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Abstract

We estimate Fourier coefficients of a Boolean function which has re-
cently been introduced in the study of read-once branching programs.
Our bound implies that this function has an asymptotically “flat” Fourier
spectrum and thus implies several lower bounds of its various complex-
ity measures.

1 Introduction

1.1 Motivation

P. Savický and S. Žák [22], in their study of read-once branching programs,
have recently introduced a Boolean function f defined in terms of certain
weighted sums in the residue ring modulo a prime. It has also been used
by M. Sauerhoff [20, 21] for several more complexity theory applications. In
particular, in [21] a certain modification of the same function has been used
to prove that quantum read-once branching programs are exponentially more
powerful than classical read-once branching programs. Here, motivated by the
important role the function f has played in several recent works, we continue
to study f and concentrate on estimating its Fourier coefficients .

It is well know that there are many close links between Fourier coefficients
and various complexity characteristics of any Boolean function, see [2, 3, 4, 5, 6,
10, 11, 12, 14, 16, 18, 19] and references therein. Although we do not present all
such implications, we give lower bounds on several complexity characteristics
of f .

1.2 Notation

We now fix a sufficiently large integer n and let p be the smallest prime with
p ≥ n.
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We also use Br to denote the r-dimensional binary cube, that is, Br =
{0, 1}r.

Given an n-dimensional binary vector x = (x1, . . . , xn) ∈ Bn we define
s(x) by the conditions

s(x) ≡
n∑

k=1

kxk (mod p), 1 ≤ s(x) ≤ p.

Following [22], we consider the Boolean function

f(x) =

{
xs(x), if 1 ≤ s(x) ≤ n;
x1, otherwise.

(1)

We use some methods of analytic number theory to estimate Fourier coef-
ficients

f̂(u) =
1

2n

∑
x∈Bn

(−1)f(x)+u·x,

where u = (u1, . . . , un) ∈ Bn, and

u · x = u1x1 + . . . + unxn

is the inner product.

1.3 Results

We show that all such coefficients are of the size 2(−1/2+o(1))n (where the term
o(1) depends on our knowledge about the gaps between consecutive primes).

Certainly, the Parseval identity∑
u∈Bn

ĝ(u)2 = 1, (2)

implies that
max
u∈Bn

|ĝ(u)| ≥ 2−n/2

for Fourier coefficients ĝ(u) of any n-variate Boolean function g. Thus the
function f has an asymptotically optimal Fourier spectrum.

We also give present some immediate applications of our bound and derive
an asymptotic formula on the average sensitivity of f which in turn leads to
lower bounds on its circuit complexity and polynomial degree. We also give a
lower bounds on the size of a decision tree which computes f .

2 Estimating Fourier Coefficients

2.1 Preparations

We start with a bound on the gap between n and p, which follows from [1].
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Lemma 1. We have, p = n + O(n0.525).

We now put e(z) = exp(2πιz/p) where ι =
√
−1.

Lemma 2. We have,

max
λ=1,... ,p−1

∣∣∣∣∣
n∑

j=1

e(λj)

∣∣∣∣∣ = O(n0.525).

Proof. The result follows immediately from the identity

p∑
λ=1

e(λz) =

{
0, if z �≡ 0 (mod p),
p, if z ≡ 0 (mod p),

(3)

since∣∣∣∣∣
n∑

j=1

e(λj)

∣∣∣∣∣ =

∣∣∣∣∣
p∑

j=1

e(λj)−
p∑

j=n+1

e(λj)

∣∣∣∣∣ =

∣∣∣∣∣
p∑

j=n+1

e(λj)

∣∣∣∣∣ ≤ p− n = O(n0.525)

by Lemma 1. 
�

The following inequality is given in the proof of [13, Theorem 18.2].

Lemma 3. For any complex numbers z, z1, . . . , zN on the unit circle, |z| =
|z1| = . . . = |zN | = 1, we have∣∣∣∣∣

N∏
k=1

(z + zk)

∣∣∣∣∣ ≤ 2N/2

(
1 +

1

N

∣∣∣∣∣
N∑

k=1

zk

∣∣∣∣∣
)N/2

.

2.2 Main Result

Theorem 4. For the function f given by (1), we have

max
u∈Bn

|f̂(u)| = 2−n/2+O(n0.525).

Proof. As we have remarked the lower bound follows immediately from (2), so
we now concentrate on deriving the upper bound.

For every j ∈ {1, . . . , p}, let Xj be the set of x ∈ Bn with s(x) = j. We
now write

f̂(u) =
1

2n

p∑
j=1

Fj(u) (4)

and estimate each of the inner sums

Fj(u) =
∑
x∈Xj

(−1)f(x)+u·x
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separately.
We start with considering the sum Fj (u) for j ∈ {1, . . . , n}. In this case,

for every pair (α, β) = B2 we use Xj,α,β to denote the set of x ∈ Xj with

xj = α, u · x = β.

Therefore

Fj (u) =
∑

α,β∈B2

#Xj,α,β(−1)α+β. (5)

From the identity (3) we have

#Xj,α,β =
∑
x∈Bn
xj=α

1

2p

(
1 + (−1)u·x−β

) p∑
λ=1

e (λ (s(x)− j))

=
1

2p

p∑
λ=1

e(−λj)
1∑

µ=0

(−1)µβ
∑
x∈Bn
xj=α

(−1)µu·xe

(
λ

n∑
k=1

kxk

)

=
1

2p

p∑
λ=1

e (λj(α− 1))
1∑

µ=0

(−1)µ(αuj+β)

n∏
k=1
k �=j

(1 + (−1)µuke (λk)) .

We say that u ∈ Bn is j-vanishing if uk = 0 for every k ∈ {1, . . . , n} with
k �= j. The we see that in the above sum the term corresponding to λ = 0 is

1

2p

1∑
µ=0

(−1)µ(αuj+β)

n∏
k=1
k �=j

(1 + (−1)µuk) = σj(u, α, β),

where

σj(u, α, β) =

{
2n−2p−1, if u is not j-vanishing,
2n−2p−1

(
1 + (−1)αuj+β

)
, otherwise.

The contribution from other terms can be estimated as

1

2p

p∑
λ=1

1∑
µ=0

∣∣∣∣∣∣∣
n∏

k=1
k �=j

(1 + (−1)µuke (λk))

∣∣∣∣∣∣∣ = O
(
2n/2+O(n0.525)

)

by Lemma 2 and Lemma 3. Thus we see from (5) that

Fj (u) =
∑

α,β∈B2

σj(u, α, β)(−1)α+β + O
(
2n/2+O(n0.525)

)
and one can easily verify that∑

α,β∈B2

σj(u, α, β)(−1)α+β = 0
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whether u is j-vanishing or not. Hence

|Fj (u) | ≤ 2n/2+O(n0.525). (6)

It remains to estimate Fj (u) for j ∈ {n + 1, . . . , p}. In this case, for every
pair (α, β) = B2 we use Yj,α,β to denote the set of x ∈ Xj with

x1 = α, u · x = β.

Exactly the same arguments as before lead to the bound

Fj (u) =
∑

α,β∈B2

σ1(u, α, β)(−1)α+β + O
(
2n/2+O(n0.525)

)
.

Therefore (6) still holds. Substituting (6) in (4) we finish the proof. 
�

3 Applications

3.1 Average Sensitivity, Circuit Complexity and Poly-
nomial Representations

We recall that the average sensitivity σav(g) of an n-variate Boolean function
g is defined as

σav(g) = 2−n
∑
x∈Bn

n∑
i=1

∣∣g(x)− g(x(i))
∣∣ .

where x(i) is the vector obtained from x by flipping its ith coordinate.

Theorem 5. For the function f given by (1), we have

σav(f) = (1 + o(1))n

Proof. It is shown in [12] that

σav(f) =
∑
u∈Bn

wt (u)|f̂(u)|2

where wt (u) is the Hamming weight of u.
Therefore, for any w ≤ n, from the Parseval identity (2), we obtain

σav(f) ≥
∑

wt (u)∈Bn

wt (u)<w

wt (u)
∣∣∣f̂(u)

∣∣∣2 + w
∑

wt (u)∈Bn

wt (u)≥w

∣∣∣f̂(u)
∣∣∣2

=
∑

wt (u)∈Bn

wt (u)<w

wt (u)
∣∣∣f̂(u)

∣∣∣2 + w

1−
∑

wt (u)∈Bn

wt (u)<w

∣∣∣f̂(u)
∣∣∣2


≥ w − (w − 1)

∑
wt (u)∈Bn

wt (u)<w

∣∣∣f̂(u)
∣∣∣2 .
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Using the bound of Theorem 4 we see that

∑
wt (u)∈Bn

wt (u)<w

∣∣∣f̂(u)
∣∣∣2 ≤ 2−n+O(n0.525)

∑
wt (u)∈Bn

wt (u)<w

1 = 2−n+O(n0.525)

w−1∑
j=0

(
n

j

)
.

We recall that for any w ≤ n/2 we have the bound

w−1∑
j=0

(
n

j

)
≤ 2nH(w/n)+o(n),

where
H(γ) = −γ log γ − (1− γ) log(1− γ), 0 < γ < 1,

and log z denotes the binary logarithm, see [15, Section 10.11]. Hence, for
w ≤ n/2,

σav(f) ≥ w − (w − 1)2n(H(w/n)−1)+δ(n)

for some function δ(n)→ 0 as n→∞. One easily verifies that, as η → 0,

H(1/2− η) = 1− aη2 + O(η3)

where a = 2 log e = 2.885 . . . . Taking w = n/2 − δ(n)1/2 gives the desired
result. 
�

By the Boppana result [4] if an unbounded fan-in Boolean circuit of depth
d and size S computes a Boolean function g, then d log log S ≥ log σav(g).
Thus we see from Theorem 5 that if an unbounded fan-in Boolean circuit of
depth d and size S computes the function f given by (1), then

d log log S ≥ (1 + o(1))n.

For an n-variate Boolean function g, we define its real degree ∆(g) and real
approximate degree δ(g) as the smallest possible degree of a real polynomial
F in n variables for which

g(x1, . . . , xn) = F (x1, . . . xr) and |g(x1, . . . , xn)− F (x1, . . . xr)| ≤ 1/3.

holds for every (x1, . . . , xr) ∈ Bn, respectively. Clearly, δ(g) ≤ ∆(g) ≤ n.
By Corollary 2.5 and by Lemma 3.8 of [17], for any Boolean function g, we

have
∆(g) ≥ σav(g) and δ(g) ≥ (σav(g)/6)1/2 ,

thus Theorem 5 we obtain for the function f , that

∆(f) ≥ (1 + o(1))n and δ(f) ≥ (6−1/2 + o(1))n1/2.

In turn, these bounds imply a lower bound on quantum computational com-
plexity of f , see [7].
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3.2 Decision Tree Complexity

We recall that a decision tree with input variables X1, . . . , Xn is a rooted
binary tree in which each edge is labeled with a variable or a negated variable
in such a way that labels of edges leaving the same inner node are negations
of each other. Further each leaf v of the tree is labeled with some value
λ(v) ∈ {0, 1}.

A decision tree T defines a Boolean function gT as follows: Given an input
x = (x1, . . . , xn) ∈ Bn, replace each edge label Xi by the induced value, that
is, replace each Xi by xi and each ¬Xi by ¬xi. After the replacement there
is exactly one path from the root to some leaf v whose edges are all labeled 1
which is called the computation path of the input x. Define gT (x) to be λ(v).

The number of leaves is called the size of the decision tree.
We denote by DT (g) the smallest possible size of a decision tree which

computes a Boolean function g.

Theorem 6. For the function f given by (1), we have

DT (f) ≥ 2n/2+O(n0.525).

Proof. From Lemma 2.2 (taken with S empty) of [11] we obtain

DT (f) ≥
∑
u∈Bn

|f̂(u)|.

On the other hand, from the Parseval identity (2) and the bound of Theorem 4
we see that

1 =
∑
u∈Bn

f̂(u)2 ≤ 2−n/2+O(n0.525)
∑
u∈Bn

|f̂(u)|.

and the desired estimate follows. 
�

4 Remarks

Clearly the error term O(n0.525) in Theorem 4 comes from a result about gaps
between consecutive primes [1] and under the Riemann Hypothesis can be
reduced to O(n1/2+o(1)).

The bound of Theorem 4 implies that the function f has a high non-
linearity

N(f) = 2n−1 + O
(
2n/2+O(n0.525)

)
which is defined as the difference

N(f) = 2n−1 − 1

2
max
u∈Bn

|f̂(u)|.

We recall that Boolean functions with large non-linearity play a very important
role in cryptography, see [8, 9]. Thus it may be interesting to study some
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other properties of cryptographic interest for the function f . One can also
consider its applicability to stream ciphers, which naturally leads to a question
about the period and statistical distribution of sequences (zh)

∞
h=1, generated

recursively by

zh+n+1 = f(zh, . . . zh+n), h = 1, 2, . . . ,

with some initial vector (z1, . . . , zn) ∈ Bn.
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