
Computing Shortest Paths in Series-Parallel Graphs in

Logarithmic Space

Andreas Jakoby
Institut für Theoretische Informatik

Universität zu Lübeck
D-23538 Lübeck, Germany

Till Tantau
Institut für Theoretische Informatik

Universität zu Lübeck
D-23538 Lübeck, Germany

May 28, 2006

Abstract

Series-parallel graphs, which are built by repeatedly applying series or parallel compo-
sition operations to paths, play an important role in computer science as they model the
flow of information in many types of programs. For directed series-parallel graphs, we study
the problem of finding a shortest path between two given vertices. Our main result is that
we can find such a path in logarithmic space, which shows that the distance problem for
series-parallel graphs is L-complete. Previously, it was known that one can compute some
path in logarithmic space; but for other graph types, like undirected graphs or tournament
graphs, constructing some path between given vertices is possible in logarithmic space while
constructing a shortest path is NL-complete.

1 Introduction

Problem statement. A well-studied subclass of graphs are series-parallel graphs, for which
different definitions and characterizations can be found in the literature. We focus on the basic
class, sometimes also called two terminal series-parallel graphs, which are the most important
variant for applications in program analysis. Series-parallel graphs can be used to describe the
information flow within a program that is based on sequential and parallel composition and help
in deciding which parts of a program be parallelised and in generating schedules for a parallel
execution.

In this paper we address the problem of determining the distance between two nodes in a
directed two terminal series-parallel graph, which is, a priori, a more difficult problem than
the reachablity problem for this graph class. It is known that the reachability problem (the
problem of telling whether there exists a path between two given vertices) and the distance
problem (the problem of telling whether there exists a path between two given vertices of a
given length) have different complexities for certain types of graphs. While both problems are
NL-complete for general graphs, for undirected graphs the distance problem is NL-complete,
but the reachability problem is L-complete [19]. For tournaments, the distance problem is also
NL-complete, but the reachability problem is L-complete [18]. Finally, for forests both problems
are L-complete.

Our contribution. The main result of the present paper is that the distance problem for
directed two-terminal series-parallel is solvable in logarithmic space. We prove this by presenting
a reduction of the distance problem to the problem of evaluating an arithmetic (+,min)-formula
over unary given values. We show that the evaluation problem these formulas can be reduced

1Dagstuhl Seminar Proceedings 06111
Complexity of Boolean Functions
http://drops.dagstuhl.de/opus/volltexte/2006/618

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in logarithmic space to the problem of evaluating arithmetic (+, ·)-formulas over binary given
values. Using the results in [7, 4, 8, 12] one can show that such a formula can be evaluated in L.

The distance problem for directed two-terminal series-parallel graphs is equivalent to a num-
ber of other problems, whose complexity is also settled by our main result. These other problems
include computing the longest path in a two terminal series-parallel graphs and computing the
width of such a graph.

Because of the relation between L and parallel time complexity classes defined by the EREW
PRAM model (see [17]) these new algorithms can be modified to solve these problems in loga-
rithmic time on EREW PRAMs as well.

Related work. To determine whether a given graph G belongs to the class of series-parallel
graphs is a basic problem in algorithmic graph theory. An optimal linear time sequential algo-
rithm for this problem has been developed by Valdes, Tarjan, and Lawler [21] and fast parallel
algorithms have been published. He and Yesha have presented an erew-pram algorithm work-
ing in time O(log2 n) while using n + m processors [13]. Eppstein has reduced the time bound
constructing an algorithm that takes only O(log n) steps on the stronger crcw-pram model
with concurrent instead of exclusive read and write, that requires C(m,n) processors [11], where
C(m,n) denotes the number of processors necessary to compute the connected components of
a graph in logarithmic time. Finally, Bodlaender and de Fluiter have presented an erew-pram
algorithm using O(log n log∗ n) time and O(n + m) operations [5].

The space complexity of this problem has been analysed by Jakoby, Lískiewicz and Reischuk.
In [14] they presented logarithmic space algorithms for the recognition problem and for the
reachability problem for directed two terminal series-parallel graphs. Furthermore they have
studied the problem of decomposing a series-parallel graph. In [15] Jakoby and Lískiewicz
focused on the recognition, the reachability, and the decomposition problem of undirected series-
parallel graphs and showed that this problems can be solved in deterministic logarithmic space
using an SL oracle, which shows that decompositions can be computed in logarithmic space,
also.

2 Preliminaries

2.1 Graphs, Graph Problems, Series-Parallel Graphs

The term graph will always refer to directed graphs, formalized as a pair (V,E) with E ⊆ V ×V .
Instead of (u, v) ∈ E we will also write u → v. A source of a graph is a vertex with in-degree
zero, a sink is a vertex with out-degree zero.

A path in a graph is a sequence (v0, . . . , v`) of vertices such that v0 → v1 → · · · → v`. The
number ` is the length of the path. The distance dist(u, v,G) of two vertices u, v is the length
of the shortest path between them in G or infinity if there is no path between them. We write
u →∗ v if there is a path from u to v.

Given a class C of graphs, we define the following two computational problems:

C-reach := {〈V,E, s, t〉 | (V,E) ∈ C, s ∈ V, t ∈ V, there is a path from s to t in (V,E)},
C-distance := {〈V,E, s, t, d〉 | (V,E) ∈ C, s ∈ V, t ∈ V,

the distance of s and t in (V,E) is at most d}.

We use the notation 〈X〉 to denote a standard binary encoding of the object X. For example,
for a graph G let 〈G〉 denote the adjacency matrix of G.

The class of (directed) series-parallel graphs is defined recursively as follows: First, every
(directed) path is a series-parallel graph. Second, given two series-parallel graphs G1 and G2

2

sources s1 and s2 and sinks t1 and t2, their serial composition, obtained by taking the disjoint
union of G1 and G2 and identifying t1 and s2, is also a series-parallel graph. Third, again given
two graphs series-parallel graphs G1 and G2, their parallel composition, obtained by taking the
disjoint union of G1 and G2 and identifying s1 and s2 and also t1 and t2, is a series-parallel
graph.

From [14] it is known that for any type of graph representations we can alway compute a
graph representation for a series-parallel graph that reflects the structure of the series-parallel
composition operations in L. Hence, we can assume that the graph is given in an appropriate
representation.

2.2 Trees, Decomposition Trees, Arithmetic Trees

A tree is a graph in which there is a unique path from every vertex to a special vertex called
the root of the tree.

A decomposition tree is a tree whose inner nodes are labeled with the valued p and s, which
stand for parallel composition and serial composition. A decomposition tree describes the series-
parallel graph that is constructed recursively as follows: To each leaf of the tree we assign a
length-1 path. If we have assigned two series-parallel graphs to the children of an inner node
labeled p, we assign the parallel composition of these graphs to the inner node. Similarly, to an
inner node labeled s we assign the serial composition of the children. The series-parallel graph
assigned to the root in this manner is the graph decsribed by the tree. Note that different
decomposition trees can describe the same graph.

An arithemtic tree is a tree whose leaves are labeled with integers and whose inner vertices
have two children and are labeled with function that map pairs of intergers to integers, like
addition, maximization, or multiplication. We will call such functions binary operators. For a
set O of operators, an O-tree is an arithemtic tree in which only operators from O are used. For
example, a {+,×}-tree is, in essence, an arithemtic formula. A unary O-tree is similar to an
O-tree, but the integers must be positive and given in unary. Given an O-tree, we recursively
assign integers to the inner nodes by applying the operator of a node to the values of the
children. We call the integer assigned to an innder node its value and the intergers assigned to
the root is the value of the tree. Given a set O of operators, the tree value problem for O-trees
is the problem of computing the value of O-tree. We may choose to simplify the problem by
considering only unary O-trees.

3 A Logspace Algorithm for the Distance Problem

In the present section our aim is to prove the following theorem.

Theorem 3.1. series-parallel-distance ∈ L.

The theorem states that on input of a tuple 〈V,E, s, t, d〉, we can decide in logarithmic space
whether a) the graph G = (V,E) is a series parallel graph and b) whether there is a path from
s to t in G of length at most d.

The hard part is computing the distance – it is known [14] that checking whether a graph
is series-parallel can be done in logarithmic space and deciding reachability for series-parallel
graphs can also be done in logarithmic space. It is even possible to compute a decomposition
tree for a given series-parallel graph in logarithmic space:

Theorem 3.2 ([15]). The exists a logspace machine that on input of a directed graph G de-
termines that the graph is not a series-parallel graph or outputs a decomposition tree of the
graph.

3

Our proof of Theorem 3.1 proceeds in several steps.

1. We generalize the problem by considering weighted graphs.

2. We reduce the problem to the problem of finding a longest path.

3. We reduce the longest path problem to the tree value problem for unary {+,max}-trees.

4. We reduce the tree value problem for unary {+,max}-trees to the tree value problem for
{+,×}-trees.

Before we proceed, let us make one easy observation: We may assume that the start vertex
s is the source of the series-parallel graph (the single vertex of in-degree zero) and t is the
sink of the series-parallel graph (the single vertex of out-degree zero). The reason is that,
since reachability is decidable in logarithmic space for series-parallel graphs, we can filter out
all vertices that do not lie on a path from s to t in (V,E). More precisely, there is logspace
reduction from series-parallel-distance to itself such that for all instances in the range of
the reduction s is the source and t is the sink. This reduction works by checking, for each
vertex v of its input graph, whether there is a path form s to v and a path from v to t. Only
vertices passing this test are included in the output graph of the reduction. Clearly, the removed
vertices play no role with respect to the question what paths exists between s and t. Because
of these arguments, in the following we always assume that s is the source and t is the sink of
the graphs.

3.1 Weighted Series-Parallel Graphs

We start with generalizing the problem slightly. We now consider inputs where we are given,
in addition to the the graph G = (V,E), the vertices s and t, and the distance d, also a weight
function w : V → Z that assigns an integer to each edge of the series-parallel graph.

Given such a weighted graph, we define the weight of a path in the obvious manner: Given
a path (v0, . . . , v`), its weight is the sum of the weights along the edges of the path. Note that
a path may have a negative weight, but since series-parallel graphs are directed acyclic graphs
we do not have to worry about cycles with a negative weight.

We can now consider a new problem: On input 〈V,E, s, t, d, w〉 we must now decide whether
G = (V,E) is a series-parallel graph in which there is path of weight at most d. We require that
the numbers of the weight function w are given in unary but we allow also negative weights
(also given in unary). So, the sign of the weight is stored explicitly and the absolute value of
the weight is given in unary. Let us call this problem W≤ (where W stands for weighted). We
also introduce the problem W+

≤ where all weights are positive.
Clearly, we can reduce series-parallel-distance to W≤ and even to W+

≤ using first-
order projections. In the other direction, we can reduce W+

≤ to series-parallel-distance by
replacing each edge of weight w by a path of length w. This can also be done efficiently since
weights are given in unary. It is not clear how we could reduce W+

≤ to W≤, we come back to
this problem in the next section.

Recall that our first objective is to reduce the shortest path problem for series-parallel graph
to the longest path problem for these graphs. As for the shortest path problem, there also exists
a weighted version for the longest path problem. Let W≥ be the same problem as W≤, only we
now ask whether there exists a path from s to t of weight at least d. Let W+

≥ be the problem
restricted to instances with positive weights. Then we can reduce the (ordinary) longest path
problem for series-parallel graphs to W+

≥ and we can reduce W+
≥ to the longest path problem.

4

Our final observation for this section is that W≤ and W≥ are equivalent under first-order
projections: The reduction (which works in both directions) simply maps an instance to the
instance in which all weights are negated and in which the target distance d is negated. Then,
clearly, there is a path from s to t of a weight w for the original weights if, and only if, there
is a path from s to t of weight −w for the negated weights. In particular, there is a path of
weight at most d for the original weights if, and only if, there is a path of weight at least −d
for the negated weights.

3.2 Reduction to the Longest Path Problem

We now aim at reducing the shortest path problem for series-parallel graph to the longest path
problem. How this reduction works is demonstrated in the next lemma. Prior to stating this
lemma, let us quickly define the longest path problem formally.

series-parallel-longest-path :=
{〈V,E, s, t, d〉 | (V,E) is a series-parallel graph, s ∈ V, t ∈ V,

there is a path of length at least d from s to t in (V,E)}.

Lemma 3.3. series-parallel-distance ≤fop series-parallel-longest-path.

Proof. The idea is to use the weighted graphs introduced earlier. We know already that
series-parallel-distance reduces to W≤, which reduces to W≥ in turn. We also know
that we can reduce W+

≥ to series-parallel-longest-path. The missing link in the chain of
reductions is a reduction from W≥ to W+

≥ . In the following we show how a logspace many-one
reduction from W≥ to W+

≥ works.
Let 〈V,E, s, t, d, w〉 be an input for the reduction. In order to obtain the desired input for

W+
≥ , we will modify only the weight function w and the target value d. We will not modify the

graph. The new weight function will be called w′ and the new target value d′.
For an edge e = (u, v) ∈ E, let Pe be the set of vertices x such that x →∗ u. In other words,

Pe contains the vertices from which we can still reach the start of the edge. Note that s ∈ Pe

since s is the source and every vertex is reachable from the source (recall that we consider only
graphs in which s is the source). We next we define a subset Ee ⊆ E of edges as follows: An
edge (x, y) ∈ E is in Ee if x ∈ Pe and y /∈ Pe. Note that e ∈ Ee. Note also that, given e, we
can check in logarithmic space whether (x, y) ∈ Ee holds as this check involves only reachability
checks, which can be done in logarithmic space.

Let us now establish some basic properties of the sets Pe and Ee. For every edge e and every
path from s to t, the vertices on the path start inside Pe and continue to stay inside Pe until,
at some point, the first vertex leaves Pe (at the latest, the vertex t does). Once the sequence
has left Pe, it stays outside Pe. This means that every path from s to t passes exactly one edge
from Ee.

Consider what happens if we increase the weight of all edges in Ee by a constant c. Then
the weight of every path from s to t is increased exactly by this constant since every path passes
through exactly one edge of Ee. The idea, to be detailed in a moment, is to increase the weight
of all edges in this manner so strongly that all weights become positive.

Let m be the minimum weight present in the input graph. If m is positive, nothing needs
to be done, so assume that it is negative or zero. Let k = −m + 1. Our objective is to do
the following for each edge e ∈ E: We increase the weight of all edges in Ee by k. Thus,
each edge e ∈ E causes a weight increase of some edges in the graph and some edges may be
increased multiple times. Formally, the total new weight w′(e′), where e′ is some edge from E,

5

is w(e′) + k · |{e | e′ ∈ Ee}|. Clearly this number can be computed in logarithmic space since
checking whether e′ ∈ Ee holds can be done in logarithmic space.

Let |E| be the total number of edges in the graph. We claim that our modification of the
weights has increased the weight of every path from s to t exactly by k|E|. To see this, just note
that every path passes through exactly one edge from each Ee and we increased the weight of
each such edge by k|E|. But then for d′ = d+ k|E|, we have that 〈V,E, s, t, d′, w′〉 ∈ W≥ if, and
only if, 〈V,E, s, t, d′, w′〉 ∈ W≥. Finally, note that all weights assigned by w′ are positive since
e ∈ Ee and, thus, each weight is increased by at least k, which makes it positive. This observation
allows us to conclude that 〈V,E, s, t, d′, w′〉 ∈ W≥ if, and only if, 〈V,E, s, t, d′, w′〉 ∈ W+

≥ .

3.3 Reduction to Addition and Maximization Trees

The next step toward a proof of Theorem 3.1 is a reduction of the longest path problem for
series-parallel graphs to the tree value problem for unary {+,×}-trees.

Lemma 3.4. series-parallel-longest-path reduces to the tree value problem for unary
{+,max}-trees via a logspace many-one reduction.

Proof. This reduction is quite simple. On input 〈V,E, s, t, d〉, where s is the source and t is the
sink, we compute the decomposition tree of the graph (V,E). Next, we turn the tree into a
{+,max}-tree as follows: We label each leaf with the number 1. We change each p-label (recall
that p stands for parallel) into a max-label and change s-label into a +-label.

We claim that the value of the resulting {+,max}-tree is the length of the longest path in the
graph. This is easy to prove using structural induction: First, decomposition trees consisting
only of a single leaf (which equals the root) describe the series-parallel graph consisting of a
single edge between s and t. In such graphs the length of the longest (or shortest or just any)
path from s to t is 1 and this is the value of the tree.

Second, given a decomposition tree with a p-label at the root, assume that the lengths of
the longest paths in the two graphs G1 and G2 described by the trees rooted at the two children
cleft and cright equal the values of these children. Then the longest path from s to t in the graph
resulting from the parallel composition of G1 and G2 is the maximum of the two longest paths
in G1 and G2. On the other hand, the value of the root is exactly the maximum of the values
of the children.

Third, consider the situation where the root of the decomposition tree is labeled s. Let once
more G1 and G2 be the graphs described by the root’s children. A longest path in the serial
composition of G1 and G2 is given by first going through G1 via a longest path in G1 and then
going through G2 via a longest path of G2. Then the total length is the sum of the length of
the two longest paths. This shows that the value of the root of the tree, which is the sum of
the values of the children is, indeed, exactly the length of the longest path through the whole
graph.

3.4 Reduction to Addition and Multiplication Trees

The last step is to reduce the tree value problem for unary {+,max}-trees to the tree value
problem for {+,×}-trees. Once we have established this reduction, we have proved Theorem 3.1
as it is known that the tree value problem for {+,×}-trees can be solved in logarithmic space [7,
4, 8, 12].

Lemma 3.5. The tree value problem for unary {+,max}-trees reduces to the tree value problem
for {+,×}-trees via single-query Turing-reduction that runs in logarithmic space (even in NC1).

6

Proof. Let T be an input {+,max}-tree and let m be the sum of all number of the tree’s leaves
plus one. We map T to an {+,×}-tree T ′ as follows: For a leaf with value v, we change the
value to 2vm. Note that this mapping is feasible as both v and m are “small” number: Their
values are polynomial in the input length. For inner nodes, change the labels according to the
following rule: A +-label is replaced by a ×-label, a max-label is replaced by a +-label.

Let v be the value of T and let v′ be the value of T ′. We claim that v = b(log2 v′)/mc. If
we accept this claim for the moment, the reduction can the query T ′ and receive the value v′.
Then v can easily be obtained from v′ using the above formula.

To prove the formula, we prove the following using simultaneous structural induction on the
trees T and T ′ (these trees have the same structure, only the labels differ): Let u be a value of
a node n in T and let u′ be the value of this node in T ′. Let s be the sum of the values of the
leaves of the subtree of T rooted at n. We claim that

2um ≤ u′ ≤ 2um+s.

Note that if the claim holds for all nodes then it holds for the root in particular, where s = m−1.
This implies 2vm ≤ n′ ≤ 2vm+m which implies v ≤ (log2 v′)/m ≤ v + v/m. Since v < m and,
thus, v/m < 1, this implies v = b(log2 v′)/mc as claimed.

So, let us prove that 2um ≤ u′ ≤ 2um+s holds for all nodes. First for every leaf this claim is
correct as we set u′ = 2um. Second, consider a node that used to have a +-label and now has
a ×-label. Let u1 and u2 be the values in T of the children of the node and let u′1 and u′2 be
the values in T ′ of these children. Let s1 and s2 be the sums of the leaves in the subtrees of T
rooted at the different children. The induction hypothesis states that

2u1m ≤ u′1 ≤ 2u1m+s1 and
2u2m ≤ u′2 ≤ 2u2m+s2 .

We have u = u1 + u2 since the node had a +-label in T and we have u′ = u′1 · u′2 since the node
now has a ×-label in T ′. We also have s = s1 + s2. We can calculate as follows:

2um = 2u1m+u2m = 2u1m · 2u2m

≤ u′1 · u′2 = u′ = u′1 · u′2
≤ 2u1m+s1 · 2u2m+s2 = 2(u1+u2)m+(s1+s2) = 2um+s.

Thus, 2um ≤ u′ ≤ 2um+s.
Third and finally, consider a node that used to have a max-label and now has a +-label.

Let u1 and u2 and u′1 and u′2 and s1 and s2 be as before. Once more, we may assume

2u1m ≤ u′1 ≤ 2u1m+s1 and
2u2m ≤ u′2 ≤ 2u2m+s2 .

We have u = max{u1, u2} and u′ = u′1 + u′2. Since everything is symmetric, we may assume
that u1 is the larger of the two values u1 and u2. We calculate:

2um = 2max{u1,u2}m = 2u1m ≤ 2u1m + 2u2m

≤ u′1 + u′2 = u′ = u′1 + u′2

≤ 2u1m+s1 + 2u2m+s2 ≤ 2u1m+max{s1,s2} + 2u1m+max{s1,s2}

= 2u1m+max{s1,s2}+1 ≤ 2u1m+s1+s2 = 2um+s.

We used the fact max{s1, s2}+ 1 ≤ s1 + s2, which holds since all leaf labels are positive.

7

References

[1] R. Aleliunas, R. Karp, R. Lipton, L. Lovasz, C. Rackoff, Random Walks, Universal Se-
quences and the Complexity of Maze Problems, Proc. 20. FOCS, 1979, 218–223.

[2] C. Álvarez, B. Jenner, A Very Hard Log-space Counting Classes, TCS 107, 1993, 3–30.

[3] E. Allender, M. Mahajan, The Complexity of Planarity Testing, Proc. 17. STACS, LNCS
1770, 2000, 87–98.

[4] M. Ben-Or, R. Cleve Computing Algebraic Formulas Using a Constant Number of Registers,
SIAM J. Comput. 21, 1992, 54–58.

[5] H. Bodlaender, B. de Fluiter, Parallel Algorithms for Series Parallel Graphs, Proc. 4. ESA,
LNCS 1136, 1996, 277–289.

[6] A. Brandstädt, V. Bang Le, J. Spinrad, Graph Classes: A Survey, SIAM 1999.

[7] S. Buss, S. Cook, A. Gupta, V. Ramachandran, An Optimal Parallel Algorithm for Formula
Evaluation, SIAM J. Comput. 21, 1992, 755–780.

[8] A. Chiu, G. Davida, B. Litow, Division in logspace-uniform NC1, Theoretical Informatics
and Applications 35, 2001, 259–275.

[9] S. Cook, P. McKenzie, Problems Complete for Deterministic Logarithmic Space, J. Algo. 8,
1987, 385–394.

[10] R. Duffin, Topology of Series-Parallel Networks, J. Math. Analysis Appl. 10, 1965, 303–318.

[11] D. Eppstein, Parallel Recognition of Series-Parallel Graphs, Inf. & Comp. 98, 1992, 41–55.

[12] W. Hesse, Division Is in Uniform TC0, Proc. 28. ICALP, Springer LNCS 2076, 2001,
104–114.

[13] X. He, Y. Yesha, Parallel Recognition and Decomposition of Two Terminal Series Parallel
Graphs, Inf. & Comp. 75, 1987, 15–38.

[14] A. Jakoby, M. Lískiewicz, and R. Reischuk Space Efficient Algorithms for Series-Parallel
Graphs, Proc. STACS 2001, 339–352.

[15] A. Jakoby and M. Lískiewicz, Paths Problems in Symmetric Logarithmic Space, Proc.
29. ICALP, Springer LNCS 2380, 2002, 269-280.

[16] B. Jenner, K.-J. Lange, P. McKenzie, Tree Isomorphism and Some Other Complete Prob-
lems for Deterministic Logspace, publication #1059, DIRO, Université de Montréal, 1997.

[17] R. Karp, V. Ramachandran, Parallel Algorithms for Shared-Memory Machines, in: J. van
Leeuwen (Ed.): Handbook of Theoretical Computer Science, Volume A, 1990, 869–941.

[18] A. Nickelsen, T. Tantau, The Complexity of Finding Paths in Graphs with Bounded Inde-
pendence Number, SIAM J. Comput. 34, 2005, 1176–1195.

[19] O. Reingold, Undirected st-connectivity in log-space, Proc. STOC 2005, ACM Press, 376–
385.

[20] R. Tamassia and J. S. Vitter, Parallel Transitive Closure and Point Location in Planar
Structures, SIAM J. Comput. 20, 1991, 708–725.

8

[21] J. Valdes, R. Tarjan, E. Lawlers, The Recognition of Series Parallel Digraphs, SIAM J.
Comput. 11, 1982, 298–313.

9

