View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Dagstuhl Research Online Publication Server

Animating and Model Checking B Specifications
with Higher-Order Recursive Functions*

Michael Leuschel and Jens Bendisposto
Institut fur Informatik
Heinrich-Heine Universitat Disseldorf
Universitatsstr. 1, D-40225 Diisseldorf
leuschel@cs.uni-duesseldorf.de

The B-method [1] is a theory and methodology for formal development of
computer systems. It is used in industry in a range of critical domains. In
addition to the proof activities it is increasingly being realised that validation
of the initial specification is important, as otherwise a correct implementation
of an incorrect specification is being developed. This validation can come in
the form of animation, e.g., to check that certain functionality is present in the
specification. Another useful tool is model checking, whereby the specification
can be systematically checked for certain temporal properties. In previous work
[2], we have presented the PROB animator and model checker to support those
activities.

In this work we present two important improvements upon previous work.

First, realistic specifications often contain complicated functions. Take the
following excerpt of a specification (translated from a Z specification given to
us by Anthony Hall):

removeDuplicates = {ss,rs | ss: seq(seq(PLACE)) & rs:seq(seq(PLACE))
& (ss=<> => rs=<>) &
(card(ss)=1 => rs=ss) &
(card(ss)>1 => (#(s1,s2).(s1l:seq(PLACE) & si=first(ss)
& s2:seq(PLACE) & s2=ss(2) &

(last(s1)= first(s2) =>

rs = front(sl) -> removeDuplicates(tail(ss)))
& (last(sl)/=first(s2) =>

rs = sl -> removeDuplicates(tail(ss))))))}

Animation and validation of such functions and specifications is very impor-
tant, to ensure that the specified functions actually compute the correct output.
However, such functions pose a major challenge to animation and model check-
ing. Earlier versions of ProB required that the whole function removeDuplicates
be explicitly computed, which is prohibitively expensive or impossible. The cen-
tral idea of this new research is to compile such functions into symbolic closures

*This research is being carried out as part of the EU funded research projects: IST 511599
RODIN (Rigorous Open Development Environment for Complex Systems).

Dagstuhl Seminar Proceedings 06191
Rigorous Methods for Software Construction and Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/640

https://core.ac.uk/display/62911757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

which are only examined when the function is applied to some particular ar-
gument. In the case of recursive closures, these also need to be unrolled on
demand. This enables PROB to successfully animate and model check a new
class of specifications, where animation is especially important due to the in-
volved nature of the specification.

The general schema for writing recursive functions that can be symbolically
animated is as follows:

f=Aargi,args,...,argn,out | argy € TLA...out € T4 A
(COND; => out = EXP1)A

(CONDy => out = EXPn)}

where COND; are mutually exclusive and cover the entire domain of the
function, and where EX P; can make reference to f. For example, the factorial
function can be written (and then animated by ProB) as follows:

CONSTANTS fact
PROPERTIES
fact = {x,yl| x:NAT & y:NAT &
(x=0 => y=1) &
(x>0 => (y=x*fact(x-1)))
&
fact: NAT --> NAT

Second, it is important that complicated specifications can be animated in such
a way that domain experts can easily validate whether the specification corre-
sponds to their expectations. For this we have developed a generic Flash -based
animation engine which allows to easily develop visualizations for a given speci-
fication. This generic Flash movie connects through a TCP Socket to the Server,
that is integrated into a new Eclipse RCP based release of the PROB animator
shown in Figure 1. The information is exchanged using XML-Fragments. One of
the main advantages is that the animation can be shown to several users simul-
taneously; the only requirement is a web browser with installed Flash-Plugin.
Our tool supports state-based animations, which use simple pictures to repre-
sent a specific state of the B-model, and transition-based animations consisting
of picture sequences. To avoid the creation of many different animations the
tool supports the composition the visualization of several separated parts. In
addition to the graphical elements, gluing code is needed that maps the states
and transitions of a machine to the graphical representation. For this we use
the Java Beanshell, which allows to write interpreted Java code that can be
modified at runtime. The tool provides a set of Java objects that represent the
items in a Flash movie like animation clips or labels.

& Java - FashPlayer - Eclipse SDK. =[2]x]
file Edit Navgate Search Project Run window Help

o2 S0 [Bwe @ e es i [java
= 0@ schleusen_csPrch | @ Schleusen Recordsmch | Schleusenimch | @ FlashPlayer 52 = 0|0 state %t i)
~ open Constants
openigatel) name | value |
< close Locks {lockl.lock2}
close(gate3) River {Riverd,River2,Riverl }
= flood_lock_right left_sect {(gatel Riverl},(gate2 lock1) (gate3 River2),(gated lock2}
flood_lock_right{lock1; right_se {(gatellockl).(gate2 River2) (gate3 lock2).(gated River3)
= e
= BACKTRACK
BACKTRACK
Variables
Name |value
dstate {(gatel closed).(gate2 closed).(gate3,opened) (gated clo
wlevel {(lockl,Riverl),(lock2,River2),(Riverl Riverl),(River2, Riverz
GT ¥ L
[[=0] \

Figure 1: Eclipse Version of the PROB animator

Future work

Writing the gluing code is still an annoying task, therefore we will develop a
toolkit for rapid development of the flash animations including a code generator
for the gluing code. Another task is the option to control PROB from the
animation to build user interface prototypes from B machines.

References

[1] J.-R. Abrial. The B-Book. Cambridge University Press, 1996.

[2] M. Leuschel and M. Butler. ProB: A model checker for B. In K. Araki,
S. Gnesi, and D. Mandrioli, editors, FME 2003: Formal Methods, LNCS
2805, pages 855—874. Springer-Verlag, 2003.

