The set of expressions 〈bexpr〉 contains the representation of booleans,
as well as two predicates: eq which compares two terms, and is fsym which checks that a given term is
rooted by a particular symbol given in argument. The set of instructions 〈instr〉 contains only 4 instructions:
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PIL ::= 〈instr〉
symbol ::= pfq (f ∈ F)
variable ::= pxq (x ∈ X )
〈term〉 ::= ptq (t ∈ T (F))

| variable
| subtermf (〈term〉, pnq) (f ∈ F , n ∈ N)

〈bexpr〉 ::= pbq (b ∈ B)
| eq(〈term〉, 〈term〉)
| is fsym(〈term〉, symbol)

〈instr〉 ::= let(variable, 〈term〉, 〈instr〉)
| if(〈bexpr〉, 〈instr〉, 〈instr〉)
| accept
| refuse

Figure 1: Syntax of the intermediate language PIL

let and if correspond respectively to the assignment and the if-then-else test. We consider here that
it is forbidden to assign a same variable twice. We use an if then else construct instead of the switch
construct usually used to compile pattern matching because we want the generated matching algorithm to
be independent of the mapping and the way terms are effectively represented. The is fsym expression allows
to “query” a term without the need to have function symbols as objects directly manipulated by the host
language, providing more abstraction. accept and refuse are two special instructions aimed to approximate
the body part of a function defined by pattern matching. In this work, since we focus on pattern matching,
we only need two instructions to put the execution in a given state (accept or refuse), which denotes
whether the pattern matches the subject or not.

Such a program may contain some free variables (variables which are not bound in the program by a let
construct). They represent the input of the program, in our case the terms the pattern matching algorithm
will try to match against. We call such variable input variable.
Assumption A. In the following, we consider that a program is evaluated in an environment where all its
free variables are instantiated by a value, i.e. a term representation.

Example 3 Given a signature F = {a, f} and a set of variables X = {s, x}, a possible compilation of
f(x)� s is:

if(is fsym(psq, pfq),
let(pxq, subtermf (psq, p1q), accept),
refuse

)

This program is evaluated in an environment which assigns a term representation to the free variable psq.
This program checks that the root symbol of s corresponds to the representation of f . When it is the case,
the first subterm of s is assigned to a variable x, and the program goes into the accept state. Otherwise, it
goes into the refuse state.

On this example, it is easy to convince ourselves that the program goes into the accept state if and only
if the pattern effectively matches the subject. Our goal here consists to get a formal proof of this property.

Notation. For sake of correctness, mathematical objects (B, N, and X ) have to be distinguished from their
representation. However, since most of programming languages support the notion of boolean, integer and
variable, when there is no ambiguity, we note p>q = true, p⊥q = false, p0q = 0, p1q = 1, . . . , pnq = n for
n ∈ N, and pxq = x for x ∈ X .

Among the set of programs of PIL, we consider the subset of programs whose evaluation (under assumption
A) always terminates in accept or refuse, whatever the input is. Those programs are called well-formed
programs.
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Γ,∆ ` pbq : wf (b ∈ B)
Γ,∆ ` t1 : wf Γ,∆ ` t2 : wf

Γ,∆ ` eq(t1, t2) : wf

Γ,∆ ` ptq : wf (t ∈ T (F))
Γ,∆ ` t : wf

Γ,∆ ` subtermf (t, i) : wf
if (t, f) ∈ ∆ and i ∈ [1..ar(f)]

Γ,∆ ` accept : wf

Γ,∆ ` t : wf Γ :: v,∆ ` i : wf

Γ,∆ ` let(v, t, i) : wf

Γ,∆ ` refuse : wf

Γ,∆ ` is fsym(t, pfq) : wf Γ,∆ :: (t, pfq) ` i1 : wf Γ,∆ ` i2 : wf

Γ,∆ ` if(is fsym(t, pfq), i1, i2) : wf

Γ,∆ ` pxq : wf
if x ∈ Γ

Γ,∆ ` e : wf Γ,∆ ` i1 : wf Γ,∆ ` i2 : wf

Γ,∆ ` if(e, i1, i2) : wf
if e 6= is fsym(t, pfq)

Figure 2: Type system for checking validity

Definition 3 A program π ∈ PIL is said to be well-formed when it satisfies the following properties.

• Each expression subtermf (t, n) is such that t belongs to 〈term〉, is fsym(t, pfq)) ≡ true and
n ∈ [1..ar(f)].
(In practice, we verify that each expression of the form subtermf (t, n) belongs to the then part of an
instruction if(is fsym(t, pfq), . . .).)

• Each variable appearing in a sub-expression is previously initialized by a let construct, or in the
evaluation environment.

We introduce here a simple type system for verifying that a given program is well-formed, in a partic-
ular context (modeling the evaluation environment). This context is formed by the variables which have
been introduced in the evaluation environment, noted Γ, and a list of couples (〈term〉, symbol), noted ∆,
representing the fact that in the evaluation environments, the root symbol of a given term is known.

Property 1 A PIL-program π is said well-formed in an evaluation environment if and only if we can build
a derivation of Γ,∆ ` π : wf in the type system presented in Figure 2. Γ contains the variables initialized
by the environment, and ∆ stores which terms have a particular root symbol.

Proof 1 Let π a PIL-program, Γ, ∆ contexts such that there is a derivation Γ,∆ ` π : wf in the type system
of Figure 2.

So for each variable v in π, it exists contexts Γ′,∆′ such that Γ′,∆′ ` v : wf , and thus v ∈ Γ′. Since v
can only be introduced in the context Γ′ either by early initialisation, or by applying the typing rule for let,
the variable v has been initialized. Also, for each subtermf (t, i) construct in π, it exists contexts Γ′,∆′ such
that Γ′,∆′ ` subtermf (t, i) : wf , and (t, pfq) ∈ ∆′. Since (t, pfq) can only be introduced in the context ∆′

by applying the typing rule for if(is fsym(t, pfq), i1, i2) or by a previous test, the representation t has been
checked to have root symbol f .

Let π a well-formed PIL-program in an evaluation environment. If we initialize the contexts Γ and ∆ with
the variables already instantiated in the environment, and with which terms have a particular root symbol, we
can build a derivation of Γ,∆ ` π : wf , since the typing rules for variables and subterm contructs will apply,
each variable being either instantiated in the initial environment, or introduced by a let construct before its
use, and root symbol of terms and arities being checked before the use of a subterm construct, either with a
test in the program or in the evaluation environment.

In practice, when verifying that a given program is well-formed, we initialize the environments with the
set of input variables of the program as Γ (corresponding to the subject against which the program matches),
and an empty list of couples ∆.
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Notice that the well-formedness of a PIL-program is linearly decidable, since this property can be decided
by the type system in Figure 2.

The program given in Example 3 is well-formed in the environment Γ = {s}, ∆ = ∅, since subtermf (psq, p1q)
is protected by the construct if(is fsym(psq, pfq), . . .) with 1 ∈ [1..ar(f)], pxq is introduced by a let, and
psq is in Γ.
On the contrary, the program: if(is fsym(psq, pfq), if( eq(pxq, subtermg(psq, p1q)), accept, refuse), refuse)
is not well-formed in the same environment for two reasons: pxq is not introduced by a let, and subtermg

is not guarded by an if(is fsym(psq, pgq), . . .).

3.2 Environments

Given a matching problem, its satisfiability is of course of interest. But in most applications it is not enough
and we need to compute a witness: i.e. a substitution which assigns values to the variables of the pattern.
In this section, we introduce the notion of environment, which models the memory of a program during its
evaluation. To represent a substitution, we model an environment by a stack of assignments of concrete
terms to variable names. In addition, we also define a function Φ which goes back from environments to
algebraic substitutions.

Definition 4 An atomic environment ε is an assignment from pXq to pT (F)q, written [x ← ptq]. The
composition of environments is left-associative, and written [x1 ← pt1q][x2 ← pt2q] · · · [xk ← ptkq]. Its
application is such that:

ε[x← ptq](y) =
{

ptq if y ≡ x
ε(y) otherwise

We extend the notion of environment to a morphism ε′ from PIL to PIL, and we note Env the set of all
environments.

Definition 5 Given F and X , we define the mapping Φ from environments to substitutions, by Φ(ε) = σ
where:

σ = {xi 7→ ti | ε(pxiq) = ptiq with xi ∈ X and ti ∈ T (F)}

Hence, to prove the correctness of the compiled code πp, we want to ensure that, for a given model of
evaluation “eval” and for each term t, the following diagram commutes:

p� t

match

��

compile// πp(ptq)

eval

��

σ oo
abstract

ε

We are now going to make the evaluation mechanism explicit.

3.3 Big-step semantics

We use a big step semantics à la Kahn [?] to express the behavior of the PIL evaluation mechanism. The re-
duction relation of this big-step semantics is expressed on couples made of an environment and an instruction,
denoted 〈ε, i〉. The reduction relation for the big-step semantics is:

〈ε, i〉 7→bs 〈ε′, i′〉, with i, i′ ∈ 〈instr〉, and ε, ε′ ∈ Env

and the rules for the big-step semantics are presented in Figure 3. The presented semantics is quite standard,
however, the reader should note that conditions are evaluated modulo a formal anchor pq and the equivalences
given in Section 2.3. In the line of Example 3, if we evaluate the program in the environment where
s is bound to pf(a)q, the condition [s← pf(a)q](is fsym(s, pfq)) ≡ true is equivalent to the condition
pSymb(f(a)) = fq ≡ true, which in this case is true since the top symbol of f(a) is f .
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〈ε, accept〉 7→bs 〈ε, accept〉 (accept)

〈ε, refuse〉 7→bs 〈ε, refuse〉 (refuse)
〈ε, i1〉 7→bs 〈ε′, i〉

〈ε, if(e, i1, i2)〉 7→bs 〈ε′, i〉
if ε(e) ≡ true

(iftrue)
〈ε, i2〉 7→bs 〈ε′, i〉

〈ε, if(e, i1, i2)〉 7→bs 〈ε′, i〉
if ε(e) ≡ false

(iffalse)
〈ε[x← ptq], i1〉 7→bs 〈ε′, i〉
〈ε, let(x, u, i1)〉 7→bs 〈ε′, i〉

if ε(u) ≡ ptq
(let)

Figure 3: Big-step semantics for PIL

4 Certified compilation

Given a PIL program π and a pattern p, we first define what means for π to be a correct compilation of p.
Intuitively, this asserts that the execution of πp will go into the accept state only if the pattern p matches t.
Conversely, when p does not match t, the program shall go into the refuse state.

Then, we state the correctness theorem and properties that show how the presented approach can be used
to formally certify that a matching problem is correctly compiled. This result will be extended in Section 5
to match constructs as seen in Caml or Tom, where a subject is matched against multiple patterns.

4.1 Pattern-matching compilation correctness

The big-step semantics introduced previously allows us to define now the notion of correct compilation πp

of a pattern p ∈ T (F ,X ).

Definition 6 Given a formal anchor pq, a well-formed program πp is a sound compilation of p when both:

∀ε, ε′ ∈ Env,∀t ∈ T (F),

〈ε, πp(ptq)〉 7→bs 〈ε′, accept〉 ⇒ Φ(ε′)(p) = t

(soundOK)

〈ε, πp(ptq)〉 7→bs 〈ε′, refuse〉 ⇒ p 6� t

(soundKO)

Definition 7 Given a formal anchor pq, a well-formed program πp is a complete compilation of p when
both:

∀ε ∈ Env,∀t ∈ T (F),

p� t⇒ ∃ε′ ∈ Env, 〈ε, πp(ptq)〉 7→bs 〈ε′, accept〉
∧Φ(ε′)(p) = t (completeOK)

p 6� t⇒ ∃ε′ ∈ Env, 〈ε, πp(ptq)〉 7→bs 〈ε′, refuse〉
(completeKO)

Definition 8 A compilation of a pattern p into a program πp is said correct, when it is sound and complete.

Informally, Definition 8 says that a program πp is a correct compilation of p when its execution of πp

leads to accept for all subjects which are matched by p, and reciprocally. The execution should also lead
to refuse if and only if p does not match the subject. In addition, Definition 6 and 7 ensure that the
environment ε′ computed by the execution of πp corresponds to a substitution σ such that σ(p) = t.

In order to certify that a given program πp corresponds to a correct compilation of a pattern p, Theorem 1
shows that it is sufficient to compute all derivations of πp to know whether the compilation is correct or not.
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Theorem 1 Given a formal anchor pq, a pattern p ∈ T (F ,X ), and a well-formed program πp ∈ PIL, we
have:

πp is a correct compilation of p
⇐⇒

∀ε, ε′ ∈ Env,∀t ∈ T (F),
〈ε, πp(ptq)〉 7→bs 〈ε′, accept〉 ⇔ Φ(ε′)(p) = t

Proof 2 By application of Properties 2 and 3 below.

Property 2 For all environments ε ∈ Env, the derivation of a well-formed instruction i ∈ 〈instr〉 in the
environment Γ,∆ leads trivially to accept or to refuse, and the reduction is unique.

Proof 3 We proceed by induction over the structure of the instruction i.
We take as induction hypothesis that for all environments ε ∈ Env, the derivation of a well-formed

instruction i ∈ 〈instr〉 in the environment Γ,∆ leads to accept or to refuse, and the reduction is unique.

• when i = accept (resp. i = refuse), only one inference rule can be applied: the axiom (accept) (resp.
(refuse)). So the derivation leads uniquely either to accept or refuse.

• when i = let(x, u, i1), only one inference rule can be applied: the (let) rule:

〈ε[x← ptq], i1〉 7→bs 〈ε′, i2〉
〈ε, let(x, u, i1)〉 7→bs 〈ε′, i2〉

if ε(u) ≡ ptq
(let)

To complete the proof, we have to show that ∃t ∈ T (F) such that ε(u) ≡ ptq. We know that i is a
well-formed instruction in the context Γ,∆, so each variable occurring in u is previously initialized:
ε(u) is ground. Since u ∈ 〈term〉, u is either a representation, a variable or a subtermf . If u is
already a term representation, there is no problem. If u is a variable, u has been instantiated by
term representation in the evaluation environment, since it is well-formed. The well-formed-ness of i
ensures that each subtermf construct is encapsulated by an if(is fsym(p. . .q, pfq), . . .) and that each
variable is initialized. Also, all subtermf expressions are ≡-equivalent (see Definition 2) to a term
representation: ∃t ∈ T (F) such that ε(u) ≡ ptq.

By induction hypothesis, we know that the derivation of i1 leads either to accept or refuse in a unique
way, so the derivation of i is also unique and leads either to accept or refuse.

• when i = if(e, i1, i2), using similar arguments, we show that each 〈term〉 occurring in e is ≡-equivalent
to a term representation. Since the expression e is either a boolean representation, an is fsym, or an
eq (where subterms are term representations), e is by definition ≡-equivalent to the representation of
a boolean. Thus, we have either e ≡ true or e ≡ false.

When e ≡ true (resp. e ≡ false), the only applicable rule is (iftrue) (resp. (iffalse)), and we have:

〈ε, i1〉 7→bs 〈ε′, i3〉
〈ε, if(e, i1, i2)〉 7→bs 〈ε′, i3〉

if ε(e) ≡ true
(iftrue)

by induction hypothesis the reduction of i1 (resp. i2) in the environment ε leads either to accept or
refuse in an unique way, so the reduction of i does the same.

Thus, given ε ∈ Env, the reduction of a well-formed instruction i in an environment Γ,∆ leads either to
accept or to refuse, and the reduction is unique.

Property 3 Given a formal anchor pq and a well-formed program πp ∈ PIL, we have:

∀ε ∈ Env,∀t ∈ T (F), (soundOK)⇒ (completeKO)and (completeOK)⇒ (soundKO)
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Proof 4 Let us suppose (soundOK) and p 6� t. Since the derivation of 〈ε, πp(ptq)〉 is unique (Property 2),
we cannot have 〈ε, πp(ptq)〉 7→bs 〈ε′, accept〉 without contradicting p 6� t. Property 2 says also that a
derivation either leads to accept or refuse. Thus, we necessarily have 〈ε, πp(ptq)〉 7→bs 〈ε′, refuse〉, and
thus (soundOK)⇒ (completeKO).

Let us now suppose (completeOK) and that ∃ε′ ∈ Env, 〈ε, πp(ptq)〉 7→bs 〈ε′, refuse〉. We have to show
that p 6� t. If p � t, then by (completeOK) we have ∃ε′ ∈ Env, 〈ε, πp(ptq)〉 7→bs 〈ε′, accept〉. This is in
contradiction with the uniqueness of the derivation of 〈ε, πp〉, so we have p 6� t. Hence (completeOK) ⇒
(soundKO).

4.2 Interpreting the big-step semantics

Theorem 1 is the key result to prove that a program πp is correct. However, the equivalence between
〈ε, πp(ptq)〉 7→bs 〈ε′, accept〉 and Φ(ε′)(p) = t is difficult to prove since the big-step semantics has to be
modeled and used in the proof. To solve this problem, we use a very simple form of abstract interpretation
(because the symbolic simulation can be done without approximation) to statically derive a set of constraints
characterizing the program behavior in the spirit of [?, ?]. Therefore, given a program πp, we compute a set
of constraints Cπp such that, to prove a program correct, we show that for all t, “t satisfies Cπp” if and only
if “there exists ε such that Φ(ε)(p) = t”.

In practice, this result is useful because the big-step semantics 7→bs does not appear anymore explicitly.
This makes the proof smaller, and easier to handle by an automatic theorem prover.

Definition 9 A big-step derivation leading to accept is called successful. Let s be an input variable and
πp be a PIL well-formed program. To each successful big-step derivation D we associate the conjunction CD
of all constraints raised by the derivation. Cπp(s) is defined as the disjunction of all constraints CD for all
successful big-step derivations.

In practice, we can use a dedicated tool to extract the constraints from a program. Starting from an
environment ε containing only the input variable, it is sufficient to compute all big-step derivations leading to
accept: 〈ε, πp(ptq)〉 7→bs 〈ε′, accept〉. The constraints corresponds to the conditions raised by the application
of a big-step rule, given Figure 3. Let us note that the number of generated constraints is linear in the size
of the program. In practice, for a single pattern, the program is usually linear in the size of the pattern.

Given a term t, we note Cπp(t) the fact that t satisfies the constraint Cπp. An example of such a constraint
is given in Figure 5.

Property 4 Given a formal anchor pq, and a well-formed program πp ∈ PIL, we have:

∀ε ∈ Env,∀t ∈ T (F),
∃ε′ ∈ Env, 〈ε, πp(ptq)〉 7→bs 〈ε′, accept〉 ⇔ Cπp(t)

Proof 5 It is clear that if the derivation 〈ε, πp(ptq)〉 7→bs 〈ε′, accept〉 is possible, then t satisfies the con-
straint Cπp. On the other hand, if t satisfies the constraint Cπp, then a derivation leading to accept can be
built.

Theorem 2 Given a formal anchor pq, a pattern p ∈ T (F ,X ), and a well-formed program πp ∈ PIL, we
have:

πp is a correct compilation of p
⇐⇒

∀t ∈ T (F), Cπp(t)⇔ ∃ε′ ∈ Env,Φ(ε′)(p) = t

This theorem can be used to prove correct the compilation of a pattern. As illustrated by Figure 4,
given a pattern p, a condition over a term t written Cp, σ can be extracted. In general this condition
is of the form ∃σ, σ(p) = t, but, by using a matching algorithm, the substitution σ can be instantiated
by {x1 7→ t1, . . . , xk 7→ tk}, where t1, . . . , tk correspond to subterms of a subject t. When satisfied, this
condition ensures that p matches t.
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Cp, σ ⇔ Cπp
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��
Π : πp is correct

Figure 4: General schema of certification

Similarly, given a program πp, the constraint Cπp can be computed. By application of Theorem 4 we
know that if we can prove the equivalence between these two conditions, then the program πp is a correct
compilation of p. This proof can be done by an automatic prover to provide a formal proof Π.

4.3 Working example

As an example, let us consider the pattern g(x, b), with x ∈ X . Let us now suppose that our compiler
produces the following program, where s is an input variable:

πg(x,b)(s) ,
if(is fsym(s, pgq),

let(x1, subtermg(s, 1),
let(x2, subtermg(s, 2),

let(x, x1,
if(is fsym(x2, pbq), accept, refuse)))),

refuse)

Given a term t and an environment ε0 = [s ← ptq], let us suppose that 〈ε0, πg(x,b)(s)〉 7→bs 〈ε′, accept〉.
Figure 5 shows the unique derivation that can be computed by applying the inference rules defined in
Section 3.3.

To make this derivation possible, the following set of constraints has to be satisfied:

Cπp(s) =


ε0(is fsym(s, pgq)) ≡ true (1)
ε0(subtermg(s, 1)) ≡ pt|1q (2)
ε1(subtermg(s, 2)) ≡ pt|2q (3)
ε2(x1) ≡ pt|1q (4)
ε3(is fsym(x2, pbq)) ≡ true (5)

(1) and (5) can be simplified using the equations of the formal anchor, (2), (3), and (4) are tautologies. Thus,
to prove the correctness of πp, we have to prove the equivalence:

∀t ∈ T (F),
σ(g(x, b)) = t ∧ σ = {x 7→ t|1}

⇐⇒
Symb(t) = g ∧ Symb(t|2) = b
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Let3 , let(x, x1, if(is fsym(x2, pbq), accept, refuse)) ε0 = [s← ptq]
Let2 , let(x2, subtermg(s, 2), Let3) ε1 = ε0[x1 ← pt|1q]
Let1 , let(x1, subtermg(s, 1), Let2) ε2 = ε1[x2 ← pt|2q]

ε3 = ε2[x← pt|1q]

〈ε3, accept〉 7→bs 〈ε3, accept〉
〈ε3, if(is fsym(x2, pbq), accept, refuse)〉 7→bs 〈ε3, accept〉

5 = ε3(is fsym(x2, pbq)) ≡ true

〈ε2, let(x, x1, if(is fsym(x2, pbq), accept, refuse))〉 7→bs 〈ε3, accept〉
4 = ε2(x1) ≡ pt|1q

〈ε1, let(x2, subtermg(s, 2), Let3)〉 7→bs 〈ε3, accept〉
3 = ε1(subtermg(s, 2)) ≡ pt|2q

〈ε0, let(x1, subtermg(s, 1), Let2)〉 7→bs 〈ε3, accept〉
2 = ε0(subtermg(s, 1)) ≡ pt|1q

〈ε0, if(is fsym(s, pgq), Let1, refuse)〉 7→bs 〈ε3, accept〉
1 = ε0(is fsym(s, pgq)) ≡ true

Figure 5: Example of derivation leading to accept. We have Cπp(s) = { 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 }

This is proved by first applying the substitution in the first part of the proof obligation, and then using the
definitions of terms, symbols and subterms.

For this example, with g a function symbol of arity 2 and b a constant symbol, the mapping definition
leads to the following axioms:

∀t ∈ T (F), Symb(t) = g ⇔ ∃x, y ∈ T (F), t = g(x, y)
∀t ∈ T (F), Symb(t) = b⇔ (t = b)
∀x, y ∈ T (F), g(x, y)|1 = x

∀x, y ∈ T (F), g(x, y)|2 = y

The first two axioms define the meaning of the Symb function. The two remaining axioms define the subterm
function over terms rooted by the symbol g. As we use a first order prover, we need such a definition for
each symbol function and for each subterm.

To prove the left to right implication, we simply apply the substitution to the left part, and then apply
the first axiom, to obtain Symb(t) = g, and the fourth axiom to obtain Symb(t|2) = b.

To prove the remaining implication (⇐), we apply the first axiom to the first constraint, obtaining
∃x, y such that t = g(x, y). We then apply the third and fourth axiom, to instantiate x and y by t|1 and t|2.
The second constraint with the second axiom gives t|2 = b. We can then obtain g(t|1, b), and extract the
substitution.

The form of such propositions is rather simple but a huge number of them could be generated, so this
kind of proof should better be done by an automated theorem prover. In our implementation, we are using
Zenon [?], a first order tableau based automatic theorem prover. One of the nice capability of Zenon is
to generate a formal proof in Coq when a theorem can be proved. In our case, a witness of correctness is
generated and associated to the generated code.

Another proof approach will be to use theorem proving modulo [?] using in particular the axioms issued
from the mapping definition.

5 Extension to match
constructs

Our method can be extended to support match constructs à la ML, Caml or Tom. We consider not only
single patterns, but also constructs of the form match s with (p1 → a1), . . . , (pn → an). The semantics
of this construct is the following: if p1 matches the subject s, the program goes into the accept state,
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and to keep track of the pattern number, the accept state is labeled by p1, noted acceptp1
. Otherwise,

the subproblem match s with (p2 → a2), . . . , (pn → an) is considered. When no pattern pi matches s, the
program goes into the refuse state.

This new match construct can be easily compiled using the intermediate language PIL. However, to
avoid code duplication and to ease expression in PIL, it is useful to consider the sequence construct:
〈instr〉 ; 〈instr〉.

This sequence construct has the following big-step semantics:

〈ε, i1〉 7→bs 〈ε′, acceptp〉
〈ε, i1 ; i2〉 7→bs 〈ε′, acceptp〉 (seqa)

〈ε, i1〉 7→bs 〈ε′, refuse〉 〈ε′, i2〉 7→bs 〈ε′′, i〉
〈ε, i1 ; i2〉 7→bs 〈ε′′, i〉 (seqb)

It is easy to show that adding the sequence rules does not break the property of uniqueness for the derivation
of a well-formed instruction. The notion of correct compilation of a match construct is an extension of the
definition of the correct compilation of a pattern. The difference comes from the presence of multiple
patterns. Hence, when a pattern is selected to fire a rule (acceptp in our terminology), we should ensure
that all previous patterns do not match the subject. In the following, we do not make any assumptions on
the form of the code to validate. This ensures that we can consider any optimizations of the matching code,
like factorization of common tests.

Let Pm be the set of patterns for the match construct, and < a total ordering relation for patterns in
Pm. In the case of ML for example, we define < by the textual ordering: pi < pj if pi occurs before pj in
the match construct.

Definition 10 Given a formal anchor pq, a well-formed program πm is a sound compilation of m when
both:

∀ε ∈ Env,∀t ∈ T (F) :

∀p ∈ Pm,∃ε′ ∈ Env, 〈ε, πm(ptq)〉 7→bs 〈ε′, acceptp〉
⇒ Φ(ε′)(p) = t ∧ (∀p′ ∈ Pm s.t. p′ < p,Φ(ε′)(p′) 6= t)

(MsoundOK)

∃ε′ ∈ Env, 〈ε, πm(ptq)〉 7→bs 〈ε′, refuse〉 ⇒ ∀p ∈ Pm, p 6� t

(MsoundKO)

Definition 11 Given a formal anchor pq, a well-formed program πm is a complete compilation of m when
both:

∀ε ∈ Env,∀t ∈ T (F) :

∀p ∈ Pm, p� t ∧ (∀p′ ∈ Pm s.t. p′ < p, p′ 6� t)⇒
∃ε′ ∈ Env, 〈ε, πm(ptq)〉 7→bs 〈ε′, acceptp〉 ∧ Φ(ε′)(p) = t

∧(∀p′ ∈ Pm s.t. p′ < p,Φ(ε′)(p′) 6= t)
(McompleteOK)

∀p ∈ Pm, p 6� t⇒ ∃ε′ ∈ Env, 〈ε, πm(ptq)〉 7→bs 〈ε′, refuse〉
(McompleteKO)

A compilation of a pattern p into a program πp is said correct, when it is sound and complete.

Property 5 The derivation of a well-formed instruction i ∈ 〈instr〉 in an environment Γ,∆, in the extended
language, leads either to acceptp or refuse, and the reduction is unique.

Proof 6 We proceed by induction over the structure of instructions. The proof is similar to the proof of
Property 2.
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We extend the type system presented Figure 2 with the rule:

Γ,∆ ` i1 : wf Γ,∆ ` i2 : wf

Γ,∆ ` i1 ; i2 : wf

Let i = i1 ; i2 be a sequence. By induction, the reduction of i1 is unique and leads either to acceptp

or refuse. In the first case, (seqa) is applicable. The reduction of i1 ; i2 is equal to the reduction of i1, so
it is unique. In the second case, (seqb) is applicable. Since the reduction of i2 is unique, the reduction of
i = i1 ; i2 is unique.

Theorem 3 Given a formal anchor pq, m a match construct, and πm ∈ PIL a well-formed program, we
have:

πm is a correct compilation of m
⇐⇒

∀ε ∈ Env,∀t ∈ T (F),∀p ∈ Pm :

∃ε′ ∈ Env, 〈ε, πm(ptq)〉 7→bs 〈ε′, acceptp〉
⇔ Φ(ε′)(p) = t ∧ (∀p′ ∈ Pm s.t. p′ < p,Φ(ε′)(p′) 6= t)

Proof 7 We want to show, as in Property 3, that (MsoundOK)⇒ (McompleteKO) and (McompleteOK)⇒
(MsoundKO).

In the first case, assume (MsoundOK) and ∀p ∈ Pm, p 6� t. Since the reduction of 〈ε, πm(ptq)〉 is
unique, we cannot have a reduction of 〈ε, πm(ptq)〉 7→bs 〈ε′, acceptp〉. This reduction exists, hence we have
〈ε, πm(ptq)〉 7→bs 〈ε′, refuse〉. The second case can be proved in a similar way.

In order to prove that the compilation πm of a match constructs m is correct, we have to consider
each statement acceptp in the program separately. For each pattern p in the match construct, we build
all derivations in 7→bs leading to acceptp, and deduce from it a constraint, formed by a disjunction of
conjunctions of single constraints. We can then for each constraint prove the corresponding proof obligation,
as expressed in Theorem 3.

6 Generating the constraints

We now describe an algorithm to generate the constraints associated to a PIL program, and discuss the
complexity of this algorithm.

6.1 Algorithm to collect constraints

The extraction starts with an environment ε instantiating all free variables in the program to verify, as
showed in Section 4.2.

C(let(x, u, i), goal) = C(i, goal) ∧ x = u
C(if(e, i1, i2), goal) = (C(i1, goal) ∧ e ≡ true)

∨C(i2, goal) ∧ e ≡ false)
C(i1 ; i2, goal) = C(i1, goal) ∨ (C(i1, refuse) ∧ C(i2, goal))
C(i, goal) = > if i = goal,

⊥ otherwise

The algorithm computes a disjunction of conjunction of constraints. The disjuction represents the differ-
ent path the control flow can take in the program, while the conjunctions represents the set of constraints
raised in one of those path.

It is interesting to note that in the case of simple patterns, when we do not consider the ; instruction,
and when there is only one occurence of accept in the program, then only one of such path is possible for
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the control flow to reach accept, and so all disjuctions can be simplified by a simple boolean analysis of the
generated constraint.

This function is too abstract to be used in this form, since we need for building the proof obligations of the
correctness theorem the substitution built by the program when reaching accept. To ease the implementation
we allow us to pass to the constraint extraction function the substitution built by the evaluation, and apply
it to the constraints where possible.

C(ε, let(x, u, i), goal) = C(ε[x← u], i, goal)
C(ε, if(e, i1, i2), goal) = (C(ε, i1, goal) ∧ ε(e) ≡ true)

∨(C(ε, i2, goal) ∧ ε(e) ≡ false)
C(ε, i1 ; i2, goal) = C(ε, i1, goal) ∨ (C(ε, i1, refuse) ∧ C(ε, i2, goal))
C(ε, i, goal) = > if i = goal,⊥ otherwise

In the resulting set of constraints C, we propagate variable instantiations, and apply the formal anchor
equations to simplify the constraints.

In practice, this simplification is done during the extraction of the constraints, to allow detecting un-
satisfiable sets of constraints (denoting an impossible path in the program flow) as early as possible, and
discarding them.

6.2 Simple example

As an example, let us consider the pattern g(x, b), with x ∈ X . Let us now suppose that our compiler
produces the following program, where s is an input variable:

πg(x,b)(s) ,
if(is fsym(s, pgq),

let(x1, subtermg(s, 1),
let(x2, subtermg(s, 2),

let(x, x1,
if(is fsym(x2, pbq), accept, refuse)))),

refuse)

We have to start the constraint extraction with ε = [s← t], and want to derive accept.

C(if(is fsym(s, pgq)let(x1, subtermg(s, 1),
let(x2, subtermg(s, 2), let(x, x1, if(is fsym(x2, pbq),

accept, refuse)))), refuse), accept)
=

(C(let(x1, subtermg(s, 1), let(x2, subtermg(s, 2),
let(x, x1, if(is fsym(x2, pbq), accept, refuse)))), accept)

∧is fsym(s, pgq) ≡ true)
∨

(C(refuse, accept) ∧ is fsym(s, pgq) ≡ false)
=

C(let(x2, subtermg(s, 2),
let(x, x1, if(is fsym(x2, pbq), accept, refuse))), accept)
∧(is fsym(s, pgq) ≡ true ∧ x1 = subtermg(s, 1))

∨
(⊥ ∧ is fsym(s, pgq) ≡ false)
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=
C(let(x, x1, if(is fsym(x2, pbq), accept, refuse)), accept)

∧is fsym(s, pgq) ≡ true ∧ x1 = subtermg(s, 1) ∧ x2 = subtermg(s, 2))
∨

(⊥ ∧ is fsym(s, pgq) ≡ false)
=

C(if(is fsym(x2, pbq), accept, refuse), accept)
∧is fsym(s, pgq) ≡ true ∧ x1 = subtermg(s, 1)

∧x2 = subtermg(s, 2) ∧ x = x1)
∨

(⊥ ∧ is fsym(s, pgq) ≡ false)
=

(C(accept, accept)
∧is fsym(s, pgq) ≡ true ∧ x1 = subtermg(s, 1)

∧x2 = subtermg(s, 2) ∧ x = x1 ∧ is fsym(x2, pbq) ≡ true)
∨

(C(refuse, accept)
∧is fsym(s, pgq) ≡ true ∧ x1 = subtermg(s, 1)

∧x2 = subtermg(s, 2) ∧ x = x1 ∧ is fsym(x2, pbq) ≡ false)
∨

(⊥ ∧ is fsym(s, pgq) ≡ false)
=

(> ∧ is fsym(s, pgq) ≡ true ∧ x1 = subtermg(s, 1) ∧ x2 = subtermg(s, 2)
∧x = x1 ∧ is fsym(x2, pbq) ≡ true)

∨
(⊥ ∧ is fsym(s, pgq) ≡ true ∧ x1 = subtermg(s, 1)

∧x2 = subtermg(s, 2) ∧ x = x1 ∧ is fsym(x2, pbq) ≡ false)
∨

(⊥ ∧ is fsym(s, pgq) ≡ false)

6.3 Simplifying constraints

Using the algorithm to collect constraints produces a huge formula, containing many > and ⊥, so we can
first simplify this formula as a boolean formula.

We apply the following rewrite system, with a letftmost-innermost strategy:

⊥ ∧ x → ⊥
x ∧ ⊥ → ⊥
> ∨ x → >
x ∨ > → >
⊥ ∨ x → x
x ∨ ⊥ → x
¬> → ⊥
¬⊥ → >
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This rewrite system simplify the boolean constraints, to obtain the simplified contraints.
The extracted constraints for πg(x,b) are:

is fsym(s, pgq) ≡ true
∧ x1 = subtermg(s, 1)
∧ x2 = subtermg(s, 2)

∧ x = x1

∧ is fsym(x2, pbq) ≡ true

Those constraints can be simplified using the definitions of the mapping,

eq(pt1q, pt2q) ≡ pt1 = t2q

is fsym(ptq, pfq) ≡ pSymb(t) = fq

subtermf (ptq, piq) ≡ pt|iq if Symb(t) = f

The mapping equalities can be oriented, to be used as a rewrite system. Informally, the goal is to transform
a constraint giving information about the objects manipulated by the program into a constraint giving
information about the algebraic terms used at source level.

eq(pt1q, pt2q) → pt1 = t2q

is fsym(ptq, pfq) → pSymb(t) = fq

subtermf (ptq, piq) → pt|iq if Symb(t) = f

Applying this rewrite system to the constraints generated for πg(x,b) produces the constraint:

Symb(s) = g
∧ x1 = s|1
∧ x2 = s|2
∧ x = x1

∧ Symb(x2) = b

6.4 Size of the generated formula

Let us consider the size of the input as the number of nodes of the input abstract syntax tree.
All rules except the extraction rule for the sequence ; are linear, each node in the input abstract syntax

tree is visited once.
The rule for sequence visits the left subtree of ; twice, thus leading to an exponential in the number

of ; nodes in the input. However, the sequence ; is associative, so we can consider that the left subtree
of a sequance is not itself a sequence, and the generated code usually do not contain many nested levels of
sequences, so this exponential do not appear in practical use.

6.5 Decidability

The theorems we want to prove have their only quantifiers at the root, introducing the input variables.
They correspond to the second part or the correctness theorem [] and if they hold, prove that the

compilation of the corresponding patterns was successful. Cπp is the constraint formula produced by the
application of the constraint extraction algorithm on the PIL program πp, corresponding to the compilation
of the matching problem p. Cπp(t) represents the fact that the term t satisfy this constraint formula.

Theorem 4 Given a formal anchor pq, a pattern p ∈ T (F ,X ), and a well-formed program πp ∈ PIL, we
have:

πp is a correct compilation of p
⇐⇒

∀t ∈ T (F), Cπp(t)⇔ ∃ε′ ∈ Env,Φ(ε′)(p) = t
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The part we want to prove automatically is:

∀t ∈ T (F), Cπp(t)⇔ ∃ε′ ∈ Env,Φ(ε′)(p) = t

Since the output substitution can be computed from the extracted constraints (and directly, using the
second extraction algorithm), we can also remove from the property we have to prove the existential quantifier,
and use this computed substitution in place of ε′.

The property to prove becomes:

∀t ∈ T (F), Cπp(t)⇔ Φ(ε)(p) = t

Proving that: ∀t ∈ T (F),Φ(ε)(p) = t⇒ Cπp(t) can be done by orienting the axioms defining the subterm
and symbol property.

7 Early Experimental Results

The presented work has been implemented and applied to the intermediate language of Tom [?]. Tom is a
language extension which adds pattern matching primitives to C, Java, and Caml. One particularity is to
provide support for matching modulo sophisticated theories, like associative operators with neutral element.
However, in this work, we only considered the case of the empty theory (i.e. syntactic matching), with
possibly non-linear patterns.

Tom is based on the notion of formal anchor presented in Section 2.3. Thus, it is data structure indepen-
dent, and customizable for any term implementation. Considering a simple term implementation in C, for
example, we can define the following anchor:

struct term { int symbol;

int arity;

struct term **subterm; };

%typeterm Term {

implement { struct term* }

get_subterm(t,n) { t->subterm[n] }

equal(t1,t2) { term_equal(t1,t2) }

}

%op Term a { is_fsym(t) { t->symbol == A } }

%op Term b { is_fsym(t) { t->symbol == B } }

%op Term f(Term) { is_fsym(t) { t->symbol == F } }

Given a %match construct, as illustrated by Figure 6, the compiler translates patterns into PIL instruc-
tions, which use the previously defined formal anchor. In practice, this mapping is supposed correct, in the
sense that structural properties of terms should be preserved. To simplify this task, when no particular
data-structure is required, a generator of term based implementations, coupled with a generator of formal
anchors, can be used [?].

To prove the generated PIL code correct, we recently added to Tom a component (constraints extractor)
which generates, for each pattern p, the constraints Cπp and Cp, σ = (∃σ, σ(p) = t), where t is the input
term. In a second step, these two constraints are sent to a prover to show their equivalence. To experiment
our approach, we used Zenon, because, in addition to be fully automatic, it can generate a Coq formal
proof when it succeeds. This is essential in our “skeptical” approach since it allows the user of the generated
program to verify the proof by himself.

The verification tool is integrated into the Tom architecture, but note that no support from the internal
compiler is needed: Cp, σ are extracted from the AST produced by the parser, and Cπp are extracted from the
PIL program produced by the compiler, or any other component such as an optimizer for example. Seeing the
compiler as a black-box allows us to perform any kind of optimization unless PIL code is generated. At the
moment we handle only the intermediate code of the compiler, ignoring the parser and the code generator.
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Figure 6: Global architecture of Tom

In our case, the backend performs a so straightforward one-to-one translation, from PIL instructions to host
language instructions, that we trust in its correctness.

The interest of this approach is to allow to verify code corresponding to an optimized many-to-one
algorithm, where common tests are factored.

To illustrate the applicability of the present approach, we tested our validator on several small examples,
all of which worked with success, in an efficient way. For a more realistic test, to show how the approach scales
to biggest problems, we generated proof obligations corresponding to the compilation of Tom itself (written
in Tom). 184 patterns were extracted by the parser, after discarding associative patterns. From this set of
patterns, 1018 applications of inference rules were needed to compute all derivations which lead to accept.
This step generated 834 constraints (Cπp). Most of them were tautologies of the form ε(subtermg(s, 1)) ≡ s|1.
After a first step of simplification, 273 remaining constraints were simplified using 2533 ≡-equivalence relation
steps. On a PowerMac G5 (2GHz), the compilation of Tom, with the generation of theorems to prove, only
increased the compilation time by 20% (going from 70 seconds to 84 seconds). This clearly shows that the
approach can scale to large applications. In the current implementation, the translation to Zenon formalism
is done fully automatically starting from the Tom program.

8 Conclusion and future works

When using a compiler, we always think it is correct. When writing a compiler, we know it is incorrect.
This drives us to present a framework addressing the specific problem of generated pattern matching code
validation. The main benefit of such an approach over a traditional compiler is that the compiler output is
formally checked after each compilation, thus simplifying testing and development and providing a way to
prove the formal validity of the generated code. We have seen that the proposed approach is powerful and
flexible enough to validate the compilation of match constructs à la Caml or Tom.

We are now attacking the challenging problem of extending this method to support matching with
associative (list) operators, like those of the Tom language, and with associative-commutative operators,
like in many rewriting based languages like ELAN. Matching modulo theories is much more elaborated than
syntactic matching, and so is writing such a pattern matching compiler. Validation of the produced code
can then help developing and debugging new optimizations for these matching theories. Furthermore, when
matching modulo theories, a new completeness problem has to be solved: the generated matching code
has not only to find a substitution if the matching problem has one, but may have to produce all possible
solutions for the matching problem.

The approach proposed here generates proof obligations of a very strict form. These proof obligations
are in general easy to prove, but we should investigate our current conjecture that this class of problems is
indeed decidable.

Although we were only interested in this work in the correctness of the generated code against the source
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problem, some additional properties of the source system could be proved by this method. For example the
completeness of definition of a function defined by pattern matching could be proved by showing that there
is no possible reduction to refuse.

Finally, our ultimate goal is to formally prove the correct compilation of the normalization process
induced by a rewrite system. Proving the correct compilation of rewrite system execution will allow us to
safely deduce on the program produced by the compilation of a rewriting specification the properties proved
for this specification, like termination or confluence. This paper is a first but crucial step in this direction.
Acknowledgments: We would like to thank Luigi Liquori for his inside full reading on a preliminary version
of this paper, Pierre Weis and Germain Faure for useful comments on this work. Special thanks are due
to Damien Doligez for fruitful discussions and his help in connecting our tool to Zenon. We also thank the
anonymous referees for valuable comments and suggestions that led to a substantial improvement of the
paper.
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