
06191 Abstracts Collection

Rigorous Methods for Software Construction and

Analysis

� Dagstuhl Seminar �

Jean-Raymond Abrial1 and Uwe Glässer2

1 ETH Zürich, CH
jabrial@inf.ethz.ch
2 SFU Burnaby, CA

Abstract. From 07.05.06 to 12.05.06, the Dagstuhl Seminar 06191 �Rig-
orous Methods for Software Construction and Analysis� was held in the
International Conference and Research Center (IBFI), Schloss Dagstuhl.
During the seminar, several participants presented their current research,
and ongoing work and open problems were discussed. Abstracts of the
presentations given during the seminar as well as abstracts of seminar re-
sults and ideas are put together in this paper. The �rst section describes
the seminar topics and goals in general. Links to extended abstracts or
full papers are provided, if available.

Keywords. Formal Methods, Program Veri�cation, Abstract State Ma-
chines, Event-B

06191 Executive Summary � Rigorous Methods for
Software Construction and Analysis

We survey here the key objectives and the structure of the Dagstuhl Seminar
06191, which was organized as Festkolloquium on the occasion of Egon Börger's
60th birthday, in May 2006 in Schloss Dagstuhl, Germany.

Keywords: Executive Summary

Joint work of: Abrial, Jean-Raymond; Glässer, Uwe

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2006/665

A Light Simulator-Veri�cator for Timed Abstract State
Machines

The talk is a short description of main features of a portable simulator-veri�cator
for reactive timed Abstract State Machines. The time may be continuous or
discrete, the time constraints are linear (extendable to polynomial ones), the

Dagstuhl Seminar Proceedings 06191
Rigorous Methods for Software Construction and Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/666

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://drops.dagstuhl.de/opus/volltexte/2006/665

2 J.-R. Abrial and U. Glässer

reaction may be instantaneous or with non deterministic bounded delays. The
construction of runs goes on together with the veri�cation of a formula in a First
Order Times Logic. There are simple languages for the generation of inputs, for
resolving non determinism and for displaying the results. The implementation is
being done in Java.

Keywords: Abstract State Machine, real time, reactive system, simulation,
veri�cation, First Order Timed Logic

Joint work of: Slissenko; Anatol; Vassiliev, Pavel

Using formally de�ned design patterns to improve system
developments.

Jean-Raymond Abrial (ETH Zürich, CH)

The concept of "design pattern" is well known in Object Oriented Technology.
The main idea is to have some sort of reproducible engineering micro-design that
the software designer can use in order to develop new pieces of software.

In this presentation, I try to borrow such OO ideas and incorporate them
within the realm of formal methods. First, I will proceed by de�ning (and prove)
two formal patterns, where the second one happens to be a re�nement of the
�rst one. As a matter of fact, one very often encounters such patterns in the
development of reactive systems, where several chains of reactions can take place
between an environment and a software controller, and vice-versa. Second, the
patterns are then used many times in the development of a complete reactive
system where several pieces of equipment interact with a software controller. It
results in a systematic construction made of six re�nements. The entire system
is proved completely automatically. The relationship between the formal design
patterns and the formal development of the problem at hand will be shown to
correspond to a certain form of re�nement.

I think that such an approach to formal developments can be generalized
fruitfully to other patterns. It results in very concise and systematic develop-
ments.

Keywords: Design pattern

A High-Level Speci�cation for Mediators (Virtual
Providers)

Michael Altenhofen (SAP - Karlsruhe, D)

We de�ne a high-level model to mathematically capture the behavioural interface
of abstract Virtual Providers (VP), their re�nements and their composition into
rich mediator structures. We show for a Virtual Internet Service Provider exam-
ple how to use such a model for rigorously formulating and proving properties
of interest.
Joint work of: Altenhofen, Michael; Börger, Egon; Lemcke, Jens

Rigorous Methods for Software Construction and Analysis 3

An Empirical Pilot Study Investigating the Cost of
Maintaining Speci�cations: Software Cost Reduction
versus Real-time UML

Daniel M. Berry (University of Waterloo, CA)

Specifying a computer-based system (CBS) in a formal speci�cation language
can reduce downstream, development errors and rework, but the resulting for-
mal speci�cations are considered expensive to write and to maintain, discour-
aging their adoption. With a single-subject experiment this paper explores the
costs of modifying speci�cations written in two di�erent speci�cation languages:
a Parnas-Table speci�cation language, Software Cost Reduction (SCR), and a
state-of-the-practice speci�cation language, Real-Time Uni�ed Modeling Lan-
guage (RT-UML). In the experiment, the subject speci�ed two di�erent CBSs,
(1) a bidirectional formatter (BDF) and (2) a bicycle computer (BC), with each
speci�cation language, but in the opposite order, to balance an expected learning
e�ect arising from specifying the same problem twice with di�erent speci�cation
languages. Later in the experiment, the requirements for each CBS were mod-
i�ed, and the subject modi�ed each speci�cation to re�ect the changes. The
subject recorded (1) the number of hours he needed to write and update each
speci�cation, (2) the number of defects he inserted into each speci�cation, and
(3) the number of hours the subject needed to repair these defects.

The results show that the cost to modify a speci�cation are highly dependent
on both the problem and the speci�cation language used.

There is no evidence that a speci�cation written in a Parnas-Table speci�-
cation language is easier to modify than a speci�cation written in state-of-the-
practice speci�cation language.

Keywords: SCR, RT-UML, pilot study, modifying speci�cations

The Inevitable Pain of Software Development: Why There
Is No Silver Bullet

Daniel M. Berry (University of Waterloo, CA)

Programming technology has improved immensely since its earliest days.
However, no single improvement can be classi�ed as a silver bullet, despite

all claims of its proponents. A vexing question is why there has been no silver
bullet. A variety of programming improvements, i.e., models, methods, artifacts,
and tools, are examined to determine that each has a step that programmers
�nd painful enough that they habitually avoid or postpone the step. This pain is
generally where the programming accident meets the essence of software and its
relentless volatility. Hence, there is no silver bullet. It is claimed no substantial
programming improvement can avoid all pain; therefore there will never be a
silver bullet.

4 J.-R. Abrial and U. Glässer

Keywords: Programming methods, programming technology, silver bullet, pain

See also: Berry, D.M., �The Inevitable Pain of Software Development: Why
There Is No Silver Bullet,� M. Wirsing, S. Balsamo, A. Knapp (eds.), Monterey
2002, Radical Innovation of Software and Systems Engineering in the Future,
Workshop Proceedings, pp. 28-47, Venice, Italy, 7-11 October 2002.

Formal Methods, the Very Idea, Some Thoughts

Daniel M. Berry (University of Waterloo, CA)

The paper de�nes formal methods (FMs) and describes economic issues involved
in their application. From these considerations and the concepts implicit in �No
Silver Bullet�, it becomes clear that FMs are best applied during requirements
engineering. A theory of why formal methods work when they work is o�ered
and it is suggested that FMs help the most when the applier is most ignorant
about the problem domain.

Keywords: Formal methods, why they work, requirements engineering, impor-
tance of ignorance

See also: Berry, D.M., �Formal Methods, the Very Idea, Some Thoughts on
Why They Work When They Work,� Science of Computer Programming, 42:1,
11-27, January, 2002.

Ten Commandments: Ten Years Later: Lessons for ASM,
B, Z and VSR-net

Jonathan P. Bowen (London South Bank Univ. - London, GB)

Just over a decade ago, a paper "Ten Commandments of Formal Methods" sug-
gested some guidelines to help ensure the success of a formal methods project.
It proposed ten important requirements (or "commandments") for formal de-
velopers to consider and follow, based on our knowledge of several industrial
application success stories, most of which have been reported in more detail in
two books. The paper was surprisingly popular, is still widely referenced, and
used as required reading in a number of formal methods courses. However, not
all have agreed with some of our commandments, feeling that they may not be
valid in the long-term. We re-examine the original commandments ten years on,
and consider their validity in the light of a further decade of industrial best
practice and experiences, especially with respect to formal notations like ASM,
B and Z. We also cover the activities of the UK Veri�ed Software Repository
Network (VSR-net) in the context of Grand Challenge 6 on Dependable Systems
Evolution.

Rigorous Methods for Software Construction and Analysis 5

Keywords: Formal methods; software engineering

Joint work of: Bowen, Jonathan P.; Hinchey, Michael G.

Full Paper:
http://doi.ieeecomputersociety.org/10.1109/MC.2006.35

See also: Bowen, Jonathan P. and Hinchey, Michael G., Ten Commandments of
Formal Methods Ten Years Later, IEEE Computer, 39(1):4048, January 2006.

Characterizing Event-B models as ASMs

Egon Börger (Università di Pisa, I)

To facilitate the communication between the B community and the ASM com-
munity, we shortly characterize basic Abstract State Machines (ASMs, for the B
community) and in terms of basic ASMs the semantical core of event-B models
(for the ASM community).

Keywords: Event-B, ASM

A new IEEE 1394 leader election protocol

Dominique Cansell (LORIA - Nancy, F)

The IEEE 1394 tree identify protocol illustrates the adequacy of the event-
driven approach used together with the B Method. This approach provides a
complete framework for developing mathematical models of distributed algo-
rithms. A speci�c development is made of a series of more and more re�ned
models. Each model is made of a number of static properties (the invariant) and
dynamic parts (the guarded events). The internal consistency of each model as
well as its correctness with regard to its previous abstraction are proved with
the proof engine of Atelier B, which is the tool associated with B. In the case of
IEEE 1394 tree identify protocol, the initial model is very primitive: it provides
the basic properties of the graph (symmetry, acyclicity, connectivity), and its
dynamic parts essentially contain a single event which elects the leader in one
shot. Further re�nements introduce more events, showing how each node of the
graph non-deterministically participates in the leader election. At some stage in
the development, message passing is introduced. This raises a speci�c potential
contention problem, whose solution is given. The last stage of the re�nement
completely localises the events by making them take decisions based on local
data only.

Keywords: Abstract model; B method; Event-driven approach; Proof-based
development; Proof engine; Re�nement

Joint work of: Abrial, Jean-Raymond; Méry; D.

http://doi.ieeecomputersociety.org/10.1109/MC.2006.35

6 J.-R. Abrial and U. Glässer

Jasmine - Accessing Java code from CoreASM

Antonio Cisternino (Università di Pisa, I)

CoreASM allows execution of ASM speci�cations; it has a micro-kernel archi-
tecture allowing extensions, even to the language grammar, by external plugins.
Jasmine is a CoreASM plugin whose goal is to expose into the CoreASM world
Java objects. This allows ASM speci�cations to bene�t of the rich set of classes
available on the Java platform. The plugin introduces a new background into the
CoreASM and the access to Java objects is always mediated by the plugin pre-
serving the mathematical purity of the CoreASM execution model. Java objects
are not part of the machine state, but they are considered part of the environ-
ment. The plugin extends CoreASM syntax with constructs for object creation,
method invocation, and �eld access. It also deal with type conversions needed
to marshal CoreASM types into their Java countepart and vice-versa. Jasmine
allows speci�cations to drive real pieces of software; it can be used for black-box
testing, to provide GUI to control speci�cations, and other applications. The
interface is two-way so that also Java code can bene�t of the CoreASM runtime.

Keywords: ASM, CoreASM, Java, Re�ection

Joint work of: Cisternino, Antonio; Gervasi, Vincenzo; Farahbod, Roozbeh

CoreASM: An Extensible ASM Execution Engine

Roozbeh Farahbod (Simon Fraser University, CA)

The CoreASM project was �rst introduced in ASM 2005 as a novel attempt
to make abstract state machines (ASMs) executable. The aim of this project is
to specify and implement an extensible ASM execution engine for an extensi-
ble language that is as close as possible to the mathematical de�nition of pure
ASMs. We present the architecture of the CoreASM engine together with its
extensibility mechanisms that are used by the engine to accommodate arbitrary
backgrounds, rule forms, and scheduling policies. An alpha implementation of
the engine and some standard plug-ins will also be presented.

Keywords: Abstract State Machines, CoreASM, Executable Speci�cations

Joint work of: Farahbod, Roozbeh; Gervasi, Vincenzo; Glaesser, Uwe; Memon,
Mashaal

Rigorous Methods for Software Construction and Analysis 7

Modeling the .NET CLR Exception Handling Mechanism
for a Mathematical Analysis

Nicu Georgian Fruja (ETH Zürich, CH)

We provide a complete ASM model for the exception handling mechanism of the
Common Language Runtime (CLR), the virtual machine underlying the inter-
pretation of .NET programs. The model �lls some gap in the ECMA standard
for CLR and is used to sketch the exception handling related part of a soundness
proof for the CLR bytecode veri�er.

Keywords: Exception handling, type safety, CIL bytecode, CLR, .NET, ASM

Joint work of: Fruja, Nicu Georgian; Börger, Egon

Full Paper:
http://www.jot.fm/issues/issue_2006_04/article1

See also: Modeling the .NET CLR Exception Handling Mechanism for a Math-
ematical Analysis

A Distributed ASM-Theorem

Andreas Glausch (HU Berlin, D)

Six years ago, Gurevich de�ned the class of "sequential algorithms" by help
of only a few, intuitively convincing and amazingly general requirements. De-
spite their evident simplicity, the expressiveness of sequential algorithms exceeds
classical computational models. Gurevich proved that sequential algorithms are
covered by the computational model of "Sequential Abstract State Machines"
(sequential ASMs). During the last years, this result has been extended to various
variants of ASMs including nondeterministic, parallel, and interactive versions.

In the spirit of these results, I present a class of "distributed algorithms"
de�ned by likewise intuitive requirements. To this end, I introduce "actions" as
locally con�ned changes of a state.

A distributed run then represents a partial order of action occurrences. I
present a theorem stating that this class of distributed algorithms is covered by
a distributed computation model derived from sequential ASMs.

Keywords: Abstract State Machines, concurrency, distributed semantics

Full Paper:
http://www2.informatik.hu-berlin.de/top/download/publications/
techreport196.pdf

See also: Andreas Glausch andWolfgang Reisig. Distributed Abstract State Ma-
chines and Their Expressive Power. Informatik-Berichte 196, Humboldt-Universität
zu Berlin, January 2006.

http://www.jot.fm/issues/issue_2006_04/article1
http://www2.informatik.hu-berlin.de/top/download/publications/techreport196.pdf
http://www2.informatik.hu-berlin.de/top/download/publications/techreport196.pdf

8 J.-R. Abrial and U. Glässer

Feasibility in Event-B

Stefan Hallerstede (ETH Zürich, CH)

Event-B is suitable for various modelling problems, in particular, sequential pro-
gram development. A fundamental property to be proved initially for sequen-
tial programs development is feasibility, i.e. whether the initially speci�ed post-
condition is satis�able under the stated pre-condition.

There is an "obvious" way of proving feasibility at the beginning of a se-
quential program development, because, in Event-B, each event is associated
with a feasibility proof obligation. It would be possible to use this for proving
feasibility of sequential programs. But the corresponding proof usually requires
instantiating an existential quanti�er and this might be sometimes problematic.

However, there is a better way of doing it that suits well with re�nement.
The algorithm to be constructed is supposed to establish the post-condition, too.
Thus, we can save the initial feasibility proof by exploiting this fact.

In this presentation, we formally justify this approach and describe a cor-
responding re�nement method for the development of sequential programs in
Event-B. An example illustrates our approach.

Keywords: Feasibility, Event-B

Animating and Model Checking B Speci�cations with
Higher-Order Recursive Functions

Michael Leuschel (Universität Düsseldorf, D)

Real-life speci�cations often contain complicated functions. Animation and val-
idation of such functions and speci�cations is very important. However, such
functions pose a major challenge to animation and model checking.

Earlier versions of ProB required that functions be explicitly expanded which
is prohibitively expensive or impossible. The central idea of this new research
is to compile such functions into symbolic closures which are only examined
when the function is applied to some particular argument. This enables ProB
to successfully animate and model check a new class of speci�cations, where
animation is especially important due to the involved nature of the speci�cation.
We will illustrate this new approach on an industrial case study.

Keywords: B-Method, Model Checking, Animation, Logic Programming, Vi-
sualization

Joint work of: Leuschel, Michael; Bendisposto, Jens

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2006/640

http://drops.dagstuhl.de/opus/volltexte/2006/640

Rigorous Methods for Software Construction and Analysis 9

Designing a Proof tool for Engineering use

Farhad Mehta (ETH Zürich, CH)

This talk address some of the di�culties of using proof tools in an engineering
setting. In particular it focuses on some of the pains engineers face when using
proof tools and suggests ways to make the act of proving more palatable. These
suggestions are the basic design decisions for the new Event-B prover tool used
in the RODIN platform.

Keywords: Formal proof, interactive proof tools, computer based systems en-
gineering

Using wp-like (hence B-like) reasoning for security and
privacy

C. Carroll Morgan (Univ. of New South Wales, AU)

I will discuss how security and privacy can be reasoned about in what looks very
like the ordinary wp- (hence also B-) style. The state is separated into "visible-"
and "hidden" parts, using extra declarations, and then a modi�ed re�nement
relation is introduced that "preserves ignorance" of the hidden part.

There are certain broad "structuring principles" that should apply if the
method is to scale-up, and I'll discuss what they are. As an example, I will
derive The Dining Cryptographers protocol via a program algebra based on
the restricted re�nement relation, showing therefore that we haven't restricted
re�nement so much that soundness is retaind simply by being unable to re�ne
anything at all. The fetchingly named "Re�nement Paradox" crops up along the
way, and we'll see how it's not such a problem after all.

With any luck, B- and similar "re�nement engines" might one day be able
to carry out such proofs semi-mechanically.

Keywords: Re�nement, security, privace, predicate transformers, logic of knowl-
edge

Data Abstraction in Spec# and Boogie

Peter Müller (ETH Zürich, CH)

Data abstraction allows speci�cations to express program behavior in an imple-
mentation-independent way. Such abstract behavior speci�cations are important
to support subtyping and information hiding. In languages like Ei�el, the Java
Modeling Language (JML), and Spec#, where contracts are based on side-e�ect
free expressions of the programming language, data abstraction is expressed via
model �elds and side-e�ect free methods. In this talk, I present a sound and
modular veri�cation methodology for model �elds, discuss its generalization to
method calls in speci�cations, and identify open problems for future work.

Keywords: Veri�cation, contracts, object-oriented programming

10 J.-R. Abrial and U. Glässer

Relaxing B restrictions on invariant composition using
Spec# approach

Marie-Laure Potet (LSR - IMAG, F)

One of the major aspects of the B method is its notion of component (abstract
machine, re�nement and implementation) which can be proved and developed
in an independent way. Invariant can be stated relatively to the variables and
operations set de�ned in a given component. Proof obligations are made at the
level of component de�nition and the compositionality principle ensures invariant
preservation in any admissible B compositions. Compositionality is based on a
set of rules which control how components are used and combined, resulting
in that in no further proof obligations. In this way invariant composition is a
transparent process for developers as soon as they respect B restrictions.

On the other hand the Spec# approach is based on the dynamic notion of
"ownership" which characterizes which object instance can constrain, through an
invariant, others object instances. The Spec# approach is based on a set of meta-
invariants which describe in which point invariants are guaranted, depending on
the ownership relation.

This approach is a very �exible one but the counterpart is that develop-
ers must master invariant compositionality through meta-invariants and meta-
instructions allowing them to locally invalidate or validate invariants. A solution
is to use meta-schemas (as design patterns), which are pre-labelled by infor-
mation about invariant validity, corresponding to classical architecture forms.
For instance the B restrictions can be seen as meta-schemas which ensure, by
construct, invariant preservation in all points outside the concerned operations.

The aim of the talk is to show how the actual architectural restrictions of the
B method can be interpreted as a particular case of Spec# ownership relation
and to propose some extensions to make these restrictions less strict, without
too complicated overheads for developers. Finally we study how invariant com-
position and re�nement can interact.

Keywords: B method, Spec#, invariant composition, re�nement

Joint work of: Boulmé, Sylvain; Potet, Marie-Laure

Integration of ASM tools using Metamodels

Andreas Prinz (Agder University College - Grimstad, N)

There are several tools for execution, analysis and veri�cation of Abstract State
Machines. They all di�er in their version of ASMs they handle, in the syntax,
the permitted constructs and maybe even in the semantics. This way it is not
possible to use them together on the same models.

Rigorous Methods for Software Construction and Analysis 11

In this presentation it is shown that the integration between di�erent ASM
tools can be done using meta-models. The solution includes the handling of
di�erences between the meta-models.

Keywords: Tool Integration, ASM, Modelling

Exploiting the ASM method within the Model-driven
Engineering paradigm

Elvinia Riccobene (Universitá di Milano, I)

Model-driven Engineering (MDE) is an emerging approach for software develop-
ment. It uses metamodels to de�ne language (or formalism) abstract notation, so
separating the abstract syntax and semantics of the language from their di�erent
concrete notations. However, metamodelling frameworks lack of a way to specify
the semantics of languages, which is usually given in natural language. We claim
that the MDE paradigm can gain rigor and preciseness from the integration
with formal approaches, and we propose the integration with the ASMs to de-
�ne a uni�ed methodology for metamodel-based language syntax and semantics
de�nitions.

Keywords: Abstract State Machines, Model-driven Engineering, ASM Meta-
model, Metamodelling

Joint work of: Gargantini, Angelo; Riccobene, Elvinia; Scandurra, Patrizia

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2006/638

Interactive Algorithms 2006: from Behavioral Theory to
Visual Studio?

Dean Rosenzweig (University of Zagreb, HR)

This talk is a work-in-progress report, overviewing the behavioral theory of inter-
active algorithms, being developed by Y.Gurevich, A.Blass, B.Rossman and the
�rst author, and its implications for the practice of concurrent and distributed
programming, being explored by the second author.

We explain and motivate the distinction of ordinary vs. general interactive
small-step algorithms, and the splitting of the latter notion to stand-alone and
component cases. We show how the notion of wide-step (parallel) algorithm
extends to an interactive situation. Each of these classes of algorithms has an
appropriate ASM syntax capturing the class exactly.

The derived syntax implies an extension of the current AsmL language to
an explicitly interactive version AsmL-I. The work of the second author on the
de�nition and implementation of AsmL-I has met exactly the same problems

http://drops.dagstuhl.de/opus/volltexte/2006/638

12 J.-R. Abrial and U. Glässer

as other ongoing attempts at introducing more transparent and e�cient para-
digms of concurrent/distributed programming. The solutions arrived at seem, by
�rst benchmarks of �rst prototypes, to be remarkably e�cient. Together with
the capability of AsmL-I to express communication and �nely grained concur-
rency/parallelism transparently, on a high level of abstraction, this has led a
part of the current provisional AsmL-I syntax and pragmatics to be considered
for adoption as a general purpose commercial programming tool.

The Mondex Challenge: Machine Checked Proofs for an
Electronic Purse

Gerhard Schellhorn (Universität Augsburg, D)

The Mondex case study about the speci�cation and re�nement of an electronic
purse as de�ned in [Stepney, Cooper, Woodcock 2000] has recently been proposed
as a challenge for formal system-supported veri�cation.

I will report on the successful veri�cation of the case study using the KIV
speci�cation and veri�cation system. I will demonstrate that even though the
hand-made proofs were elaborated to an enormous level of detail we still could
�nd small errors in the underlying data re�nement theory as well as the for-
mal proofs of the case study. I will also show an alternative formalisation of
the communication protocol using abstract state machines and explain how the
veri�cation �ts into our approach of systematic development of E-commerce
communication and security protocols.

Full details of the case study (including all proofs and a technical report) are
available on http://www.informatik.uni-augsburg.de/swt/projects/mondex.html

Joint work of: Schellhorn, Gerhard; Grandy, Holger; Haneberg, Dominik; Reif,
Wolfgang

Typed Abstract State Machines in Data-Intensive
Applications

Klaus-Dieter Schewe (Massey University, NZ)

While Abstract State Machines (ASMs) provide a general purpose development
method, it is advantageous to provide extensions that ease their use in particular
application areas. The talk focuses on such extensions for the bene�t of a �re-
�nement calculus� in the area of data-intensive systems. We show that providing
typed ASMs helps to exploit the existing logical formalisms used in this area to
de�ne a ground model and standard re�nement rules. We also show that the
extensions do not increase the expressiveness of ASMs, as each typed ASM will
be equivalent to an �ordinary� one.

Rigorous Methods for Software Construction and Analysis 13

Speci�cation and Veri�cation using JML (Java Modeling
Language)

Peter H. Schmitt (Universität Karlsruhe, D)

Using an example from avionics software we will �rst describe the use of the Java
Modeling Langugae (JML). Next we will shortly introduce our formal veri�cation
tool, the KeY tool, and its underlying logic, which is a version of Dynamic
Logic taylored towards ver�cation of Java programs. The JML speci�cation are
translated into the input language of our interactive theorem prover and proved.

Chunks: component veri�cation in CSP||B

Steve Schneider (University of Surrey, GB)

CSP||B is an approach to combining the process algebra CSP with the formal de-
velopment method B, enabling the formal description of systems involving both
event-oriented and state-oriented aspects of behaviour. The approach provides
architectures which enable the application of CSP veri�cation tools and B veri�-
cation tools to the appropriate parts of the overall description. Previous work has
considered how large descriptions can be veri�ed using coarse grained component
parts. This talk considers a generalisation of that work so that CSP||B descrip-
tions can be decomposed into �ner grained components, _chunks_, which focus
on demonstrating the absence of particular divergent behaviour separately.

Keywords: Component based veri�cation; B-Method; CSP; decomposition

Joint work of: Schneider, Steve; Treharne, Helen; Evans, Neil

Full Paper:
http://www.computing.surrey.ac.uk/personal/st/S.Schneider/papers/ifm05.ps

See also: IFM 2005, Integrated Formal Methods, Eindhoven, The Netherlands,
2005

A Light Simulator-Veri�cator for Timed Abstract State
Machines

Anatol Slissenko (Université Paris 12, F)

The talk is a short description of main features of a portable simulator-veri�cator
for reactive timed Abstract State Machines. The time may be continuous or
discrete, the time constraints are linear (extendable to polynomial ones), the
reaction may be instantaneous or with non deterministic bounded delays. The
construction of runs goes on together with the veri�cation of a formula in a First
Order Times Logic. There are simple languages for the generation of inputs, for
resolving non determinism and for displaying of the results.

http://www.computing.surrey.ac.uk/personal/st/S.Schneider/papers/ifm05.ps

14 J.-R. Abrial and U. Glässer

UML-B: concept and development

Colin F. Snook (Univ. of Southampton, GB)

Part of the reason for the popularity of the UML in industry may be due to
the �exibility of its (initially underspeci�ed) semantics and its extension mech-
anisms. This approach has allowed specialisations to be de�ned for di�erent
purposes while retaining a broadly familiar notation. UML-B provides a special-
isation of the UML for rigorous modelling and speci�cation of systems. It has a
formal semantics de�ned by translation into the B language. This is automated
by the tool, U2B. UML-B provides a visual form of B with some additional
features such as an object-oriented style lifting of speci�cation parts to a set of
instances and a statemachine behavioural speci�cation. UML-B was developed
under the MATISSE and PUSSEE projects and continues to be developed as
part of the RODIN project. Here we present the original concept and motivation
for UML-B, point out some weaknesses and indicate how we plan to improve
the UML-B notation tools to overcome this and move towards closer integration
with the new Event B platform.

Joint work of: Snook, Colin F.; Butler, Michael J.

ASM Applied to Teaching of Software Engineering

Bernhard Thalheim (Universität Kiel, D)

Software engineering can be considered to be the establishment and the use of
sound methods for the e�cient construction of large and right-quality software
that solve the problems such as users identiy them. It includes the entire devel-
opment process of the software, the requirements prescription and the domain
prescription starting by a description of the application domain. Large software
systems can be based on integrated component construction and architecture
development. Treatment of quality of systems requires control of quality and
check of quality for all products that have been developed during the software
development. Thus, SE is based on methods (principles, analysis, construction,
technique, tool, and artifact), on methodologies for use of methods and results
in documents that are used for both description and analysis. We may base
software development on principles (types, functions, relations, algebra, logic),
techniques, and tools. Often software engineering is treated in an informal way
leaving the foundations aside. Additionally veri�cation and validation is often
based on principles that have been developed for the programming in-the-small
instead of programming in-the-large or programming in-the-world. We elabo-
rate the common belief that software engineering can be given through a formal
basis on the basis of abstract state machines. ASM may escort the entire soft-
ware engineering process due to their abstraction, re�nement, well-foundedness,
scalability, �exibility, and universality.

Rigorous Methods for Software Construction and Analysis 15

The software engineering course given at Christian-Albrechts-University Kiel
also includes management of software engineering products, processes and soft-
ware quality.

Keywords: Abstract state machines, software engineering, codesign, SiteLang,
DistrLang

Extending the use of CSP||B

Helen Treharne (University of Surrey, GB)

CSP||B is an integrated formal method approach which supports compositional
veri�cation. Recently, we've been experimenting with using it alongside exe-
cutable UML to expose weaknesses in concurrent state machines.

The work is very much in its preliminary phase and is part of a continuing
industrial collaboration. In the talk I'll aim to show how we've tailored the style
of CSP||B spec�ciations so that they can be applied to reason about UML state
machines.

Keywords: CSP, B, modelling, analysis

Computational Modeling and Validation of Probabilistic
Aspects of Public Safety and Security Systems

Mona Vajihollahi (Simon Fraser University, CA)

Applying computational modeling and validation techniques to the domain of
public safety and security systems can greatly facilitate functional analysis and
reasoning about such systems. Abstract state machines provide a suitable se-
mantic framework for formalizing such models and allow for machine assisted
inspection of functional requirements. In addition, we contend that, due to the
inherent uncertainty in such systems, using probabilistic modeling techniques
in combination with probabilistic model checking tools facilitates the analysis of
non-functional requirements, such as risk, fault-tolerance, and cost, and provides
invaluable feedback for design and calibration of such systems.

Keywords: Computational Modeling and Validation, Abstract State Machine,
Probabilistic Modeling and Model Checking, Risk Analysis, Performance Analy-
sis

Joint work of: Glaesser, Uwe; Rastkar, Sarah; Vajihollahi, Mona

16 J.-R. Abrial and U. Glässer

The Rodin Platform

Laurent Voisin (ETH Zürich, CH)

ETH Zurich participates to the European Project Rodin, �Rigorous Open De-
velopment Environment for Complex Systems�. In this context, the ETH team
is responsible for developing some kernel tools: a formalism-neutral platform,
based on Eclipse, and tools for event-B modelling (static checker, proof obliga-
tion generator and prover).

This talk will give an overview of the architecture of the Rodin platform,
together with a demonstration of its early prototype, targeted to event-B.

Promoting the use of Formal Methods through Education

Amiram Yehudai (Tel Aviv University, IL)

The use of Formal Methods (FM) in the development of Software is growing
slowly. While it is desirable to introduce comprehensive use of FM in industry, it
is often easier for an organization to start using FM in a way that complements,
rather than replaces, current practices. Academic courses that introduce com-
prehensive use of FM are often electives, divorced from the main curriculum, and
hence do not have enough impact on most students. We propose to promote the
introduction of FM as an important thread in general, required Software courses.
We relate our experience in teaching Object Oriented Programming courses that
emphasize Design by Contract from the start.

Keywords: Design by Contract, Software Engineering education

On the Correctness of Transformations in Compiler
Backends

Wolf Zimmermann (Universität Halle-Wittenberg, D)

The talk summarizes the results on the correctenss transformations in compiler
back-ends achieved in the DFG-project Veri�x. Compiler back-ends transform
intermediate representations into target machine code. Back-end generators al-
low to generate compiler back-ends from a set of transformation rules. The talk
focuses on the correctness of these transformation rules and on the correctness
of the whole transformation stemming from these transformation rules. The cor-
rectness proofs for transformations are simulation proofs showing that the target
code is a re�nement of the source code.

	06191 Abstracts Collection Rigorous Methods for Software Construction and Analysis --- Dagstuhl Seminar ---
	 Jean-Raymond Abrial and Uwe Glässer

