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The B-method [1] is a theory and methodology for formal development of
computer systems. It is used in industry in a range of critical domains. In
addition to the proof activities it is increasingly being realised that validation
of the initial specification is important, as otherwise a correct implementation
of an incorrect specification is being developed. This validation can come in
the form of animation, e.g., to check that certain functionality is present in the
specification. Another useful tool is model checking, whereby the specification
can be systematically checked for certain temporal properties. In previous work
[2], we have presented the PROB animator and model checker to support those
activities.

In this work we present two important improvements upon previous work.

First, realistic specifications often contain complicated functions. Take the
following excerpt of a specification (translated from a Z specification given to
us by Anthony Hall):

removeDuplicates = {ss,rs | ss: seq(seq(PLACE)) & rs:seq(seq(PLACE))
& (ss=<> => rs=<>) &
(card(ss)=1 => rs=ss) &
(card(ss)>1 => ( #(s1,s2).(s1l:seq(PLACE) & si=first(ss)
& s2:seq(PLACE) & s2=ss(2) &

(last(s1)= first(s2) =>

rs = front(sl) -> removeDuplicates(tail(ss)) )
&  (last(sl)/=first(s2) =>

rs = sl -> removeDuplicates(tail(ss))) )))}

Animation and validation of such functions and specifications is very impor-
tant, to ensure that the specified functions actually compute the correct output.
However, such functions pose a major challenge to animation and model check-
ing. Earlier versions of ProB required that the whole function removeDuplicates
be explicitly computed, which is prohibitively expensive or impossible. The cen-
tral idea of this new research is to compile such functions into symbolic closures
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which are only examined when the function is applied to some particular ar-
gument. In the case of recursive closures, these also need to be unrolled on
demand. This enables PROB to successfully animate and model check a new
class of specifications, where animation is especially important due to the in-
volved nature of the specification.

The general schema for writing recursive functions that can be symbolically
animated is as follows:

f=Aargi,args,...,argn,out | argy € TLA...out € T4 A
(COND; => out = EXP1)A

(CONDy => out = EXPn)}

where COND; are mutually exclusive and cover the entire domain of the
function, and where EX P; can make reference to f. For example, the factorial
function can be written (and then animated by ProB) as follows:

CONSTANTS  fact
PROPERTIES
fact = {x,yl| x:NAT & y:NAT &
(x=0 => y=1) &
(x>0 => (y=x*fact(x-1)))
&
fact: NAT --> NAT

Second, it is important that complicated specifications can be animated in such
a way that domain experts can easily validate whether the specification corre-
sponds to their expectations. For this we have developed a generic Flash -based
animation engine which allows to easily develop visualizations for a given speci-
fication. This generic Flash movie connects through a TCP Socket to the Server,
that is integrated into a new Eclipse RCP based release of the PROB animator
shown in Figure 1. The information is exchanged using XML-Fragments. One of
the main advantages is that the animation can be shown to several users simul-
taneously; the only requirement is a web browser with installed Flash-Plugin.
Our tool supports state-based animations, which use simple pictures to repre-
sent a specific state of the B-model, and transition-based animations consisting
of picture sequences. To avoid the creation of many different animations the
tool supports the composition the visualization of several separated parts. In
addition to the graphical elements, gluing code is needed that maps the states
and transitions of a machine to the graphical representation. For this we use
the Java Beanshell, which allows to write interpreted Java code that can be
modified at runtime. The tool provides a set of Java objects that represent the
items in a Flash movie like animation clips or labels.
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Figure 1: Eclipse Version of the PROB animator

Future work

Writing the gluing code is still an annoying task, therefore we will develop a
toolkit for rapid development of the flash animations including a code generator
for the gluing code. Another task is the option to control PROB from the
animation to build user interface prototypes from B machines.
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