
Design of a WCET-Aware C Compiler ∗

Heiko Falk Paul Lokuciejewski Henrik Theiling

Computer Science 12 Computer Science 12 AbsInt Angewandte Informatik
University of Dortmund University of Dortmund Science Park 1

D-44221 Dortmund D-44221 Dortmund D-66123 Saarbr¨ucken
Heiko.Falk@udo.edu Paul.Lokuciejewski@udo.edu theiling@absint.com

Abstract
This paper presents techniques to tightly integrate worst-

case execution time (WCET) information into a compiler
framework. Currently, a tight integration of WCET infor-
mation into the compilation process is strongly desired, but
only some ad-hoc approaches have been reported currently.
Previous publications mainly used self-written WCET esti-
mators with very limited functionality and preciseness dur-
ing compilation. A very tight integration of a high quality
industry-relevant WCET analyzer into a compiler was not
yet achieved up to now. This work is the first to present tech-
niques capable of achieving such a tight coupling between
a compiler and the WCET analyzer aiT. This is done by
automatically translating the assembly-like contents of the
compiler’s low-level intermediate representation (LLIR) to
aiT’s exchange format CRL2. Additionally, the results pro-
duced by the WCET analyzer are automatically collected
and re-imported into the compiler infrastructure. The work
described in this paper is smoothly integrated into a C com-
piler environment for the Infineon TriCore processor. It
opens up new possibilities for the design of WCET-aware
optimizations in the future.

The concepts for extending the compiler infrastructure
are kept very general so that they are not limited to WCET
information. Rather, it is possible to use our structures also
for multi-objective optimization of e. g. best-case execution
time (BCET) or energy dissipation.

1. Introduction
In contrast to general-purpose systems, embedded sys-

tems often have to meet some real-time constraints mak-
ing them real-time systems. The correctness of a real-time
system depends not only on the logical result of the com-
putation, but also on the time at which the results are pro-
duced [5]. Besides the necessity of safeness of real-time
systems, the market demands high performance, energy ef-
ficient and low cost products. Without knowledge about the
worst-case timing of a real-time application, the designer
tends to use oversized hardware in order to guarantee the
safeness of the real-time system. The knowledge of the
worst-case execution time(WCET)gives the designer the
opportunity to use or to design a hardware platform which
is tailored towards the software resource requirements like
memory or clock rate. Thus, the production costs can be
reduced significantly, while still guaranteeing the safeness
of the real-time system.

Today, software development for embedded systems is
done using high-level languages like C, requiring the ex-

∗This work is partially funded by the European IST FP6 Network of
Excellence ARTIST2.

istence of a suitable compiler. Modern compilers are
equipped with a vast variety of optimizations. However,
these optimizations aim at minimizing e. g. average-case
execution time(ACET)[14] or energy dissipation [15]. The
influence of compiler optimizations on WCET is unknown
in almost all cases. Currently, the binary executable gener-
ated by the compiler is manually fed into a WCET analyzer
computing the required information. Using this WCET
data, it can be determined whether real-time constraints are
met. If this is not the case, the program source code has to
be tuned, compiled and optimized again in another cycle of
the design flow.

As can be seen, it is highly desirable to have a com-
piler that is aware of WCET properties. In an integrated
WCET-aware compilation environment, it will be possible
to integrate and to apply optimizations with the objective of
WCET minimization. WCET information available within
the compiler can be used to determine those parts of the
code that lie on the worst-case path. Specialized complex
optimizations could be applied in the future only to these
code portions in order to minimize WCET aggressively. If
the compiler is able to support multiple optimization ob-
jectives at the same time (e. g. energy consumption and
WCET), automated trade-offs can be applied by the com-
piler such that the most energy efficient code is generated
that still meets real-time constraints.

This paper is the first one to present a tight integration
of an existing WCET analyzer into a compiler infrastruc-
ture. Using the techniques of this work, it is possible to
feed the assembly-like contents of the compiler’s low-level
intermediate representation(LLIR) into the WCET analyzer
automatically. The results produced by the WCET analyzer
are automatically re-imported into the compiler infrastruc-
ture and are available for future optimizations as described
above. Currently, this includes the WCET of an entire ap-
plication, of functions and basic blocks as well as calling
contexts, execution counts and feasibility information. The
techniques presented in this work are part of a C compiler
environment and were validated for the Infineon TriCore [9]
processor.

In addition, a very powerful and flexible mechanism is
presented enabling to attach not only WCET-related data to
the LLIR, but also to store arbitrary information used by op-
timizations targeting different objectives than WCET. This
approach will be useful in order to perform automated trade-
offs between different optimization goals.

The remainder of this paper is structured as follows: Sec-
tion 2 gives a survey of related work. Section 3 presents the
entire structure of our WCET-aware C compiler. It is fol-

ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/673

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

lowed by a discussion on the proposed compiler structure
in Section 4. Finally, Section 5 summarizes this paper and
gives an outlook on future work.

2. Related Work
[4] presented a very first simple approach to integrate

WCET techniques into a commercial compiler. Flow facts
required for WCET analysis have to be annotated manually
using source-level pragmas. The compiler backend gener-
ates code for the Intel 8051 which is an inherently simple
and predictable machine without pipeline and caches etc.
The entire work was not finished and tested, and results are
unavailable. A fully pragma based approach is not promis-
ing since manual annotations are tedious and error-prone.

While mapping high-level code to object code, compil-
ers perform various optimizations so that the correlation be-
tween high-level flow facts and the optimized object code
becomes very vague. In order to keep track of the influ-
ence of compiler optimization on high-level flow facts, [7]
proposes co-transformation of flow facts. However, the co-
transformer has never reached a fully working state, and
several standard compiler optimizations can not be modeled
at all due to insufficient data structures.

[12] presents techniques for transforming program path
information during compiler optimization. The authors are
able to keep high-level flow facts consistent while perform-
ing GCC’s standard optimizations. Their approach was
thoroughly tested and led to precise WCET estimates. How-
ever, compilation and WCET analysis are done in a decou-
pled way. The assembly file generated by the compiler is
passed to the WCET analyzer together with the transformed
flow facts. Additionally, the proposed compiler is only able
to process a subset of the C programming language, and the
modeled target processor lacks pipelines and caches.

In [17, 18], the integration of a proprietarily developed
WCET analyzer into a compiler is presented. The com-
piler operates on a low-level intermediate representation
(IR). Control flow information is passed to the timing an-
alyzer which computes the WCET of loops and functions
and passes this data back to the compiler. However, this
approach has several limitations. First, the WCET analyzer
works with very coarse granularity since it only computes
WCETs of loops and functions. WCETs for basic blocks or
single instructions are unavailable. Second, WCET-relevant
data which is not the WCET itself is unavailable, too. This
includes e. g. execution contexts, execution frequencies of
basic blocks, value ranges of registers, predicted cache be-
havior etc. Third, the lack of a high-level IR within the
compiler requires to costly re-generate valuable high-level
flow facts that are only available at the source code level.
Finally, the considered processor is quite simple as it has a
simple pipeline and no caches.

A compiler guided trade-off between WCET and code
size is presented in [13]. The authors observe that applica-
tions using the 16-bit THUMB instruction set of an ARM7
processor typically are smaller but run slower than when
using the 32-bit ARM instruction set. [13] compiles a pro-
gram using both instruction sets at the same time with the
goal to reduce WCET at the expense of code size and vice
versa. To obtain WCET information, a simple timing ana-
lyzer was implemented from scratch assuming the absence
of caches and a simple pipeline structure. [13] presents a

LLIR

Conversion
LLIR2CRL

Conversion
CRL2LLIR

ICD-C
Parser

High-Level
ICD-C

LLIR Code
Selector

Code
Generator

aiT WCET
Analysis

CRL2 with
WCET

Estimates

Generated
CRL2

Analyses
Optimizations

ANSI-C
Source

WCET-
Optimized
Assembly

Figure 1. WCET-aware C Compiler (WCC)

WCET-guided compiler optimization, but it does not homo-
geneously integrate WCET analysis into the compiler itself.
Compilation and WCET analysis are completely decoupled,
WCET data is not fed back to the compilation stages.

An optimization allocating both functions and data ele-
ments of an application to a scratchpad memory is presented
in [16]. The authors report a significant WCET reduction,
since scratchpads are much faster than other types of mem-
ory, and their use is fully guided by the compiler so that
very precise flow facts can be passed to the WCET analyzer.
However, this approach also does not establish a tight inte-
gration of WCET data into the compiler. The memory allo-
cation optimization is not based on WCET data. Instead,
the optimization minimizes energy dissipation when us-
ing scratchpad memories. WCET timing is measured after
compilation by analyzing the resulting binary executable.

3. Design of the WCET-Aware C Compiler
Based on the results of the previous publications pre-

sented in Section 2, we propose the structure depicted in
Figure 1 for WCET-aware compilation. As can be seen,
the compiler we callWCC relies on two IRs, namely ICD-
C [10] being close to ANSI-C, and LLIR [11] modeling
code at the assembly level. The code selector is respon-
sible for the translation of ICD-C to LLIR. Analyses and
optimizations take place both at the high and the low level.
Currently, all optimizations done by the compiler are not
yet WCET-aware. The focus of this paper clearly lies on
the integration of WCET analysis into the compiler, and not
on WCET optimizations which are part of our future work.

Today, there are only few vendors providing commer-
cial WCET analyzers. One of the leading analyzers is the
aiT [1] WCET analyzer developed by AbsInt. aiT is avail-
able for various processors, including ARM7, Power-PC,
TI TMS320C33 and the Infineon TriCore v1.3. In this pa-
per, the Infineon TriCore processor is considered as target
architecture for compilation and WCET analysis.

WCET analysis can only take place at the assembly / bi-
nary level since processor-specific information and machine
code is unavailable at higher levels of abstractions. Thus,
the WCET analyzer aiT is coupled to our compiler at the
LLIR level. Our compiler is able to translate its LLIR rep-
resentation to the CRL2 format [2] which is the IR of aiT.
This way, both aiT and WCC use the same format to ex-

2

Loop Bound
Analysis

AbsInt’s
CRL2

CRL2 with
WCET

Estimates

Decoder
exec2crl

Value
Analysis

Path
Analysis

Pipeline
Analysis

Executable Cache
Analysis

Figure 2. Workflow of aiT

change information. Hence, aiT can be provided with CRL2
accurately modeling the application under analysis, and all
results computed by aiT are also available in the CRL2 for-
mat after WCET analysis is done. Using a conversion from
CRL2 to LLIR, we are able to import all data computed by
aiT into our compiler.

3.1. The WCET Analyzer aiT

In contrast to numerous other WCET analyzers, aiT per-
forms a highly accurate analysis of the processor pipeline
and available caches. When being used outside our WCC
compiler framework, aiT needs to be provided with a binary
executable of the program to be analyzed as well as with a
specification file. To estimate the WCET of the binary exe-
cutable, several analysis steps are taken (cf. Figure 2). The
decoder exec2crl reads the executable and reconstructs its
control flow graph. This control flow graph is translated
into aiT’s intermediate format CRL2 [2]. CRL2 is used as
exchange format storing the application under analysis as
well as analysis results generated by the individual substeps
of aiT. In the WCC setup, aiT’s decoder exec2crl is skipped.

Value analysisdetermines potential values in the proces-
sor registers for any possible program point. These values
are frequently used within aiT. Cache analysis requires pre-
dicted values to identify possible addresses of memory ac-
cesses. In addition, the predicted values are used to deter-
mine infeasible paths resulting from conditions being true
or false at any point of the analyzed program. Finally, tight
value ranges are required to determine loop bounds.

Since a program spends most of its execution time in
loops, the iteration counts play an important role for WCET
estimation. aiT relies on precise bounds to be able to per-
form a WCET analysis at all. The detection of loop bounds
during loop bound analysissucceeds only for simple loops
and demands their external annotation outside aiT.

The cache analysisof aiT statically analyzes the cache
behavior of a program using a formal cache model. Ac-
cesses to main memory are examined by an algorithm dis-
tinguishing between sure cache hits and unclassified ac-
cesses. A proper cache analysis relies on the value ranges
of processor registers obtained from the value analysis.

Pipeline analysismodels the processor’s pipeline behav-
ior and is based on the current state of the pipeline, the re-
sources in use, the contents of prefetch queues and the re-
sults obtained during cache analysis. It aims at finding a
WCET estimate for each basic block of a program. Each
basic block is analyzed by taking possible pipeline states
from preceding basic blocks into account. After processing
each instruction of the currently analyzed block, the longest
time this block takes to execute is computed.

Using the data provided by the previous analysis steps,
path analysiscomputes a program’s global WCET. A path
within the control flow graph is a sequence of successive
basic blocks starting at the entry point of a program and
ending at its end point. For each block on a path, its maxi-
mum execution timeT can be expressed based on the previ-
ous analyses. Using the loop bound information, a block’s
maximum number of executionsC can be determined. The
WCET of a path can be expressed as the sum of the products
T ∗ C over all edges of a path. A program’s global WCET
is determined by finding the maximum path WCET for all
feasible paths. This maximization problem is expressed and
solved using integer linear programming.

All analyses of aiT takeexecution contextsinto account.
A context indicates a particular way of calling a program’s
functionR. If R is called several times, contexts are used
to distinguish between the different program states repre-
senting the different flows of control through the program
to functionR. Contexts improve the precision of analysis if
analysis results are computed individually for each program
state represented by a context.

Since aiT is directly invoked with a CRL2 IR generated
by our compiler, the decoder exec2crl shown in Figure 2 is
skipped in our WCC setup. In the following subsections,
the conversions between LLIR and CRL2 and vice versa
are described as well as a generic mechanism for storing
arbitrary data beyond WCET information within LLIR.

3.2. Conversion LLIR ↔ CRL2

Since both LLIR and CRL2 are low-level IRs represent-
ing a program as control flow graph(CFG), it is easy to
translate these IRs into each other. At the top level, the
control flow graph of both IRs consists of functions. Each
function contains a list of basic blocks connected via edges.
Basic blocks in turn consist of a sequence of instructions.
In both IRs, an instruction can consist of several operations
in order to express the implicit parallelism present in e. g. a
VLIW machine. In addition to basic blocks, information on
execution contexts is attached to functions within CRL2. In
LLIR, this kind of information does not exist.

Due to the analogy of both IRs, the translation steps ba-
sically need to traverse the CFG of one IR recursively and
need to generate equivalent CFG components of the other
IR. However, there are two issues making the translation
from LLIR to CRL2 and back much more complex than
this simple recursive traversal.

Determination of op ids

First, we need to solve the problem that LLIR is an
assembly-level IR, whereas CRL2 is a binary-level IR. As
a consequence, any information additionally created during
assembly and linking is unavailable within LLIR, but avail-
able to CRL2. This difference between both IRs mainly
comes into play when converting LLIR operations into
CRL2 operations. An LLIR operation is represented by
its assembly mnemonic and belonging operands, whereas
CRL2 requires a unique identifier (op id) representing the
binary machine code of the operation together with its
operands. Unfortunately, there is no direct translation be-
tween an LLIR opcode and a correspondingop id.

For example, the TriCore ISA contains four different ma-

3

chine operations with the mnemonicAND[9]:
ANDDc, Da, Db ANDDc, Da, const9
ANDDa, Db ANDD15,const8

All theseANDoperations differ by the number and types of
parameters, namely data registers denoted by Dx or D15, or
constants. As can be seen, the mere use of the mnemonic
does not yield an unambiguous CRL2 operation. As a con-
sequence, more key characteristics of an LLIR operation
need to be taken into account.

In addition to its mnemonic, the operation’sopcode for-
mat is considered next. Depending on the amount and type
of parameters, the binary machine code of an operation has
various formats. For example, the firstANDoperation listed
above has the 32-bit wide formatRR. The second operation
with a constant parameter is of formatRC. The last two op-
erations with only two parameters have the 16-bit opcode
formatsSRRandSC, respectively.

Using the alignment and the type of parameters of an
LLIR operation, its opcode format is determined. In almost
all cases, these first two steps of mnemonic and opcode for-
mat matching are sufficient to obtain an unambiguousop id.
However, the addressing mode has to be considered as third
criterion in a few cases. The addressing mode specifies the
calculation of an effective memory address of a certain op-
eration parameter, using values held in registers and con-
stants. Mainly load and store operations make extensive
use of the various addressing modes. The TriCore architec-
ture provides eight different modes such asPre- andPost-
incrementor ShortandLong Base plus Offsetaddressing.

As example, theLD.W operation loading a word from
memory is considered. The TriCore instruction set includes
only one operation with the opcodeLD.W:

LD.W Da, <mode>
Its first parameter designates the register to be loaded, the
second one specifies the addressing mode. Depending on
this mode, various CRL2op ids can be used for theLD.W

operation. It is easy to see that mnemonic and opcode for-
mat are insufficient in this case to obtain a uniqueop id.

But even after considering addressing modes, there are
still some operations which can not be unambiguously iden-
tified so far. In particular, halfword arithmetical operations
have equivalent mnemonics and opcode formats, but do not
rely on addressing modes at all. The only difference be-
tween these halfword operations is a specifier like e. g.UL
denoting that an upper halfword of a register is combined
with a lower halfword of another register. However, these
few cases of halfword arithmetic can be handled easily by
performing particular checks for these halfword operations.

But even after this fourth stage of halfword operation
matching, there still exist LLIR operations which are not
unambiguously mapped to CRL2op ids. The TriCore in-
struction set still contains few operations which can not be
classified unambiguously at all using the information avail-
able within LLIR. For instance, there are two versions of
theMOVoperation:

MOVDc, Db MOVDa, Db

The parameters of these two operations are arbitrary data
registers in both cases. However, the first operation is 32
bits wide, whereas the second operation is a 16-bit opera-
tion. Since the LLIR does not distinguish the bit-width of
operations, it is impossible to classify these two opcode for-

Block 0

Block 1

Block 2

Routine F

Block 3

END

Block 0

Block 3

Routine F

END

Block 1

Block 2

END

Routine F’

Figure 3. Loop Transformation Stage of aiT

mats correctly. As a consequence, a decision on the under-
lying opcode format has to be taken during translation from
LLIR to CRL2. In such a situation, our compiler framework
decides to assume the 32-bit version of an operation.1 After
this decision is finally taken, all LLIR operations are as-
signed a unique CRL2op id. Hence, a complete translation
of our compiler’s LLIR into aiT’s IR is achieved.

Attention needs to be paid that the decision taken during
the previous phase described above is also considered dur-
ing the subsequent compilation steps. When writing out the
contents of the LLIR into an assembly file, a line just like

MOV D9, D8

will be dumped. Eventually, the assembler processing the
assembly file next treats this line as a 16-bit operation.
Hence, the binary code produced by the assembler and the
CRL2 file analyzed by aiT would differ, leading to incor-
rect WCET estimates. In order to prevent this situation, the
decision taken on the bit-width of an operation is passed to
the assembler using particular assembler directives [6]:

.code32

MOV D9, D8

Loop Transformation

Second, the conversions from LLIR to CRL2 and back need
to be aware of a control flow transformation inherently per-
formed by aiT. As already mentioned previously, execution
contexts provide higher precision of WCET estimates. Due
to the structure of CRL2, context information can only be
attached to CRL2 functions. However, context-related in-
formation is not only relevant for functions, but also for
loops within functions. For example, it is useful to distin-
guish individual iterations of a loop during WCET analysis
and to compute different WCET information for loop iter-
ations, depending on e. g. cache states. This can only be
achieved if contexts are also applicable to loops. This is
done within aiT by moving loops out of their original func-
tion into a new dedicated CRL2 function which calls itself
recursively during each iteration (cf. Figure 3). This way,
aiT is able to attach context-related information to loops by
simply annotating the newly created loop functions.

However, this loop transformation stage has the effect
that the CFG structures of LLIR and CRL2 differ. Since
a CRL2 CFG may contain more functions than its LLIR
counterpart, there is no direct correspondence at the func-
tion level. When traversing the CRL2 CFG in order to im-
port all WCET data computed by aiT into the WCC com-
piler, CRL2 functions may be reached for which no LLIR

1We could also assume a 16-bit operation – the actual width does not
matter. However, it is important to feed the decision to the assembler.

4

function exists. Hence, the question arises where to store all
the WCET data attached at CRL2 functions within LLIR.

Basic blocks have a unique identifier in both IRs, namely
the label denoting its starting address. WCET informa-
tion stored at the level of CRL2 functions is attached to
the very first basic block of this function within LLIR. For
CRL2 functionsF also existing within LLIR, this has the
effect that all WCET data ofF will also be available for
F within LLIR by just checkingF ’s first basic block. For
CRL2 functionsF ′ generated during loop transformation,
the WCET data attached toF ′ will be stored at that position
within LLIR where the loop represented byF ′ begins. This
way, all WCET information is stored exactly at those code
positions within LLIR to which the WCET data belongs.

3.3. LLIR Objectives and Handlers
In a simple approach, all WCET data extracted from

CRL2 would directly be attached to the corresponding
LLIR components as described in the previous section, e. g.
the class of LLIR basic blocks would be extended by new at-
tributes storing the execution count and the block’s WCET.
However, this approach is too inflexible for our purposes.

As already shown in Section 2, WCET-related com-
piler optimizations will have to deal with trade-offs between
WCET and other optimization criteria, e. g. code size [13].
In the future, we intend to extend the WCC infrastructure
presented in this paper towards a full multi-objective op-
timization engine. Besides the WCET data, the compiler
will thus have to deal with other types of information rep-
resenting other optimization objectives. Hence, the simple
approach to just store this additional data within the LLIR
core classes like e. g. basic blocks in the future will require
the entire LLIR core to be extended and rebuilt. But since a
compiler’s IR is a complex piece of software, modifications
of its core should be reduced to an absolute minimum.

In order to be able to attach arbitrary data to the LLIR
core components without having to modify the core in the
future, we have extended the LLIR by a modular and flexi-
ble objective and handler mechanism.

An LLIR objectiverepresents a container storing all data
relevant for the compiler in order to perform optimizations
for a particular objective. Besides its pure data elements,
methods in order to set and get the data stored within an
LLIR objective are provided. Additionally, each LLIR ob-
jective carries specific type information such that a WCET
LLIR objective can be distinguished from e. g. a code size
objective by simply comparing their type attributes.

Using inheritance from an abstract objective class, other
kinds of LLIR objectives besides WCET can be created eas-
ily. Arbitrary types of LLIR objectives can now be attached
to the entire LLIR control flow graph, to LLIR functions,
basic blocks and instructions. All of these LLIR compo-
nents contain a so-calledobjective handlerwhich is respon-
sible for managing multiple LLIR objectives of different
type attached to the same LLIR component. In this way, ar-
bitrary data useful for compiler optimizations pursuing dif-
ferent optimization goals can be freely attached to the LLIR.
The objective handler takes care that only one instance of
an LLIR objective with a given type can be attached to an
LLIR component, so that all data relevant e. g. for the ob-
ject’s WCET is not scattered among various instances of
the WCET LLIR objective. The objective handler provides

LLIR Component

(CFG, Function,
Basic Block,
Instruction)

list<LLIRObjective> objectives;

LLIR Objective Handler

addObjective(LLIRObjective);
LLIRObjective getObjective(ObjectiveType);
bool hasObjective(ObjectiveType);
...

addObjective(LLIRObjective);
LLIRObjective getObjective(ObjectiveType);
bool hasObjective(ObjectiveType);
...

LLIR
Objective

(Energy)

LLIR
Objective

(WCET)

LLIR
Objective

(...)

Figure 4. LLIR Objective Handling

methods in order to set and get objectives of a certain objec-
tive type. The structure of the LLIR objective and handler
mechanism is illustrated in Figure 4.

4. Discussion of the Structure of WCC
The proposed architecture of our WCET-aware C com-

piler WCC has several advantages compared to previously
published approaches (cf. Table 1).

First, the use of both a high- and a low-level IR is ex-
tremely beneficial for WCET analysis and optimization.
WCET analysis inherently requires high-level flow facts
to be present. Previously published approaches recompute
these flow facts from a low-level IR. This approach is cum-
bersome and inelegant. The availability of a high-level IR
within our WCC compiler results in an overall simplifica-
tion of flow fact computation since flow facts are computed
directly at the corresponding level of abstraction. In addi-
tion, there are several high-level control flow optimizations
potentially having a positive effect on WCET. For example,
procedure cloning making use of calling contexts is easier
to realize using a high-level IR than using LLIR.

Second, our WCC compiler does not rely on a propri-
etarily developed WCET analyzer. Instead, we were able
to tightly integrate aiT into our compiler. By coupling
WCC with AbsInt’s aiT, we do not use simplified models
of the target processor architecture at all. In contrast to
various other publications, no simplifying assumptions on
e. g. pipeline behavior and cache structure are made during
WCET analysis. This is ensured by the high quality of aiT
where the entire processor architecture is modeled with a
very high degree of accuracy. As a consequence, the WCET
data our compiler uses is highly accurate and precise.

Due to the accuracy and precision of the processor mod-
els used by aiT, a vast amount of WCET-related informa-
tion is computed. Since both the compiler and aiT use
CRL2 as common exchange format, all this data is available
within WCC without limitations. Currently, we are able
to import the following data from aiT into our compiler:
global WCET of an entire CFG, calling contexts, context-
dependent WCETs and execution counts of basic blocks and
functions, feasibility of CFG edges, overall WCETs of basic
blocks. Using the infrastructure presented in this paper, it is
easy to import all other WCET data from aiT to WCC like
e. g. value ranges of registers or pipeline and cache states.

The concept of objectives and handlers presented in this
paper allows to model arbitrary trade-offs within our com-
piler. Previous publications have already shown that it is
relevant to combine WCET optimization with other crite-
ria like e. g. code size. Using objectives and handlers, our

5

High/Low-
Level IR

Tight WCET
Integration

Automated
Flow Facts

Compiler Opti-
mization Support

Complex
Processor

Avail. WC-
ET Data

Multi-
Objective

Tested

WCC + + ± ± + + + +
[4] – + – – – – – –
[7] + – – + – –
[12] – – + + – – – +

[17, 18] – + + + – – – +
[13] – – – – + +
[16] – – + + ± – – +

Table 1. Comparison of WCC with Related Work

compiler is already well designed for this purpose, even if
this is part of our future work.

5. Summary and Future Work
This paper is the first one describing a tight integration of

an existing WCET analyzer into a compiler infrastructure.
Using our techniques, it is possible to feed the assembly-
like contents of our compiler’s low-level IR LLIR into Ab-
sInt’s aiT automatically. This is achieved by translating
LLIR into aiT’s intermediate format CRL2. Since LLIR
is an assembly-level representation, some information only
visible at the linker level (e. g. exact opcode formats of op-
erations having the same mnemonic) is unavailable. Hence,
care has been taken during the translation from LLIR to
CRL2 that the generated CRL2 representation of a given
program is fully equivalent to its LLIR representation, and
that the same holds for the final executable program gener-
ated by assembling and linking the LLIR representation.

After CRL2 generation, the WCET analyzer aiT is in-
voked automatically by our compiler. After its timing anal-
yses are completed, the WCET data produced by aiT is im-
ported into LLIR for further compiler optimizations.

In order to integrate WCET data within LLIR, a novel
mechanism for future multi-objective compiler optimiza-
tion is employed. It allows to attach arbitrary data relevant
for compiler optimizations pursuing different optimization
goals to almost all components of the LLIR. For example,
this objective handler technique enables to store code size
or energy and WCET data within LLIR at the same time in a
flexible, modular and extensible way. This multi-objective
design of the LLIR is motivated by the fact that the design of
low-cost real-time systems requires performing automated
trade-offs between different optimization criteria.

Our compiler is equipped with an extensive testbench
consisting of 1,500 C files with 165,000 lines of code. The
WCC compiler successfully compiles this testbench, gen-
erates valid CRL2 and performs WCET computation using
aiT in the background. These tests serve as a proof of con-
cept for the techniques presented in this paper and clearly
demonstrate the reliability and quality of our concepts.

As already stated in Section 2, a good WCET analysis
framework relies on the presence of high-level flow facts.
To make them available within LLIR, we need to compute
these flow facts within our high-level IR ICD-C, keep them
up to date during optimization and pass them through the
code selector down to the LLIR. Thus, the integration of
flow fact computation [8] and transformation [12] into our
WCC is part of the future work. Hence, the corresponding
entries for WCC in Table 1 are marked just with±.

Of course, the main part of our future work is to develop
WCET-aware compiler optimizations both at the high ICD-

C level and at the LLIR level. This requires some kind of
back annotation of the WCET data stored in the LLIR up to
our high-level IR. Using our compiler structure with WCET
data available at all levels, several issues noted in the WCET
compiler wish list [3] can be tackled in the future.

Besides pure WCET-aware optimizations, we will con-
sider multi-objective optimizations within our compiler in
order to achieve trade-offs between real-time constraints
and other optimization criteria.

Acknowledgments
The authors would like to thank Jens Wagner, J¨org

Eckart and Luis Gomez who have designed the LLIR.

References
[1] AbsInt Angewandte Informatik GmbH. aiT: Worst-Case Execution

Time Analyzers.http://www.absint.com/ait, 2005.
[2] AbsInt Angewandte Informatik GmbH. CRL Version 2.

http://www.absint.com/artist2/doc/crl2, 2006.
[3] G. Bernat and N. Holsti. Compiler Support for WCET Analysis:

a Wish List. InProc. of “3rd Intl. Workshop on WCET Analysis”
(WCET), Porto, July 2003.

[4] H. Börjesson. Incorporating Worst Case Execution Time in a Com-
mercial C-Compiler. Master’s thesis, Uppsala University, Jan. 1996.

[5] A. Burns and A. J. Wellings. Real-Time Systems and Program-
ming Languages: ADA 95, Real-Time Java, and Real-Time POSIX.
Addison-Wesley, Boston, 2001.

[6] D. Elsner and J. Fenlason.Using as – The GNU Assembler. Free
Software Foundation, 1994.

[7] J. Engblom. Worst-Case Execution Time Analysis for Optimized
Code. Master’s thesis, Uppsala University, Uppsala, Sept. 1997.

[8] J. Gustafsson, A. Ermedahl and B. Lisper. Towards a Flow Analysis
for Embedded System C Programs. InProc. of “The 10th IEEE
Intl. Workshop on Object-oriented Real-time Dependable Systems”
(WORDS), Sedona, Feb 2005.

[9] TriCore 1 32-Bit Unified Processor Core v1.3 Architecture – Archi-
tecture Manual. Infineon Technologies AG, Sept. 2002.

[10] Informatik Centrum Dortmund. ICD-C Compiler framework.
http://www.icd.de/es/icd-c, 2006.

[11] ICD Low Level Intermediate Representation backend infrastructure
(LLIR) – Developer Manual. Informatik Centrum Dortmund, 2006.

[12] R. Kirner and P. Puschner. Transformation of Path Information for
WCET Analysis during Compilation. InProc. of “13th Euromicro
Conference on Real-Time Systems” (ECRTS), Delft, Jun 2001.

[13] S. Lee, J. Lee, C. Y. Park and S. L. Min. A Flexible Tradeoff be-
tween Code Size and WCET using a Dual Instruction Set Processor.
In Proc. of “Intl. Workshop on Software and Compilers for Embed-
ded Systems” (SCOPES), Amsterdam, Sept. 2004.

[14] R. Leupers.Code Optimization Techniqes for Embedded Processors
- Methods, Algorithms and Tools. Kluwer Academic Publishers,
Boston, 2000.

[15] S. Steinke, L. Wehmeyer et al. TheenccCompiler Homepage.
http://ls12-www.cs.uni-dortmund.de/research/encc, 2002.

[16] L. Wehmeyer and P. Marwedel. Influence of Onchip Scratchpad
Memories on WCET Prediction. InProc. of “4th Intl. Workshop on
WCET Analysis” (WCET), Catania, June 2004.

[17] W. Zhao, W. Kreahling, D. Whalley et al. Improving WCET by
Optimizing Worst-Case Paths. InProc. of “11th RTAS Symposium”,
San Francisco, Mar 2005.

[18] W. Zhao, P. Kulkarni, D. Whalley et al. Tuning the WCET of Em-
bedded Applications. InProc. of “10th RTAS Symposium”, Toronto,
May 2004.

6

