
History-based Schemes and Implicit Path Enumeration

Claire Burguière and Christine Rochange
Institut de Recherche en Informatique de Toulouse

Université Paul Sabatier
31062 Toulouse cedex 9, France

{burguier,rochange}@irit.fr

Abstract

The Implicit Path Enumeration Technique is often used
to compute the WCET of control-intensive programs. This
method does not consider execution paths as ordered se-
quences of basic blocks but instead as sets of basic blocks
with their respective execution counts. This way of describ-
ing an execution path is adequate to compute its execution
time, provided that safe individual WCETs for the blocks are
known. Implicit path enumeration has also been used to an-
alyze hardware schemes like instructions caches or branch
predictors the behavior of which depends on the execution
history. However, implicit paths do not completely capture
the execution history since they do not express the order in
which the basic blocks are executed. Then the estimated
longest path might not be feasible and the estimated WCET
might be overly pessimistic. This problem has been raised
for cache analysis. In this paper, we show that it arises more
acutely for branch prediction and we propose a solution to
tighten the estimation of the misprediction counts.

1 Introduction

The difficulty of evaluating the Worst-Case Execution
Time of a real-time application comes from the – gener-
ally – huge number of possible paths that makes it in-
tractable to analyze each of them individually. The single-
path programming paradigm [9] would noticeably simplify
the WCET computation but it has a cost in terms of perfor-
mance that might not be acceptable. This is the reason why
much research effort has been put on developing WCET
evaluation approaches based on static analysis [10]. These
approaches factorize the efforts by building up the WCET of
the complete program from the individual WCETs of basic
blocks. The Implicit Path Enumeration Technique [13], also
known as IPET, is a very popular method for WCET calcu-
lation. It expresses the search of the WCET as an Integer
Linear Programming problem where the program execution

time is to be maximized under some constraints on the ex-
ecution counts of the basic blocks. With this technique, an
execution path is defined by the set of the executed blocks
with their respective execution counts but the order in which
they are executed is not expressed.

More and more complex processors are used in real-time
embedded systems and it is a real challenge to take into ac-
count all of their advanced features in WCET analysis. In
particular, some mechanisms have a behaviour that depends
on the execution history which is difficult to capture by
static analysis. These mechanisms include cache memories
and dynamic branch predictors. In this paper, we consider
bimodal branch prediction as an example of such schemes.

Various methods to take branch prediction into account
have been proposed in the litterature. As explained below,
we focus on the approach by Li et al. [12] that we have later
extended [5] to take into account 2-bit prediction counters.
In this paper, we show that both models can lead to over-
estimated WCET because the worst-case number of mispre-
dictions computed by IPET would correspond to an infea-
sible execution path. We show how they should be revised
to only reflect feasible behaviours of the branch prediction
scheme. Experimental results show that the revised model
tighten the estimated WCET.

The paper is organized as follows. In Section 2, we illus-
trate the differences between implicit and explicit execution
paths by an example. Section 3 gives an overview of dy-
namic branch prediction and lists previous work on branch
prediction modeling for WCET analysis. We show how
misprediction counts can be over-estimated in Section 4
and we propose an extended model to tighten the estimated
WCET in Section 5. Section 6 concludes the paper.

2 Implicit vs. explicit execution paths

Figure 1 gives an example code that will be used
throughout this paper and Figure 2 shows the correspond-
ing CFG.

ECRTS 2006 
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/670

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


#define M 4
#define N 6
int main() {
int i, j;
int mat[M][N];
for (i=0; i<M; i++){

mat[i][0]=1;
for (j=0; j<N; j++)

mat[i][j]=i+j;
}

}

Figure 1. Example code.

1

2

3

4 5

loop bounds

number of occurences

1

6

4

4

4

4
20

20

4X5

4

0

Figure 2. Example CFG.

Explicit paths. An explicit execution path is an ordered
list of the executed basic blocks. In our example, the
only possible execution path is defined by the sequence of
blocks:

(
b1− b2− (b3− b4)×5 − b3− b5

)
×4
− b1− b6

Path-based WCET analysis [11][16] explores explicit
paths but this might be costly because, as said before, a
program may have many possible (explicit) paths. Some
static WCET analysis methods simplify the path exploration
while still considering explicit paths. For example, the Ex-
tended Timing Schema [17][15] works on the Syntax Tree.

Implicit paths. The IPET method [13] considers implicit
paths. An implicit path is defined by the list of its basic
blocks and of their execution counts. The implicit path cor-
responding to the explicit path given above is:

(
b1×5, b2×4, b3×24, b4×20, b5×4, b6×1

)

An implicit path defines many possible explicit paths but, in
general, most of them are infeasible. For example, the im-
plicit path given above could be expanded as below, where
the inner loop is executed three times with a single iteration
and once with 17 iterations, which is not consistent with the
program semantics.

(b1− b2− b3− b4− b3− b5)×3 − b1− b2−
−(b3− b4)×17 − b3− b5− b1− b6

In the IPET method, the execution time of an implicit path
is computed by adding the individual execution times of
the basic blocks weighted by their execution counts. The
WCET is obtained by maximizing the total execution time
under some contraints that link the execution counts of the
nodes and edges of the CFG: structural constraints directly
express the CFG structure and flow constraints express loop
bounds and infeasible paths.

As long as implicit paths are only used to compute a
global execution time by summing individual times, there
is no need to provide further information about the pro-
gram semantics. However, when some mechanisms based
on the execution history have to be modeled within the same
framework, the implicit expression of execution paths might
not be sufficient. This problem has been raised in the case of
instruction cache analysis [14]. In this paper, our purpose is
to show that it can also arise when modeling branch predic-
tion and that it is a bit more complex in this case. However,
we will provide a solution to get round it.

3 Branch prediction and WCET estimation

3.1 Bimodal branch prediction

Branch prediction enhances the pipeline performance by
allowing the speculative fetching of instructions along the
predicted path after a conditional branch has been encoun-
tered and until it is resolved. If the branch was mispredicted,
the pipeline is flushed and the other path is fetched and ex-
ecuted. In the hardware bimodal branch predictor [18], the
branch direction is predicted from a 2-bit saturating counter
stored in the Branch History Table (which is indexed by
the branch PC). If the branch is predicted as taken (counter
equal to 11 or 10), the target address is read in the Branch
Target Buffer, otherwise the instruction fetch proceeds se-
quentially. When the branch is later computed, the predic-
tion counter is updated as shown in Figure 3.

3.2 Modeling branch prediction for
WCET estimation

3.2.1 Background

Modeling bimodal dynamic branch predictors for WCET
analysis has been the purpose of several papers these last

2



mispredicted

correctly predicted

0 : not−taken branch 
1 : taken branch

1

0

11 10

0100

01
1

1
0

0

strongly
taken

taken

not−takenstrongly
not−taken

Figure 3. Bimodal branch prediction.

years. Some of the proposed techniques are decoupled from
the pipeline analysis. Colin and Puaut [8] use static simula-
tion to determine whether the prediction counter associated
to a branch might be corrupted by another branch. Then
they combine these results with an analysis of the behaviour
of the 2-bit counters related to algorithmic structures to cal-
culate bounds on the misprediction counts. Other works
assume that branch aliasing can be prevented and refine the
analysis of branching patterns related to algorithmic struc-
tures [1][6]. Once misprediction counts have been deter-
mined, the estimated execution time is augmented by the
corresponding misprediction penalties.

To take into account tigher per-branch misprediction
penalties, branch prediction modeling can also be integrated
to the WCET computation with IPET [2][4]. Li et al. go
further by completely modeling the behaviour of the branch
prediction scheme within the IPET model [12]. They take
conflicts in the Branch History Table into account but they
only consider 1-bit prediction counters. In [5] we argue for
techniques to prevent aliasing and we extend their model by
considering 2-bit counters. Our discussion here is based on
this last work.

Modeling branch prediction as part of WCET compu-
tation has several advantages: (1) any kind of loop can
be analyzed, even if it is not well structured (e.g. sev-
eral exit points); (2) the analysis of branches implementing
conditional structures does not require any particular effort;
(3) per-branch misprediction penalties can be specified.

3.2.2 Baseline model

The estimation of misprediction counts is combined to
WCET computation by IPET by the way of additional
constraints that: (a) express the way the prediction counters
evolve; and (b) link the evolution of the prediction counters
to the execution counts of the blocks and edges in the CFG.
In this section, we give a simplified overview of the model.
The variables used to evaluate the WCET by IPET are:

xi execution count of block i
x

i
d→ execution count of the edge leaving block i

when the branch direction is d
xi = x

i
0→ + x

i
1→

The constraints added to model a bimodal branch
predictor (without aliasing in the Branch History Table) use
some additional variables (execution counts) presented in
Figure 4.

x11
i

x
i
0

11
x11

i x11
i

x
i

11

x
i

x
i

x
i

x
i

x
i

x
i

x
i

x
i

x
i

x
i
0

x
i

x
ix

i

x
i
0

1 10

10

10

01010000

01

10

x
i
00

00 00
1

01

01
1 0

10

1

Figure 4. Variables used to model branch pre-
diction for block i

The set of possible states for a 2-bit branch predic-
tion counter is denoted as C = {00, 01, 10, 11} and the
set of possible directions d after a branch is denoted as
D = {0, 1}. The constraints that model the way the pre-
diction for the branch of block i evolves are:

x00
i = x00

i
0→

+ x01

i
0→

+ x00
⇒i

x01
i = x10

i
0→

+ x00

i
1→

+ x01
⇒i

x10
i = x11

i
0→

+ x01

i
1→

+ x10
⇒i

x11
i = x11

i
1→

+ x10

i
1→

+ x11
⇒i





(1)

∀c ∈ C, xc
i = xc

i
0→

+ xc

i
1→

+ xc
i⇒ (2)

The variables related to branch prediction are linked to
the execution counts of basic blocks and edges by the fol-
lowing constraints:

xi =
∑

c

xc
i ∀d ∈ D, x

i
d→ =

∑
c

xc

i
d→

+
∑

c

xc

i
d⇒

(3)

For the initial and final state of the branch counter of
block i, we can write:

∑
c

xc
⇒i = 1

∑
c

xc
i⇒ = 1 (4)

Finally, mispredictions counts are derived from:

mi = x00

i
1→

+ x01

i
1→

+ x10

i
0→

+ x11

i
0→

(5)

3



4 Branch prediction modeling and implicit
path enumeration

4.1 Example code

We have analyzed the branch predictor behavior for our
example code using the model described in the previous
section. Figure 5 shows the results we obtained. The branch
at the end of block 3 controls the inner loop that iterates 5
times (then the branch is executed 6 times for each execu-
tion of the loop: it is not taken 5 times and taken once). The
inner loop is repeated 4 times: block 3 is then executed 24
times on the global execution path (20 times as not taken
and 4 times as taken). The numbers given in the dotted and
dashed hexagons stand for the correct and erroneous branch
prediction counts.

execution count

misprediction count

correct prediction count

1

2

3

4 5

1
0

0

6

2

4

2

4

4

20

5

15

0

Figure 5. Results for the example code

In [1], the worst-case number of mispredictions for a
branch that controls a repeated loop is bounded. For a loop
that iterates N times (N ≥ 3) and is repeated M times,
the worst-case misprediction count is (M + 2): during the
first execution of the loop, the prediction counter reaches
the 00 state after 3 iterations at most (considering any pos-
sible starting state) and the branch is mispredicted at most
twice. At the end of every execution of the loop, the counter
is incremented from 00 to 01 and the branch is mispre-
dicted (this makes M mispredictions). For the next exe-
cution, the counter is decremented to 00 and the branch is
well predicted.

According to these results, the worst-case misprediction
count for the inner loop of our example should be 6. But
the result obtained with the ILP model is 9, as shown in
Figure 5. A closer look to these results show that they cor-
respond to a behaviour of the prediction counter as the one

10

43

0100

11

1

1

14

1

(a) erroneous

10

0100

11
1

14 4

4

1

(b) correct

Figure 6. Detailed results for counter state
transitions

shown in Figure 6 (a). This behaviour would be obtained if
the branching pattern was:

(
(NT− NT− T)− (NT− T)×2 − (NT×16 − T)

)

where NT stands for "not taken" and T for "taken". This
pattern defines a path where the inner loop executes once
with 2 iterations, then twice with one iteration, and finally
once with 16 iterations: this path is inconsistent with the
program semantics.

The only possible explicit path for this program has the
same implicit description but has the following branching
pattern:

(NT− NT− NT− NT− NT− T)×4,

The correct evolution for the prediction counter is given
shown in Figure 6 (b).

4.2 General case

In the general case (a loop with N iterations repeated M
times), the number of mispredictions would be (over-) esti-
mated as (2M +1): the loop would considered as executing
once with two iterations, then (M − 2) times with a single
iteration and finally once with (M(N − 1)) iterations. As
said before, the correct value is (M + 1).

The error comes from how flow information is ex-
pressed. The IPET formulation of the problem specifies
that the edge that enters the inner loop is executed at most
M × N times. This does not completely reflects the pro-
gram semantics because the maximum number of iterations
for each execution of the loop (i.e. N ) is not specified.
This missing parameter lets the ILP solver finding an in-
feasible path. Similar observations were mentioned for in-
struction cache analysis in [14]. However, the problem is
more complex for branch prediction because it not possi-
ble to establish a direct link between paths in the CFG and
transitions in the prediction counter finite-state automaton.
In the next section, we show how additional constraints in
the ILP model can control the branch predictor behavior for
repeated loops.

4



5 Enforcing valid execution patterns for
nested loops

5.1 Extended model

In [14], the worst-case miss rate for an instruction cache
is evaluated by considering the possible states of cache
lines. The state of a given cache line is the memory block
it contains at some point of the program. The way this state
changes is expressed by a Cache Conflict Graph (CCG). To
some extent, a CCG plays the same role as the branch pre-
diction counter automaton (shown in Figure 3). However,
every edge in a CCG can be related to one path in the Con-
trol Flow Graph because each node of the CCG is related to
a part of the code, i.e. to a node in the CFG. On the contrary,
nodes in the branch prediction automaton do not stand for
code parts and an edge in this automaton might correspond
to several control flows.

To illustrate this, let us consider the transition from state
10 to state 01. This transition can be fired either when the
loop is entered (i.e. after block b2 has been executed) or
when it iterates (i.e. after b4). Then it is not possible to
directly bound the execution count of this transition (x10

i
0→

)
to the execution counts of blocks b2 and b4 (this was the
solution proposed in [14]).

In the case of a branch predictor, if a loop iterates at most
N times, the prediction counter cannot fall into the 00 state
more than N times it leaves this state. This guarantees that
no more than N iterations are considered for each execu-
tion of the loop. This can be expressed by this additional
constraint:

x01

i
0→

+ x00

i
0→

+ x00
⇒i ≤ N × (

x00

i
1→

+ x00

i
1⇒

)

This constraint applies to any loop with an upper-
bounded number of iterations (which means that the effec-
tive number of iterations for one execution of the loop might
range from 0 to N ). This includes triangular loops where
the number of executions of the inner loop depends on the
value of the iteration counter of the outer loop.

This kind of constraint has to be generated for every
block identified as controlling a loop. In the next section,
we will give an overview of how the blocks that control
loops can be identified from the CFG.

Considering the anomaly in the misprediction counts
pointed out in this article, this constraint eliminates from
the analysis some infeasible explicit paths related to valid
implicit path. This is likely to tighten the WCET estima-
tion.

5.2 Detecting loop-control blocks

As said before, integrating branch prediction into the
IPET model makes it possible to consider various loop con-

structs. Our model fits different loop patterns (control at
the beginning or at the end of the loop, exit of the loop ei-
ther with a taken or not taken branch) as well as loops with
multiple exits (however, to save room, we only describe the
constraints for loops with a single exit).

This makes it necessary to identify in the CFG the blocks
that contain a loop branch. Our algorithm implements pre-
dominance analysis to build sets of blocks that belong to a
same loop. Then it searches, in each set, the block that has
a successor out of the set: this block is the one that controls
the loop and the direction of the branch to exit the loop is
determined.

Once the block bctrl that controls a loop has been iden-
tified, the number of executions of the loop is x

ctrl
1→ (pro-

vided the loop is exited when the branch is taken).

5.3 Experimental results

We have made some experiments to measure the im-
provement due to refined branch prediction modeling. We
have considered four benchmarks from the SNU suite [3].
The Control Flow Graphs of the programs were extracted
and analyzed to identify the blocks that control loops us-
ing the OTAWA tool [7]. The block execution times were
obtained using a cycle-level simulator that models a su-
perscalar out-of-order processor and was developed in our
team. Finally, the specification of the ILP problem for
WCET calculation (i.e. the objective function and the struc-
tural and flow constraints) was produced by a perl script.
We used lp_solve to solve the problem.

To estimate the impact of the infeasible paths on the cal-
culated WCET, we have analyzed the benchmarks with both
models: the earlier one, and the extended one proposed in
this paper. Results are given in Table 1.

benchmark old WCET new WCET
matmul 3,246 3,078
ludcmp 11,411 11,201

insertsort 2,012 1,976
crc 211,628 210,098

Table 1. Estimated WCET.

It can be observed that the extended model gives tighter
WCETs for all of the benchmarks we have tested. The im-
provement ranges from 0.72% to 5.17%. In every case, the
earlier model over-estimates the number of branch mispre-
dictions and then accounts for superfluous penalties.

6. Conclusion

Modeling advanced processor features using Integer Lin-
ear Programming and integrating the model to WCET esti-
mation by IPET has several advantages: most of the loop

5



patterns can be analyzed, per-branch misprediction penal-
ties can be accounted for, conditional structures are natu-
rally analyzed. However, considering implicit paths is not
sufficient to analyze schemes that behave according to the
execution history. In the case of nested loops, cache miss or
branch misprediction counts are overestimated because they
are maximized for infeasible explicit paths. To get round
this difficulty, we propose an extension to the branch pre-
dictor model. Experimental results show that the obtained
WCET is tighter.

References

[1] I. Bate and R. Reutemann. Worst-Case Execution
Time Analysis for Dynamic Branch Predictors. In
16th Euromicro Conference on Real-Time systems,
2004.

[2] I. Bate and R. Reutemann. Efficient Integration of Bi-
modal Branch Prediction and Pipeline Analysis. In
IEEE Conference on Real-Time Computing Systems
and Applications, 2005.

[3] SNU benchmark suite.
http://archi.snu.ac.kr/realtime/benchmark/.

[4] C. Burguière and C. Rochange. A Contribution to
Branch Prediction Modeling in WCET Analysis. In
Conference on Design, Automation and Test in Europe
(DATE), 2005.

[5] C. Burguière and C. Rochange. Modélisation d’un
prédicteur de branchement bimodal dans le calcul du
WCET par la méthode IPET. In 13th International
Conference on Real-Time Systems, 2005.

[6] C. Burguière, C. Rochange, and P. Sainrat. A Case
for Static Branch Prediction in Real-Time Systems.
In IEEE Conference on Real-Time Computing Systems
and Applications, 2005.

[7] H. Cassé and P. Sainrat. OTAWA, a Framework for Ex-
perimenting WCET Computations. In 3rd European
Congress on Embedded Real-Time Software, 2006.

[8] A. Colin and I. Puaut. Worst-Case Execution Time
Analysis for Processors with Branch Prediction. Real-
Time Systems, 18(2-3), 2000.

[9] M. Delvai, W. Huber, P. Puschner, and A. Steininger.
Processor Support for Temporal Predictability - The
SPEAR Design Example. In Euromicro Conference
on Real-Time Systems, 2003.

[10] J. Engblom, A. Ermedahl, M. Sjödin, J. Gustafsson,
and H. Hansson. Towards Industry-Strength Worst-
Case Execution Time Analysis. Technical Report
99/02, ASTEC, 1999.

[11] C. Healy, R. Arnold, F. Muller, D. Whalley, and
M. Harmon. Bounding Pipeline and Instruction Cache
Performance. IEEE Transactions on Computers,
48(1), 1999.

[12] X. Li, T. Mitra, and A. Roychoudhury. Modeling Con-
trol Speculation for Timing Analysis. Real-Time Sys-
tems, 29(1), 2005.

[13] Y.-T. Li and S. Malik. Performance Analysis of Em-
bedded Software using Implicit Path Enumeration.
ACM SIGPLAN Notices, 30(11), 1995.

[14] Y.-T. Li, S. Malik, and A. Wolfe. Efficient Microar-
chitecture Modeling and Path Analysis for Real-Time
Software. In IEEE Real-Time Systems Symposium,
1997.

[15] S.-S. Lim, S. Min, M. Lee, C. Park, H. Shin, and C. S.
Kim. An Accurate Instruction Cache Analysis Tech-
nique for Real-Time Systems. In Workshop on Archi-
tectures for Real-Time Applications, 1994.

[16] T. Lundqvist and P. Stenström. An Integrated Path
and Timing Analysis Method based on Cycle-Level
Symbolic Execution. Real-Time Systems, 17(2), 1999.

[17] P. Puschner and C. Koza. Calculating the Maximum
Execution Time of Real-Time Programs. Real-Time
Systems, 1(2), 1989.

[18] J. Smith. A Study of Branch Prediction Strategies. In
8th International Symposium on Computer Architec-
ture, 1982.

6


