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Abstract. We introduce the Periodic Metro Scheduling (PMS)
problem, which aims in generating a periodic timetable for a given set of
routes and a given time period, in such a way that the minimum time dis-
tance between any two successive trains that pass from the same point of
the network is maximized. This can be particularly useful in cases where
trains use the same rail segment quite often, as happens in metropolitan
rail networks.

We present exact algorithms for PMS in chain and spider networks,
and constant ratio approximation algorithms for ring networks and for a
special class of tree networks. Some of our algorithms are based on a re-
duction to the Path Coloring problem, while others rely on techniques
specially designed for the new problem.

Keywords. train scheduling, path coloring, delay-tolerant scheduling,
periodic timetabling

1 Introduction

In railway networks where trains use the same railway segment quite often (e.g.
metro) it would be desirable to schedule trains so as to guarantee an ample time
distance between successive trains that pass from the same point of the network
(in the same direction). Such a scheduling would result in a more delay-tolerant
system. This is a particularly essential requirement in cases where there are
several overlapping routes that have to be carried out periodically and the time
limits are such that some route must start before the termination of another
route with which it shares a part of the network.

Here, we formulate this situation by introducing the problem Periodic

Metro Scheduling (PMS): given a rail network, a set of routes (described
as paths over the network graph), and a time period, we seek to arrange the
departure times of routes so that the minimum time distance between any two
trains that pass from the same point of the network is maximized. Although
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our motivation comes from railway optimization, PMS may also describe other
transportation media timetabling problems.

We show the NP-hardness of PMS, by reduction from Path Coloring

(PC), which is the problem of coloring paths in a graph with minimum number
of colors so that intersecting paths receive different colors. We further investigate
the relation between the two problems and present exact algorithms for chain and
spider networks that rely on a reduction from PMS to PC. Moreover, we show
that this technique also applies to rings for which the time needed to traverse the

ring is a multiple of the given period. This results to a
(

1

ρ
L

L+1

)

-approximation

algorithm for such instances, where ρ is the approximation ratio we can achieve
for PC and L is the maximum number of routes passing through any edge of
the network. For ring instances that do not satisfy this condition we present a
more involved algorithm that achieves an approximation guarantee of 1

6
. Finally,

we show how to apply the path coloring technique to tree networks where the
time distance between stations is a multiple of the half of the period, resulting

in a
(

1

ρ
L

L+1

)

-approximation algorithm for this topology as well. Our algorithms

employ known algorithms for PC [4, 22, 9, 13] as subroutines.

Related work. To the best of our knowledge Periodic Metro Scheduling has
not been studied before in the form of an optimization problem. The decision
version of PMS, namely the problem of requiring a minimum safety distance not
smaller than a given threshold between all pairs of overlapping routes, can be
described in terms of a generic problem known as Periodic Event Scheduling

Problem (PESP) [23]. PESP has been studied by several researchers, see e.g.
[25, 19, 18, 20] and references therein. However, we are not aware of any concrete
results for PESP that could apply to PMS, as PESP is usually studied in
conjuction with several other constraints that render the problem quite hard and
the proposed methods for solving it are mainly heuristics based on “branch-and-
bound”, “branch-and-cut”, and “branch-and-price” methods. A similar problem
as PMS has been defined in [11], and it has been proven to be NP-complete.
However, the setting is broader and the completeness results apply to general
graphs1.

There is a huge bibliography on railway optimization topics; the interested
reader is referred to [3] for a nice collection of concepts and earlier results on
railway optimization. More recent work on periodic train scheduling includes
a rolling stock minimization problem where routes are given and it is sought
to determine departure times either arbitrarily (as in our case) or within an
allowed time window [7]; however, the objective there is quite different, namely
to serve all routes with a minimum number of trains while it is allowed for
routes to simultaneously depart from the same station even if they follow the
same direction. The rolling stock minimization problem with fixed departure
times has been extensively studied: the simplest version, also known as Minimum

Fleet Size [2], or Rolling Stock Rostering [8], can be solved exactly in

1 Unfortunately, we were not able to thoroughly check the similarity of those results
to ours because that thesis is available only in German.
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polynomial time; Dantzig and Fulkerson [6] give the first known algorithm and
Erlebach et al. [8] present one of improved complexity. In [8] some variations
are also studied and shown APX-hard: allowing empty rides and requiring that
the trains pass through a maintenance station; constant ratio approximation
algorithms have been proposed.

A problem that has recently drawn attention is that of delay management,
that is, how to reduce or increase delays of trains in order to better serve rail-
way customers [24, 12, 14]. Several other railway optimization problems have
been considered in the literature [26, 5, 21, 1], most of which are hard to solve; a
number of heuristics have been presented for them in the corresponding papers.

2 Definitions – Preliminaries

We assume that all trains move at the same speed, therefore the duration of
traveling between any two connected stations is the same for all trains. In the
sequel we denote the travel time between two stations connected by edge e as
t(e). We also assume that all edges represent directed railway lines and any two
connected stations are linked by a pair of opposite directed edges. For simplicity
we consider that the waiting time at stations is negligible.

We are interested in maximizing the time distance between any two overlap-
ping routes, that is, routes that share at least one edge. Note that, due to the
uniformity of speed, it suffices to measure the time distance between overlap-
ping routes only at the starting node (station) of the first edge of each common
section. More precisely, let e be a common edge between routes r and r′ and t

(resp. t′) be the time at which r (resp. r′) enters edge e. Then the time distance
of r and r′ at edge e is defined as min(t − t′ mod T, t′ − t mod T ). When the
time distance between two routes in an edge is 0 we say that the routes collide.

We will denote the source of a route r by s(r), and its target by e(r). We
define τ(i, j) as the time distance between nodes i and j in the input graph.

Let us now formally define our problem.

Periodic Metro Scheduling (PMS)

Input: A directed graph G = (V, E), an inter-station time function t : E → N,
an integer time period T and a collection R = {r1, . . . , rk} of simple paths on G

(routes).

Feasible solution: A schedule for R, that is, a function stime : R → [0, T ) which
assigns a departure time to each route such that no two routes enter the same
edge at the same time.

Goal: Maximize the minimum time distance between any two overlapping routes.

We define L(e) to be the number of paths that pass through an edge e of the
graph. Let L = maxe L(e). It is not hard to see that T

L
is an upper bound to the

objective value of an optimal solution (OPT), because routes cannot be spaced
further apart than T

L
on the edge with the maximum load.
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In our study we will show a close relation between PMS and PC. The defi-
nition of PC is as follows:

Path Coloring (PC)

Input: A directed graph G = (V, E) and a collection P = {r1, . . . , rk} of paths
on G.

Feasible solution: An assignment of colors to all paths of P such that no two
paths which share an edge are assigned the same color.

Goal: Minimize the number of colors used.

PC (note that here we consider the directed version) can be solved optimally
in polynomial time in chains (folklore, see e.g. [15]), stars and spiders using L

colors, but is known to be NP-hard in rings [13] and trees [22].

We will widely use the notation a ≡T b to denote that a mod T = b mod T .

3 PMS in chain, star and spider networks

A chain is a graph that consists of a single path. A star is a tree with at most
one internal node. A spider is a tree in which at most one internal node has
degree ≥ 3, called the central node; that is, a spider is a graph resulting from a
star whose edges have been replaced by chains (also called legs of the spider).

In chains we label the nodes of the graph from 0 to n − 1 successively. In
stars we label the central node 0 and the peripheral nodes 1, . . . , n. In a spider
with k legs each node is labeled (i, j) where i = 1, . . . , k represents the leg the
node belongs to and j represents the node’s position in the leg relative to the
central node.

3.1 An algorithm for chains

Since all connections are bidirectional we can divide any problem instance into
two subproblems, one containing paths moving to the right and one containing
paths moving to the left and solve them separately.

Let ti be the time distance from node i to i + 1 for i = 1, . . . , n − 1. In the
case of chain networks the time distance between two nodes i and j is

τ(i, j) =

j−1
∑

k=i

tk

We will make use of the fact that PC can be solved optimally for chain
networks by using a simple greedy technique.

We propose the following algorithm:
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Algorithm 1 An algorithm for PMS in chain networks

1: Compute a path coloring of routes with exactly L colors from {0, . . . , L − 1}. Let
color(r) denote the color assigned to route r.

2: Set t = T

L
and define L time slots as follows: 0, t, 2t, . . . , (L − 1)t.

3: Assign time slots to routes according to the coloring obtained in step 1, namely
timeslot(r) := color(r) · t.

4: For each r set starting time

stime(r) = (timeslot(r) + τ (0, s(r))) mod T

Theorem 1. Algorithm 1 computes an optimal solution for PMS in chains.

Proof. Let r and r′ be two overlapping paths and without loss of generality
assume that s(r′) ≤ s(r). The first point of their common section is s(r) and
their time distance at s(r) is:

d(r, r′, s(r)) = min ((stime(r′) + τ(s(r′), s(r)) − stime(r)) mod T,

(stime(r) − (stime(r′) + τ(s(r′), s(r)))) mod T )

Note that

stime(r′) + τ(s(r′), s(r)) − stime(r) = timeslot(r′) + τ(0, s(r′)) + τ(s(r′), s(r))

−(timeslot(r) + τ(0, s(r)))

= timeslot(r′) − timeslot(r)

Therefore

d(r, r′, s(r)) = min ((timeslot(r′) − timeslot(r)) mod T, (timeslot(r) − timeslot(r′)) mod T )

≥
T

L

Hence, the solution returned by the algorithm is optimal, since T
L

is an upper
bound for the value of any feasible solution.

�

T/6 T/3 T/6 T/6 

p1

p2

p3 p4

0 1 2 43

Fig. 1. An instance of PMS in chain networks.
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Example 1. Consider the instance of Figure 1. The maximum load is L = 3 and
as a result the path coloring algorithm will yield a solution with 3 colors. The
time slots corresponding to these colors are: 0, T

3
and 2T

3
. Assume that paths p3

and p4 are assigned time slot 0, p2 is assigned time slot T
3

and p1 is assigned time

slot 2T
3

. According to Algorithm 1, stime(p1) = 5T
6

, stime(p2) = T
3
, stime(p3) =

0 and stime(p4) = 2T
3

. Observe that on edge (1, 2) the three overlapping paths

p1, p2, p3 have time distance at least T
3
, which is optimal. Furthermore, path p1

reaches node 3 at time T
3

(“wrapping around” the end of the time period), thus

also having distance T
3

from p4.

3.2 An algorithm for stars and spiders

Given an instance of PMS in a star or a spider, we will utilize an optimal path
coloring of the given instance in order to produce an optimal time schedule;
note that such an exact algorithm for spiders can be obtained by appropriate
combination of an exact algorithm for stars and the algorithm for chains. We
should note that some routes may be confined in one of the spider’s legs while
others may be directed from one leg to another.

Algorithm 2 An algorithm for PMS in spider networks

1: Compute a path coloring of routes with exactly L colors from {0, . . . , L − 1}. Let
color(r) denote the color assigned to route r.

2: Set t = T

L
and define L time slots as follows: 0, t, 2t, . . . , (L − 1)t.

3: Assign time slots to routes according to the coloring obtained in step 1, namely
timeslot(r) := color(r) · t.

4: For each r passing through the central node, set starting time

stime(r) = (timeslot(r) − τ (0, s(r))) mod T

5: For each r confined in a single leg and directed towards the central node, set starting
time

stime(r) = (timeslot(r) − τ (0, s(r))) mod T

6: For each r confined in a single leg and directed away from the central node, set
starting time

stime(r) = (timeslot(r) + τ (0, s(r))) mod T

Theorem 2. Algorithm 2 computes an optimal solution for PMS in spiders.

Proof. We will first prove the claim for the case where the spider is a star. Let r

and r′ be two overlapping routes. Therefore they receive different colors, hence
also different time slots. There are two cases: either s(r) = s(r′) or e(r) = e(r′).
In both cases, it suffices to examine their time distance at the central node. Each
route arrives at or departs from the central node at time equal to its time slot.
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Therefore their time distance is a nonzero multiple of t = T
L

, which is an upper
bound for OPT.

In a general spider network, we consider two cases. For two overlapping routes
that pass through the central node, we can use the same argumentation as above
for star networks. For two overlapping routes that lie in the same leg, the proof
is similar to the proof of Theorem 1 for chains since it can be shown that the
same properties hold considering either the central node or the tip of a leg as
the first node of the chain (possibly with an appropriate time shift).

�

4 PMS in ring networks

In the case of ring networks, that is, networks which consist of a single cycle, we
can assume that all trains travel in the same direction (clockwise, without loss of
generality), for the same reasons as for chains. Nodes are labeled by picking one
arbitrarily and labeling it 0, then labeling every other node 1, . . . , n− 1 starting
from 0’s neighbor in the direction trains travel. We define τ(i, j) as the time
distance from node i to node j in the clockwise direction. We also define the
ring perimeter C as the total time needed to travel around the ring.

For ring networks we can distinguish between two cases: the case where the
ring perimeter C is a multiple of the period T and the case where it is not. In
the following two sections we will analyze these cases.

4.1 The case C ≡T 0

Theorem 3. An instance of PMS in a ring with C ≡T 0 admits a solution of

value at least T
k

if and only if the corresponding PC instance can be colored with

k colors.

Proof. For the “if” direction, we can produce the desired schedule by using
Algorithm 1 for PMS in chains, starting from step 2 and using k instead of L.
Let r and r′ be two overlapping paths; without loss of generality assume that
s(r′) is closer to 0 than s(r) in the clockwise direction. Because C ≡T 0, it can be
shown that it suffices to check their time distance on only one of their common
segments, even if there are two such segments.

Following similar arguments as those in the proof of Theorem 1, it can be
shown that the time distance is:

min((timeslot(r)− timeslot(r′)) mod T, (timeslot(r′)− timeslot(r)) mod T ) ≥
T

k

For the “only if” direction, suppose we have a schedule for the PMS instance
with value T

k
. We will show how to obtain a coloring with k colors for the corre-

sponding PC instance. For each route r, let timeslot(r) = (stime(r) − τ(0, s(r))) mod
T . Assign to r the color w − 1, where w is the smallest integer such that
timeslot(r) < w · T

k
. Since w ranges from 1 to k and for any two overlapping

paths r and r′ we have |timeslot(r) − timeslot(r′)| ≥ T
k
, this is a valid coloring.
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�

Corollary 1. PMS in rings is NP-hard.

Proof. We present a reduction from the decision version of PC in rings to the
decision version of PMS in rings. PC is known to be NP-hard in rings [13].
Suppose we are given an instance of PC in a ring with n nodes and a path set
P , asking if P is colorable with k colors. We construct an instance of PMS in a
ring with n nodes, routes identical to the paths in P , inter-station distances of
one time unit and T = n, asking if it is possible to achieve an objective function
value of T

k
. Clearly, the corresponding PC instance for the PMS instance we

produced is the original PC instance. Therefore Theorem 3 applies, implying
that the original PC instance can be colored with k colors if and only if a
solution of value T

k
can be achieved for the PMS instance.

�

At a first glance Theorem 3 seems to imply that a ρ-approximation algorithm
for PC would give a 1

ρ
-approximation algorithm for PMS. However, this is true

only in the case that the optimal solution for the PMS instance divides exactly
T . In the general case we can show something slightly weaker.

Theorem 4. A ρ-approximation algorithm for PC in rings implies an
(

1

ρ
L

L+1

)

-

approximation algorithm for PMS in rings with C ≡T 0.

Proof. We will use the algorithm of Theorem 3. Let OPTPMS be the value of an
optimal solution of an instance of PMS and OPTPC the cost of an optimal so-
lution of the corresponding PC instance. We observe that OPTPMS < T

OPTPC−1

because a solution of PMS of value T
OPTPC−1

would lead to a coloring with only

OPTPC − 1 colors by Theorem 3. Recall also that OPTPMS ≤ T
L

.
A ρ-approximation algorithm for PC returns a solution SOLPC ≤ ρ ·OPTPC.

By Theorem 3 we can compute a solution for PMS of value SOLPMS = T
SOLPC

≥
1

ρ
· T

OPTPC
. By the observations above it turns out that:

SOLPMS ≥
1

ρ
·

T
T

OPTPMS
+ 1

=
1

ρ
·

T · OPTPMS

T + OPTPMS

≥
1

ρ
·

L

L + 1
· OPTPMS

�

Corollary 2. There is a
(

2

3
· L

L+1

)

-approximation algorithm and a
(

0.73 · L
L+1

)

-

approximation randomized algorithm for PMS in rings with C ≡T 0.

Proof. By using Theorem 4 and the deterministic approximation algorithm of
Karapetian [16] and the randomized approximation algorithm of Kumar [17]
that achieve ratios 3

2
and 1.368 respectively.

�
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Remark 1. So far, we have assumed that the departure times of trains could be
any rational number in [0, T ). However there is a possibility that trains need
to be assigned integer departure times. In this case following by appropriate
modification of the above analysis, it can be shown that our results carry over
with a further reduction of the approximation ratio to:

1

ρ
·

L

L + 1
−

1

OPTPMS

It should be noted though, that this approximation ratio is asymptotically equal
to the approximation ratio obtained for rational departure times.

4.2 The case C 6≡T 0

Consider a ring network with n nodes and two paths p1, p2 with 0 = s(p1) <

e(p2) < s(p2) < e(p1) and τ(s(p1), s(p2)) = x. Let t1, t2 be the moments in
time where the trains traveling along p1 and p2 arrive at node 0. These trains
reach node s(p2) at times (t1 + x) mod T and (t2 − D + x) mod T respectively,
where D = C mod T . As a result in order to maximize the minimum distance
of the two trains, we have to take into account the following time differences:
(t1− t2) mod T , (t2− t1) mod T , (t1− t2 +D) mod T and (t2− t1−D) mod T . It
is now clear that the algorithm of Theorem 3 may produce an infeasible solution
if D = (t2 − t1) mod T (see Figure 2). Therefore we need a new algorithm for
this case.

0

p2

p1

u

Fig. 2. An example showing that the “path coloring” technique does not work for
rings with C 6≡T 0. Assuming τ (0, u) = T and τ (u, 0) = T

2
, the path coloring technique

would assign time slots 0 and T

2
to paths p1 and p2 respectively and the two paths

would collide at node 0 at any time which is an integer multiple of T .
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Theorem 5. Let S be a set of paths passing through node 0 in a ring network.

There is an enumeration of S such that for any two paths p and p′, if e(p) > s(p′)
then p appears before p′ in the enumeration.

Proof. We define the binary relation ≺ over S: p ≺ p′ if and only if e(p) > s(p′).
This relation is antisymmetric: suppose p ≺ p′ and p′ ≺ p. Then e(p′) > s(p) >

e(p) > s(p′) which is a contradiction, because for each path r ∈ S it holds that
s(r) > e(r). It is also transitive: if p ≺ r and r ≺ q then we have e(p) > s(r) >

e(r) > s(q), thus p ≺ q. As a result, the relation ≺ is a strict partial order. The
theorem follows.

�

Algorithm 3 An algorithm for PMS in ring networks with C 6≡T 0

1: Split R into two sets P0 and Pc. P0 contains the paths passing through node 0 (i.e.
having node 0 as an intermediate node) and Pc = R \P0. Let L0 = |P0| and Lc be
the maximum load with respect to Pc.

2: Define t = T

6L′ and the set of available time slots as follows: S = {0, t, 2t, . . . , (6L′−
1)t}, where L′ = max{L0, Lc}.

3: Assign colors to routes of Pc by using an algorithm for PC in chains.
4: for each color k, 1 ≤ k ≤ Lc do

5: define timeslot(k) = kt

6: for each path p colored with k do

7: assign departure time stime(p) = timeslot(k) + τ (0, s(p)).
8: end for

9: Remove kt from S

10: Remove from S all time slots whose distance from kt + D is smaller than t.
11: end for

12: Enumerate paths in P0 as implied by Theorem 5.
13: for each p ∈ P0 in the order of the enumeration do

14: Set timeslot(p) = wt, where wt is the smallest available time slot.
15: Set stime(p) = (wt − τ (s(p), 0)) mod T .
16: Remove wt from S

17: Remove from S all time slots whose distance from wt + D is smaller than t.
18: end for

Theorem 6. Algorithm 3 is a 1

6
-approximation algorithm for PMS in rings.

Proof. First let us observe that 6L′ time slots suffice to arrange the departure
times of all routes. As far as paths in Pc are concerned, each one uses one time
slot and excludes at most two others, in total using at most 3Lc time slots.
Similarly, paths in P0 use at most 3L0 time slots.

The distance between time slots in Algorithm 3 is T
6L′

. We will show that the
time distance between any two overlapping routes at any point is not smaller
than the time distance between the corresponding time slots. Since the algorithm
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assigns different time slots to overlapping routes, the minimum time distance is
at least T

6L′
.

Now, observe that no two paths in Pc can have a time difference smaller
than T

6L′
in a scheduling produced by the algorithm, because their arrangement

is essentially the same as in the case of a chain network.

Suppose we have two overlapping paths r ∈ Pc and r′ ∈ P0. We need to
show that their time difference is not less than T

6L′
at nodes s(r) and s(r′) if

these nodes are shared between the two paths, since all trains travel at the same
speed.

Let t0 = timeslot(r′) be the time when r′ passes through node 0. r′ reaches
s(r) (if s(r) is contained in r′) at time (τ(0, s(r))+t0) mod T , and since stime(r) =
(τ(0, s(r)) + timeslot(r)) mod T if r and r′ had a time distance of less than T

6L′

then they would have been assigned the same time slot, which is a contradiction.

Route r arrives at s(r′) at time stime(r) + τ(s(r), s(r′)) = timeslot(r) +
τ(0, s(r′)) while r′ departs from s(r′) at time stime(r′) = timeslot(r′)−τ(s(r′), 0) ≡T

timeslot(r′)−D+ τ(0, s(r′)). If r and r′ had time distance of less than T
6L′

, then

timeslot(r′) would have a distance of less than T
6L′

from timeslot(r) + D which
is also a contradiction.

Finally, let us consider two paths r, r′ in P0 to which the algorithm has
assigned time slots timeslot(r) and timeslot(r′) respectively. Suppose, without
loss of generality, that s(r′) > s(r). It is clear that since they are assigned
different time slots these two paths cannot have a time distance of less than T

6L′

at node 0 and therefore neither at node s(r′). We now need to show that their
time distance is not less than T

6L′
at node s(r). We should examine two cases

depending on whether r ≺ r′ or not.

Suppose e(r′) > s(r). In that case r′ ≺ r and r′ will be assigned a time slot
before r. Route r′ will reach s(r) at time stime(r′) + τ(s(r′), 0) + τ(0, s(r)) ≡T

timeslot(r′)+τ(0, s(r)). Route r departs from s(r) at time stime(r) = timeslot(r)−
τ(s(r), 0) ≡T timeslot(r) − D + τ(0, s(r)). However, the time distance between
timeslot(r′) + D and timeslot(r) is at least T

6L′
, because r′ was assigned a time

slot before r and timeslot(r′) + D was excluded from the list of available time
slots.

Let us now assume that e(r′) < s(r). In that case the the two paths have
only one common segment that starts at s(r′) and contains 0. Therefore, the
fact that they have been assigned different time slots suffices to guarantee that
their time difference is at least T

6L′
.

�

5 PMS in tree networks

In the case of tree networks one might attempt to use Algorithm 2 for spiders,
after picking an arbitrary node 0. However, this idea may lead to the production
of an infeasible solution. Figure 3 illustrates this situation.
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T/6

3T/6 
T/6

2T/6 T/6 

0

p1

p2

u

Fig. 3. An example showing that Algorithm 2 for spiders does not work for trees.
Assuming that path p1 is assigned time slot 0 and path p2 is assigned time slot T

3
,

path p1 collides with path p2 at node u at time T

6
.

However, if we consider tree networks in which the time needed to travel
along each edge is a multiple of T

2
it turns out that we can use Algorithm 4. In

these networks the following useful property holds.

Remark 2. For any three nodes a, b, c: τ(a, b) + τ(b, c) ≡T τ(a, c).

Theorem 7. An instance of PMS in a tree where the time needed to travel

along each edge is a multiple of T
2

admits a solution of value at least T
k

if and

only if the corresponding PC instance can be colored with k colors.

Proof. For the “if” direction, the following algorithm yields a solution with the
desired value.

Algorithm 4 An algorithm for PMS in tree networks where each edge is a
multiple of T

2

1: Assume that a coloring with k colors is given.
2: Pick a root r0 arbitrarily.
3: Set t = T

k
and the available time slots as follows: 0, t, 2t, . . . , (k − 1)t.

4: for each path p do

5: Let timeslot(p) be the time slot corresponding to the color of p.
6: Set the starting time of p as follows:

stime(p) = (τ (r0, s(p)) + timeslot(p)) mod T

7: end for



Periodic Metro Scheduling 13

Assume there are two paths p and p′ overlapping on a single edge e = (u, v).
Path p reaches node u at time (timeslot(p) + τ(r, s(p)) + τ(s(p), u)) mod T =
(timeslot(p) + τ(r, u)) mod T . By the same reasoning path p′ reaches node u at
time (timeslot(p′) + τ(r, u)) mod T . Hence, the time distance of the two paths
is equal to (timeslot(p′) − timeslot(p)) mod T which is clearly at least T

k
.

For the “only if” direction, we pick an arbitrary node r0 and, for each path
p, we consider the value timeslot(p) = stime(p)−τ(r0, s(p)). Following the proof
of Theorem 3 and using remark 2, we obtain a valid coloring with k colors for
the original PC instance.

�

Corollary 3. PMS in trees is NP-hard.

Proof. We will reduce the decision version of PC in trees to the decision version
of PMS in trees. Given a PC instance and an integer k we will construct a PMS

instance with time distances between nodes equal to one time unit and period
T = 2. Theorem 7 implies that it is possible to achieve a solution of value at
least T

k
if and only if the original PC instance can be colored with at most k

colors.

�

Theorem 8. Given a ρ-approximation algorithm for PC in bidirectional trees,

Algorithm 4 achieves an approximation ratio of 1

ρ
L

L+1
.

Proof. The key observation is that if OPTPMS ≥ T
OPTPC−1

then by using algo-
rithm 4 we could achieve a coloring with OPTPC − 1 colors, which is a contra-
diction. Therefore OPTPMS < T

OPTPC−1
and the rest of the proof follows along

the lines of the proof of Theorem 4.

�

Corollary 4. There is a
(

3

5

L
L+1

)

-approximation algorithm for PMS in trees

where the time distances between nodes are multiples of T
2
.

Proof. By using Theorem 8 and the 5

3
-approximation algorithm of Erlebach et

al. [9].

�

6 Conclusions

We have introduced the Periodic Metro Scheduling problem, which aims
at generating a periodic timetable for a given set of routes and a given time
period, in such a way that the minimum time distance between successive trains
is maximized.
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We have presented exact algorithms for chain and spider networks, and con-
stant ratio approximation algorithms for ring networks, as well as for a special
class of tree networks. Some of our algorithms make use of a reduction to Path

Coloring. We have left open the question of the approximability of PMS in
general tree networks. Another interesting open question is the variation where
only the end stations of a route are given and one should determine both a path
for each route and a departure time; such a variation applies in topologies that
contain cycles, such as rings, grids and trees of rings.
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