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Abstract. We show that for any reasonable semantic model of compu-
tation and for any positive integer a and rationals 1 ≤ c < d, there exists
a language computable in time nd with a bits of advice but not in time
nc with a bits of advice. A semantic model is one for which there exists
a computable enumeration that contains all machines in the model but
may also contain others. We call such a model reasonable if it has an ef-
ficient universal machine that can be complemented within the model in
exponential time and if it is efficiently closed under deterministic trans-
ducers.
Our result implies the first such hierarchy theorem for randomized ma-
chines with zero-sided error, quantum machines with one- or zero-sided
error, unambiguous machines, symmetric alternation, Arthur-Merlin games
of any signature, etc. Our argument yields considerably simpler proofs
of known hierarchy theorems with one bit of advice for randomized and
quantum machines with two-sided error.
Our paradigm also allows us to derive stronger separation results in a
unified way. For models that have an efficient universal machine that can
be simulated deterministically in exponential time and that are efficiently
closed under randomized reductions with two-sided error, we establish
the following: For any constants a and c, there exists a language com-
putable in polynomial time with one bit of advice but not in time nc

with a log n bits of advice. In particular, we obtain such separation for
randomized and quantum machines with two-sided error. For random-
ized machines with one-sided error, we get that for any constants a and
c there exists a language computable in polynomial time with one bit of
advice but not in time nc with a(log n)1/c bits of advice.

1 Introduction

Hierarchy theorems address one of the most fundamental questions in
computational complexity: Can we decide more languages on a certain
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model of computation when given a bit more of a certain resource? In fact,
a time hierarchy for deterministic Turing machines constitutes the main
technical contribution in the paper by Hartmanis and Stearns [HS65] that
founded the field. Later on, Cook [Coo73], Seiferas, Fischer and Meyer
[SFM78], and Žàk[Ž83] established time hierarchies for nondeterministic
Turing machines. Their techniques apply to virtually any syntactic model
of interest, i.e., one for which there exists a computable enumeration of
exactly the machines in the model.

Several models we care about are not syntactic, though. Examples in-
clude randomized or quantum machines with two-, one-, or zero-sided er-
ror, unambiguous machines, symmetric alternation, Arthur-Merlin games
of any signature, etc. Each of these models has a computable enumera-
tion that contains all machines of the model but may also contain other
machines. For example, we can computably enumerate all randomized ma-
chines; the enumeration contains all randomized machines with two-sided
error but also contains machines that violate the promise of bounded er-
ror. We dub models with such an enumeration as semantic. See Section 4.1
for more on nomenclature.

To date, except for a few cases in which a non-syntactic model is
known to be equivalent in power to a syntactic one, no hierarchy is known
for any non-syntactic model1. In particular, it remains open whether for
every constant c there exists a language that can be solved on randomized
machines with two-sided error in polynomial time but not in time nc.

In 2002, Barak [Bar02] used instance checkers for exponential-time
complete languages to prove the latter statement in a slightly nonuniform
version of the model, namely a model in which the machines get a(n)
bits of advice for some function a(n) = O(log log n). In other words,
he established the result for randomized machines with two-sided error
whose descriptions can depend on the input length n in such a way that
the size of the variable part is bounded by a(n). Subsequently, several
authors tried to get as close as possible to the desired uniform result and
managed to reduce the amount of advice to a single bit [FS04,GST04].
Barak’s argument also applies to quantum machines with two-sided error
but not to any of the other semantic models on our list. Roughly speaking,
due to the use of instance checkers, the model has to be closed in an
efficient way under randomized reductions with two-sided error for the
proof to carry through.

1 Here, we are assuming that one interprets “a bit more time” as implying “at most
a polynomial amount more time.” The exceptions we are aware of follow from the
characterizations IP = PSPACE, MIP = NEXP, and PCP(log n, 1) = NP.
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More recently, Fortnow, Santhanam, and Trevisan [FST05] gave a
specific argument for randomized machines with one-sided error and one
bit of advice. They also developed an approach that works for all of
the above models but needs considerably more advice: They obtain a
hierarchy theorem for any reasonable semantic model of computation with
a(n) bits of advice where a(n) is some function in O(log n · log log n).

As our main result, we manage to get the best of both worlds and
thereby improve both lines of research.

Theorem 1. For any reasonable semantic model of computation and any
constants a and c, there exists a language computable in polynomial time
with one bit of advice but not in time nc with a bits of advice.

As a corollary to Theorem 1, we obtain the following hierarchy with a
bits of advice for any constant a ≥ 1.

Theorem 2. For any reasonable semantic model of computation and any
positive integer a and rationals 1 ≤ c < d, there exists a language com-
putable in time nd with a bits of advice but not in time nc with a bits of
advice.

We refer to Section 4.2 for a precise definition of “reasonable” but all of
the specific models listed above fall under the notion.

We use the technique of delayed diagonalization adapted to the setting
of computations with advice. Our approach differs from Barak’s as well as
the one by Fortnow et al. Like the latter but unlike the former, our proof
relativizes. Since instance checkers are the sole culprit of nonrelativization
in Barak’s argument, our proof shows that that component is not critical
for obtaining a time hierarchy for randomized machines with two-sided
error and one bit of advice. Apart from yielding stronger results and being
more widely applicable, our approach also provides considerably simpler
proofs for all the hierarchy theorems with one bit of advice that were
known before [FS04,GST04,FST05]. We refer to Section 2 for a more
detailed comparison of techniques.

As is clear from the statement of Theorem 1, the proof of our main
result actually yields more than a hierarchy theorem because we can ac-
commodate up to a bits of advice for any constant a at the smaller time
bound while still only needing a single bit of advice at the larger time
bound. Barak’s argument goes further along that road and handles up to
a log n instead of a bits of advice but only for a more restrictive subclass
of semantic models. We show how to match Barak’s bound of a log n using
our approach.
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Theorem 3. For any reasonable randomized semantic model of compu-
tation that is efficiently closed under randomized reductions with two-sided
error, and any constants a and c, there exists a language computable in
polynomial time with one bit of advice but not in time nc with a log n bits
of advice.

We refer to Section 5.2 for a full specification of the models to which
Theorem 3 applies; the list includes randomized and quantum machines
with two-sided error. Our proof of Theorem 3 uses instance checkers again
but in a different way than Barak and for a more limited purpose. Thus,
we further relegate the use of instance checkers in this context.

Theorem 3 does not seem to apply to randomized machines with one-
sided error. For that specific model, Fortnow et al.’s argument2 yields
a somewhat weaker separation theorem, namely for a(log n)1/c bits of
advice instead of a log n bits at the smaller time bound of nc. We show
how to obtain that result using our approach, too.

Theorem 4. For any constants a and c there exists a language com-
putable by randomized machines with one-sided error in polynomial time
with one bit of advice but not in time nc with a(log n)1/c bits of advice.

Thus, the paradigm we present offers a unified way for deriving new as well
as known separation results within non-syntactic models of computation.

The rest of this paper is organized as follows. In Section 2, we provide
an overview of the arguments that have been used for deriving hierarchy
theorems in the past. Section 3 describes the intuition behind our con-
structions and develops them in an informal way. Section 4 contains the
formal presentation of our generic hierarchy theorem, and Section 5 does
the same for our separation theorems. Finally, in Section 6, we present
some possible directions for further research.

2 Previous Work

In this section, we survey the arguments that have been used in hierar-
chy theorems and that exhibit a close relationship to ours. We focus on
techniques and qualitative improvements rather than quantitative ones.
Readers who would like to skip to Section 3 for a description of our con-
structions can do so without loss of continuity.

2 Fortnow et al. [FST05] actually only prove the result for (log n)1/2c bits of advice
but a small modification of their argument works up to a(log n)1/c bits of advice at
the smaller time bound of nc.
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For their seminal hierarchy theorem, Hartmanis and Stearns [HS65]
used a diagonalization technique rooted in Cantor’s proof that the reals
are not countable. They assume the model of computation has a com-
putable enumeration of machines and a universal machine U . They pick
an infinite sequence of inputs x1, x2, . . ., and use xi to diagonalize against
the ith machine Mi of the enumeration by running the universal machine
on 〈Mi, xi, 0t〉, where t denotes the allotted amount of time, and doing
the opposite. This approach results in a time hierarchy for essentially any
syntactic model with an efficient universal machine for which “doing the
opposite” is easy.

We don’t know whether “doing the opposite” is easy in models like
nondeterministic machines. We can run a deterministic simulation and
complement the result but that involves an exponential slowdown. Cook
[Coo73] was the first to get around the need for easy complementation.
His proof works by contradiction and goes as follows.

Assume the hierarchy theorem for nondeterministic machines fails.
Then for every polynomial-time nondeterministic machine there exists an
equivalent nondeterministic machine that runs in time nc for some fixed
c. Applying this speedup O(log n) times in a uniform way (exploiting
the existence of a universal machine) shows that even every exponential-
time nondeterministic machine has an equivalent nondeterministic ma-
chine that runs in time nc. We can simulate the latter nondeterministic
machine on a deterministic one in time 2nc

. On the other hand, deter-
ministic machines are also nondeterministic machines. Thus, we obtain
a simulation of every exponential-time deterministic machine by another
deterministic machine that runs in time 2nc

– a contradiction with the
time hierarchy for deterministic machines.

Seiferas et al. [SFM78] use a more direct argument and explicitly
construct a language L that witnesses the nondeterministic time hierar-
chy for a given constant c. They start from any computable language
L′ that cannot be decided by nondeterministic machines in time nc+1,
e.g., a complete language for double exponential time. They define L
as the language accepted by the nondeterministic machine M that acts
as follows on strings of the form 〈x, i, 0k〉. Let M ′ denote a fixed deter-
ministic machine that decides L′. If k is larger than the running time
of M ′ on x, then M outputs the result of that computation. Other-
wise, M uses the universal machine to simulate Mi on input 〈x, i, 0k+1〉
for nc steps. M runs in polynomial time but the language L it defines
cannot be accepted by nondeterministic machines that run in time nc.
Indeed, suppose that Mi were such a machine. For small k, we have
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that Mi(〈x, i, 0k〉) = M(〈x, i, 0k〉) = Mi(〈x, i, 0k+1〉), and for large k
that Mi(〈x, i, 0k〉) = M(〈x, i, 0k〉) = M ′(x). It follows that M ′(x) =
Mi(〈x, i, ε〉) for each x. Since Mi runs in time nc, this contradicts the
fact that the language L′ decided by M ′ cannot be accepted by a nonde-
terministic machine in time nc+1.

Žàk’s argument [Ž83] is similar but replaces the use of a difficult lan-
guage L′ by delayed diagonalization. Essentially, on inputs of the form
〈x, i, 0k〉, the role of M ′ is taken over by the complement of the determin-
istic simulation of Mi for nc steps. The rest of the argument is analogous:
Suppose that Mi runs in nc steps and is equivalent to M , and let k be
the first large value (for the given i). We have on the one hand that
Mi(〈x, i, 0k〉) = Mi(〈x, i, 0k−1〉) = . . . = Mi(〈x, i, ε〉) and on the other
hand that Mi(〈x, i, 0k〉) = ¬Mi(〈x, i, ε〉). Thus, Mi is not equivalent to
M or takes more than nc steps.

As a side note, we point out that it suffices for the machine M in Žàk’s
construction to act as described on some input x, say x = ε, whereas
Seiferas et al. in principle need the behavior on every x. Thus, Žàk’s
argument naturally leads to a unary language L that can be accepted by
nondeterministic machines in polynomial time but not in time nc.

The constructions by Cook, Seiferas et al., and Žàk work for any
syntactic model that has an efficient universal machine and is efficiently
closed under deterministic transducers. For Cook’s argument, we also
need the existence of deterministic simulations that incur a non-exorbitant
slowdown; exponential overhead as in the case of nondeterministic ma-
chines is fine. This essentially corresponds to what we mean by a “rea-
sonable” syntactic model of computation. See Section 4.2 for the formal
definitions.

Unfortunately, none of these techniques seem to extend to semantic
models because they all involve simulations of arbitrary machines of the
enumeration. For example, in the case of randomized machines with two-
sided error, simulating a randomized machine Mi on an input on which
Mi accepts with probability 50% would take M outside of the model
because its error probability is not bounded away from 50%.

Instance checkers are tools that enable us to refrain from making
errors. Recall that an instance checker for a language L′ is a polynomial-
time randomized oracle machine C that can output 0, 1, or “I don’t
know” on any input x such that the following properties hold: (i) CL′

(x)
outputs L′(x) with probability 1, and (ii) for any oracle P , CP (x) outputs
¬L′(x) with exponentially small probability. Barak [Bar02] had the insight
that an instance checker for a language L′ in exponential time yields a
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randomized machine M ′ with two-sided error that decides L′ and has a
running time that is optimal up to a polynomial factor. The machine M ′

acts as follows: For k = 1, 2, . . . and for i = 1, . . . , k, run CMi for k steps
and halt as soon as one of the runs of the instance checker comes to a 0/1
conclusion; then output that conclusion. Let t(n) denote the worst-case
high-confidence running time of M ′ on inputs of length n. The properties
of the instance checker imply that (a) t(n) is exponentially bounded, (b)
M ′ decides L′ with exponentially small two-sided error, and (c) for some
positive constant α, no machine Mi can do the same in (t(n))α steps.
The details of the argument are not relevant for us but the intuition for
the optimality property (c) is that M ′ would start running the instance
checker with oracle Mi as soon as k ≥ i; if Mi were to decide L′ with
high confidence within (t(n))α steps for some sufficiently small positive
constant α, then M ′ would halt with high confidence within fewer than
t(n) steps.

If L′ is complete for exponential time and t(n) is polynomially bounded
then we can efficiently transform every exponential-time deterministic
machine into an equivalent polynomial-time randomized machine with
two-sided error. We can trivially transform a polynomial-time random-
ized machine into an equivalent exponential-time deterministic machine.
The desired hierarchy theorem for randomized machines with two-sided
error (at the polynomial-time level) then follows from the hierarchy the-
orem for deterministic machines (at the exponential-time level).

If t(n) is not polynomially bounded then for any constant c there are
infinitely many input lengths n such that (t(n))α/4c ≥ n + 1. Suppose
we could efficiently compute a value t∗(n) such that (t(n))α/4c < t∗(n) ≤
(t(n))α/2c. Then padding strings of length n in L′ to length t∗(n) would
yield a language L = {x10t∗(|x|)−|x|−1 |x ∈ L′ and t∗(|x|) ≥ |x| + 1} com-
putable by randomized machines with two-sided error in polynomial time
but not in time nc. We chose the range for t∗(n) such that there exists a
(unique) value of the form t∗(n) = 22τ∗(n)

in that range with τ∗(n) inte-
ger. Computing τ∗(n) may be difficult but its value can be specified using
log log t∗(n) bits. Therefore, L can be decided by a randomized machine
M with two-sided error in polynomial time with a(n) = log log n bits of
advice but not by such machines in time nc without advice.

This isn’t a fair time hierarchy theorem yet – for that, the time nc

machines should be allowed the same amount of advice as M . We can
satisfy that requirement by tweaking the construction of the machine M ′

such that it runs each of the machines Mi with every possible advice string
of length log log k. In fact, we can accommodate up to a log k bits of advice
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for the Mi’s for any constant a. Both the case where t(n) is polynomially
bounded (now needing a hierarchy theorem for deterministic machines
with advice) and the other case carry through.

Moreover, once the advice for the witnessing machine M is under
log n bits, we can apply a translation technique and obtain a hierarchy
theorem with a single bit of advice. This involves another level of padding
to encode the a(n) < log n bits of the original advice for M in the padding
length and using the one bit of new advice to indicate whether the padding
length is valid. See [FS04,GST04] for the details. This way, we obtain a
language which randomized machines with two-sided error can decide in
polynomial time and one bit of advice but not in time nc and a log n bits
of advice. The same strong separation holds for any reasonable semantic
model of computation with the additional property of being efficiently
closed under randomized reductions with two-sided error. We refer to
Section 5.2 for the formal definitions.

Semantic classes with one-sided error typically do not exhibit the lat-
ter additional closure property. For the specific model of randomized ma-
chines with one-sided error, Fortnow et al. [FST05] use a modification
of the above two-case approach to derive a somewhat weaker separation
result, namely with a(log n)1/c instead of a log n bits of advice at the
smaller time bound of nc. See Theorem 4 and the footnote on page 4 for
the precise statement. Instead of an exponential-time complete language
L′ and Barak’s optimal algorithm based on instance checkers, Fortnow et
al. consider an NP-complete language L and Levin’s optimal algorithm
based on searching for NP-witnesses [Lev73]. The more restrictive advice
bound of a(log n)1/c is dictated by the separation result for nondetermin-
istic machines with advice, which is needed for the case where t(n) is
polynomially bounded.

For their actual hierarchy theorem (where the length of the advice
is the same for both time bounds considered), Fortnow et al. manage to
eliminate the need for additional model requirements but they can only
do so for some advice function in O(log n · log log n). Their approach can
be viewed as running Cook’s argument with advice. The log n term in
the advice bound comes from the O(log n) levels in Cook’s argument.
The log log n term per level comes from a padding argument similar to
Barak’s.

Using a different strategy, we manage to get the advice down to a
single bit. In fact, we obtain a hierarchy theorem with a bits of advice for
any reasonable semantic model and any constant a ≥ 1. We view our ap-
proach as extending Žàk’s delayed diagonalization argument to machines
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with a bits of advice. A similar extension of Seiferas et al.’s argument
leads to the same result but the proof becomes more complicated [Per05].
The latter approach seems more suitable for obtaining hierarchy theo-
rems with one bit of advice that are conditional on a complexity class
separation such as P �= NP [GHP05].

3 Intuition and Informal Derivation

In this section, we first sketch the construction of our generic hierarchy
theorem with a constant number of bits of advice, and then the argument
for our separation theorems. The formal proofs will be given in Sections
4 and 5, respectively.

3.1 Hierarchy Theorem

Consider a semantic model of computation with enumeration M1,M2, . . ..
We assume that there exists some underlying notion of “promise” which
allows us to tell whether Mi with advice sequence α = α0, α1, α2, . . .,
satisfies the promise on a given input x. Whether the latter is the case
only depends on the behavior on input x; in particular, it is determined by
Mi and the component α|x| of the advice sequence α. We use the notation
Mi/α to denote Mi with advice sequence α, and Mi//αn to denote Mi

with advice αn at a fixed length n. Mi/α falls within the model iff Mi//αn

satisfies the promise at every length n.
Let us try to use straightforward diagonalization to establish a hier-

archy theorem with a ≥ 0 bits of advice. For a given constant c ≥ 1, we
would like to construct a machine M and an advice sequence α of mod-
ulus a (i.e., |αn| = a for each length n), such that M/α falls within the
model, takes not much more than nc time, and disagrees with each Mi/β
for each advice sequence β of modulus a for which Mi/β falls within the
model and runs in time nc.

With each Mi we associate a length ni and distinct strings xi,b of
length ni for each value of b ∈ {0, 1}a. If Mi//b satisfies the promise on
xi,b and runs in time nc

i , we would like to have M/α do the opposite
of Mi//b on that input. Assuming the existence of an efficient universal
machine U , we would set

M/α (xi,b) = ¬U(〈Mi//b, xi,b, 0nc
i 〉). (1)

There are two problems with this approach. First, complementation may
not be easy within the model. Second, even if complementation is easy,
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the simulation (1) may violate the promise. Recall that M/α has to satisfy
the promise everywhere, whereas Mi//b (run for nc

i steps) may violate the
promise on input xi,b for some values of b. Of course, there is no need to
diagonalize in the case where b does not work for Mi on input xi,b, i.e., if
Mi//b does not satisfy the promise on xi,b or takes more than nc

i time. In
that case, M/α can do something trivial, e.g., reject irrespective of the
input. However, figuring out whether b works for Mi on input xi,b may
not be easy. We could tell M for each value of b whether b works for Mi

on xi,b but that would require 2a > a bits of advice for Mi at length ni.
In fact, with 2a bits of advice we could tell M explicitly how to behave
like (1) on the 2a strings xi,b.

By adapting the technique of delayed diagonalization, we can cut the
advice M needs to a single bit, implying a hierarchy theorem for any
constant a ≥ 1. Delayed diagonalization consists of a slow complementa-
tion executed at a larger input length n∗

i and a process to copy down the
complementary behavior to length ni. We will use a slow but safe simu-
lation of ¬U and exploit the freedom the copying process offers to link
the behavior on various input lengths and — in some sense — spread the
2a bits of advice needed at some length n′ over different smaller lengths
n. By a safe simulation of ¬U we mean a machine S which always satis-
fies the promise and agrees with ¬U on input x whenever U satisfies the
promise on x. M may not have enough time to run S on 〈Mi//b, xi,b, 0nc

i 〉
at length ni but it certainly does at a sufficiently larger length n∗

i , typi-
cally n∗

i = 2nc
i . We then set up M and α on lengths between ni and n∗

i in
such a way that if Mi/β satisfies the promise, runs in time nc, and agrees
with M/α for some advice sequence β of modulus a, then M/α “copies”
its behavior at length n∗

i down to certain smaller and smaller lengths.
If we can reach length n = ni, we have the following contradiction for
b = βn:

Mi/β (xi,b) = M/α (xi,b) = S(〈Mi//b, xi,b, 0nc〉) = ¬U(〈Mi//b, xi,b, 0nc〉) = ¬Mi/β (xi,b).
(2)

Thus, we succeeded in diagonalizing against Mi/β for any advice sequence
β of modulus a. Due to the spreading, for a given Mi and b, we actually
need strings xi,b = xi,b,n of many comparable but different lengths n in
order to guarantee that we can reach at least one of those lengths again
while copying down.

The copying process capitalizes on M ’s ability to spend polynomially
more time than the nc steps Mi is allotted. This allows M to simulate Mi

on polynomially larger inputs. Consider length n′ = n∗
i and each possible

value of b ∈ {0, 1}a. We say that b works for Mi at length n′ if b works for

10



Mi on all inputs of length n′, i.e., Mi//b satisfies the promise on all inputs
of length n′ and runs in time (n′)c. In that case, we pick some smaller but
polynomially related length n and allow M/α on inputs x of length n to
run Mi//b on the input 0n′−nx of length n′. As a result, we have that

(∀x ∈ {0, 1}n) M/α (x) = Mi//b (0n′−nx).

We say that M/α at length n copies Mi//b at length n′. If b does not
work for Mi at length n′, we let M/α act trivially at length n′. We use
different lengths n for different values of b in such a way that b and n′ are
efficiently recoverable from n. Thus, M only needs a single bit of advice
αn at each length n, namely whether or not b works for Mi at length n′.

We then recursively apply the process to all 2a lengths n we intro-
duced, each time fixing the behavior of M/α at new lengths n. Provided
we do not run out of lengths, we reach a point where the lengths n be-
come so small that S(〈Mi//b, x, 0nc〉) runs in time polynomial in n∗

i for
strings x of length n. At that point, the copying process bottoms out and
we try to diagonalize as indicated above: For each b ∈ {0, 1}a, we pick a
different string xi,b,n of length n, e.g., xi,b,n = 10n−a−1b, and define

M/α (0n∗
i −nxi,b,n) = S(〈Mi//b, xi,b,n, 0nc〉). (3)

The pattern 1(0+1)∗ for the strings xi,b,n ensures the compatibility of (3)
for different lengths n. On strings of length n∗

i that are not of the form
0∗xi,b,n, M/α acts trivially. If we make sure that n∗

i and the bottom-out
lengths n are efficiently recognizable, M does not need any advice at
length n∗

i .
One can think of the copying process as constructing a tree from

the root n∗
i to the leaves. Each copying step creates 2a siblings that are

connected to their parent n′ through an edge labeled with a correspond-
ing value of b ∈ {0, 1}a. The process associates a unique length to each
non-root node and determines the behavior of M/α at that length by
specifying the corresponding advice bit. It leaves the behavior at the root
length n∗

i free to be used for the diagonalization.
Now, suppose that for some advice sequence β of modulus a, Mi/β

falls within the model, runs in time nc, and agrees with M/α. Consider the
path from the root n∗

i to a leaf n obtained by selecting at every non-leaf
node n′ the edge labeled βn′ . For each edge on that path, its label works
for Mi at the parent node n′ so M/α at the child node n copies Mi/β
at the parent node n′. Since M/α and Mi/β agree, this means that the
behavior of M/α is copied down along that path and that M/α at length
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n copies M/α at length n∗
i . However, (3) then leads to the contradiction

(2) for b = βn and xi,b = xi,βn,n.
To finish the argument, we need to argue that we have enough lengths

n available to execute the above process. We can assign subsequent lengths
from left to right to any given level of the copying tree, with gaps between
the intervals used for adjacent levels. Let ni denote the start of the first
interval and ki denote the number of intervals, i.e., the number of levels of
the tree. The jump from the start of any interval to the start of the next
one can be an arbitrary but fixed polynomial, say from n to nd. Assuming
the safe simulation S runs in exponential time, we need Θ(log ni/ log d)
such jumps to go from ni to n∗

i so we set ki = Θ(log ni/ log d). The first
interval forms the bottleneck for the embedding because it is the largest
one and the gap that is available for it is smallest. The first interval
contains aki−1 = n

Θ(log a/ log d)
i elements, which fit within the gap between

ni and nd
i provided d is a sufficiently large. Thus, we can accommodate

all intervals without overlap. We refer to the formal proof in Section 4.3
for a more detailed calculation.

Figure 1 illustrates the process for a = 1. In that case, the tree is
binary; interval Ii,j in the figure contains the 2ki−j nodes at depth ki − j
of the copying tree, 1 ≤ j ≤ ki.

ni

2ki−1

n∗
i

Ii,ki
Ii,ki−1Ii,ki−2Ii,1

Ii

Mi//0

Mi//1

Mi//0

Mi//1

Mi//0

Mi//1

Fig. 1. Construction of M on Ii for a = 1 in Theorem 1. An arrow from length n′ to
length n labeled Mi//b denotes that M//1 at length n copies Mi//b at length n′.

We managed to let M/α diagonalize against Mi/β for any β of modu-
lus a. We did so by specifying the behavior of M/α on some lengths n in
the interval Ii = [ni, n

∗
i ], while always making sure that M/α satisfies the

promise and runs in some fixed polynomial amount of time. To handle all
machines Mi in one construction, we use disjoint intervals Ii for different
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machines Mi and let M/α act trivially on those lengths n we do not use
during the process.

The above technique applies to any semantic model that has an effi-
cient universal machine which can be complemented within the model in
exponential time, and that is efficiently closed under deterministic trans-
ducers. Taking these properties as the definition for a reasonable semantic
model, we obtain Theorem 1. Theorem 2 follows from Theorem 1 by a
standard padding argument. We refer to Section 4 for the details.

Before moving on to our stronger separation results, let us point out
the intuitive role the one bit of advice for M plays: It allows us to prevent
M/α from simulating machines Mi/β on inputs where they do not satisfy
the promise – a critical issue in semantic non-syntactic models.

3.2 Separation Theorems

The above approach only works for bounded modulus a(n). For un-
bounded modulus a(n), the number of leaves of the copying tree becomes
super-polynomial in the largest length � associated to a leaf, which is in-
compatible with the requirement that each leaf maps to a unique length.
Even if we are willing to give M a(n) bits of advice at length n, the issue
remains.

We get around the problem by restricting the behavior of M/α in
such a way that it can be safely recovered at length n′ from any list of
machines at least one of which works appropriately at length n′. By the
latter we mean: satisfying the promise at length n′, running in time (n′)c,
and agreeing with M/α at length n′. We can then modify the process for
copying from length n′ to length n as follows. At length n, M/α gets as
advice whether there exists a string b ∈ {0, 1}a(n′) such that Mi//b works
appropriately at length n′. In case the advice bit is set, on an input x
of length n, M/α runs the above recovery procedure for M/α on input
0n′−nx using the list of machines Mi//b for each b ∈ {0, 1}a(n′); as a result,
M/α at length n copies M/α at length n′. Otherwise, M/α acts trivially
at length n.

Notice that there no longer is a need for multiple lengths n to map to
the same length n′. The copying tree becomes a line with root at length
n∗

i and a unique leaf at length ni. There also no longer is a need to
make large (polynomially bounded) jumps from n to n′. We needed those
in Section 3.1 just to ensure enough space for embedding the intervals.
Since the intervals are now of length 1, we could set n′ = n + 1. Since
there is only one leaf, the structure of the copying tree on its own does
not impose any limitations on the size of the modulus. As the recovery
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procedure needs to consider Mi//b for each possible b ∈ {0, 1}a(n′), a(n′)
has to be logarithmically bounded for M/α to run in polynomial time.
Therefore, logarithmic moduli are the best one can hope for using this
approach.

Safe recovery is only possible in some settings. We know of two basic
mechanisms, namely instance checking and membership proof recovery.
Both severely restrict the behavior of M/α and take away the freedom to
define M/α at length n∗

i so as to complement Mi//b at length ni. Thus,
for each mechanism we need new strategies to diagonalize. The models of
computation also need to have the necessary closure properties to accom-
modate the recovery process based on instance checkers or membership
proofs, respectively.

We use an instance checker to copy down EXP-complete behavior and
then exploit that to diagonalize assuming the model allows complemen-
tation in EXP. We develop this approach in Section 3.2. It works up to
the limit of logarithmic modulus.

We use membership proofs to copy down NP-complete behavior. As-
suming the model allows an efficient simulation in NP, we obtain an ef-
ficient safe simulation which we then use to simplify the construction
from Section 3.1. We develop this approach in Section 3.2. It works up to
modulus Θ((log n)1/c).

Copying using instance checking Recall that an instance checker for
a language L is a polynomial-time randomized oracle machine C that can
output 0, 1, or “I don’t know” on any input x such that the following
properties hold: (i) CL(x) outputs L(x) with probability 1, and (ii) for
any oracle P , CP (x) outputs ¬L(x) with exponentially small probabil-
ity. There exist instance checkers for certain paddable exponential-time
complete languages L that only make queries of length f · n on inputs
of length n for some constant f ≥ 1. For ease of exposition, we assume
in this section that f = 1. The formal proof in Section 5.3 shows how to
eliminate that assumption.

The key for safe recovery of L is roughly the following computation:
For each possible advice string b of length a(n), run the instance checker
C with the oracle defined by nc computation steps of Mi//b at length
n; halt as soon as one of these runs produces a 0/1 conclusion and then
output that conclusion. Provided the model of computation is closed un-
der randomized reductions with two-sided error, the properties of the
instance checker guarantee that this computation works appropriately as
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long as there exists at least one advice string b for which Mi//b works
appropriately.

Let us be a bit more precise. Let ni,j, 1 ≤ j ≤ ki, denote the
lengths associated to the nodes of the copying line, where ni,1 = ni

and ni,ki
= n∗

i . On input 0n∗
i −nix, where x is a string of length ni,

M runs a fixed deterministic exponential-time algorithm for L on in-
put x. For any 1 ≤ j < ki, M//1 acts as follows on inputs of the form
0ni,j−nix where x is a string of length ni: For each advice string b of length
a(ni,j+1), run the instance checker C on input x answering each query y
by taking the majority vote of a linear number of independent runs of
U(〈Mi//b, 0ni,j+1−niy, 0(ni,j+1)c〉); halt as soon as one of these computa-
tions yields a 0/1 conclusion and then output that conclusion. M//1 acts
trivially on other inputs of length ni,j, as does M//0 on all inputs.

We say that Mi//b works appropriately at length n if b works for Mi

at that length and L at length ni is a copy of Mi//b at length n, i.e.,
for each string x of length ni, Mi//b (0ni,j−nix) = L(x). We set αni,j for
1 ≤ j < ki to indicate whether there exists a string b of length a(ni,j+1)
such that Mi//b works appropriately at length ni,j+1. If so, we know that
L at length ni is a copy of M/α at length ni,j.

If the copying process succeeds, we have that αni = 1 and therefore
M/α agrees with the exponential-time complete language L at length
ni. We exploit this fact to accomplish the desired diagonalization as fol-
lows. We introduce a new length ñi smaller than ni. For any string b of
length a(ñi), consider the complement of the deterministic simulation of
U(〈Mi//b, 0ñi−a(ñi)b, 0ñc

i 〉). Assuming that computation runs in determin-
istic exponential time, we can compute in polynomial time a string zi,b

such that L(zi,b) = ¬U(〈Mi//b, 0ñi−a(ñi)b, 0ñc
i 〉). Using the paddability of

L, we can set up things such that the length of zi,b equals ni.
M//1 on input 0ñi−a(ñi)b then runs M//1 on input zi,b. Like before,

M//1 acts trivially on other strings of length ñi, as does M//0 on all
strings. We set αñi to indicate whether M//1 agrees with L on inputs of
length ni.

Now, suppose there exists an advice sequence β of modulus a(n) such
that Mi/β falls within the model, runs in time nc, and agrees with M/α.
Then the copying process is guaranteed to succeed and we obtain a con-
tradiction similar to (2): For b = βñi and xi,b = 0ñi−a(ñi)b,

Mi/β(xi,b) = M/α (xi,b) = M/α (zi,b) = L(zi,b) = ¬U(〈Mi//b, xi,b, 0ñc
i 〉) = ¬Mi/β (xi,b).

Note that M/α at length n runs the instance checker C at most 2a(n′)

times, where n′ = nO(1). It follows that M/α runs in polynomial time as
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long as a(n′) ≤ a log n′ for some constant a and the model is efficiently
closed under randomized reductions with two-sided error. This approach
works for any reasonable randomized semantic model with the latter clo-
sure property, thus establishing Theorem 3.

Let us end the informal treatment by reiterating the role of the in-
stance checkers in our construction: They provide us an advice efficient
way to realize the desired copying by M while always satisfying the
promise. We want the copying to happen as soon as there exists at least
one advice string b for which Mi//b behaves appropriately at length n′.
Before, M needed a separate bit of advice for each possible advice string
b, namely to indicate whether Mi//b behaves appropriately at length n′.
Now, we can handle all possibilities for b at once using a single bit of
advice for M , namely whether there exists at least one choice of b for
which Mi//b behaves appropriately at length n′.

Copying using membership proof recovery Consider a language L
that has membership proofs and for which the search for a membership
proof at length n reduces to L at length n. Satisfiability is an example
of such a language L. The crux for the safe recovery of L is the following
computation: For each possible string b of length a(n), run the reduction
using the oracle defined by nc computation steps of Mi//b at length n;
verify those candidate membership proofs and accept iff at least one of
them is valid. Models like randomized machines with one-sided error allow
the efficient simulation of the above process. Provided the model has the
latter closure property, we can develop a copying process with one bit of
advice in a similar way as in Section 3.2. It uses a sequence of lengths
from mi to m∗

i = 2m
O(1)
i with jumps bounded by some fixed polynomial,

and allows us to assume that M//1 decides L at length mi.
Now, assume that our model of computation has a universal machine

U that can be mimicked by a nondeterministic polynomial-time machine
N . This is the case, for example, for the model of randomized machines
with one-sided error: For a randomized machine Mi, string x, and integer
t ≥ 0, we can let N(〈Mi, x, 0t〉) check whether there exists a random string
that makes Mi accept input x in t steps; whenever Mi satisfies the promise
on input x and runs in t steps, N(〈Mi, x, 0t〉) = Mi(x). Suppose also that
L is paddable and NP-complete, as satisfiability is. Then, for some length
m̃i polynomially related to mi, there exists an efficient translation of
queries to U of length m̃i into queries to L of length mi. Since we can
assume that M//1 satisfies the promise at length mi, runs in polynomial
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time, and agrees with L at length mi, we obtain an efficient safe simulation
T of U at length m̃i.

An efficient safe simulation of U can be used as a substitute for U in
the construction from Section 3.1. In that case, there no longer is a need
for advice as each advice bit in that construction indicates whether U
satisfies the promise on a certain set of inputs — T satisfies the promise
everywhere! As a consequence, we no longer have to use different lengths
for all the nodes of the copying tree. We still need to assign 2a(�) strings
of length � to each leaf of length � such that these strings are distinct for
all leaves.

Suppose the length we assign to a node only depends on its depth
in the tree. As before, let us use the notation ni,j to denote the length
corresponding to depth ki − j, 1 ≤ j ≤ ki, with ni

.= ni,1 and n∗
i

.= ni,ki
.

The resulting copying process is illustrated for the case a(n) = 1 in Figure
2.

∏j=ki
j=2 2a(ni,j)

Mi//0

Mi//0

Mi//0

Mi//0

Mi//1

Mi//1

Mi//1

Mi//1

Mi//0

Mi//1

Mi//0

Mi//1

Mi//0

Mi//1

ni = ni,1 ni,2 ni,ki−1 n∗
i = ni,ki

Fig. 2. Partial construction of M on Ii for a(n) = 1 in Theorem 3. Each box contains
two distinct strings, one corresponding to each value in {0, 1}a(ni). An arrow from
boxes at length n′ to boxes at length n labeled Mi//b denotes that M//1 copies Mi//b
on the corresponding inputs.
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The logarithm of the number of distinct strings of length ni we need
can then be expressed as

a(ni) +
ki∑

j=2

a(ni,j) =
ki∑

j=1

a(ni,j). (4)

The question is how large we can make a(n) such that (4) does not exceed
ni.

If a computation of nc steps can be complemented within the model
in time 2nc

(as in the case of randomized machines with one-sided error),
we have the condition 2nc

i ≤ (n∗
i )

O(1) in order to guarantee that M/α
runs in polynomial time at length n∗

i . Since a(n∗
i ) ≤ ni follows from our

upper bound on (4), we conclude that a(n∗
i ) = O((log n∗

i )
1/c).

We can actually achieve modulus a(log n)1/c for any constant a. By
setting ni,j+1 = nd

i,j, 1 ≤ j < ki, where d is any constant, (4) becomes a
linear function in ni with a coefficient that is a geometric sum

∑ki
j=1 rj

and such that the ratio r converges to 0 when d grows. We refer to (7) in
Section 5.4 for the details of the computation. By picking d large enough,
we can bound (4) by ni.

We developed our simplification of the copying process from Section
3.1 assuming free access to an efficient safe simulation T of U at all the
levels we need it. In reality, we have to build T at all those levels using
the recovery procedure. We can apply the recovery as described above to
obtain T at length m̃i = n∗

i by building L at length mi. Once we have
L at length mi, we can exploit the paddability properties of L and apply
the recovery procedure to obtain L at any smaller length in Ii except
the few lengths that are reserved for the simplified copying process. This
effectively makes T available at all lengths up to n∗

i , which is (more than)
what we need for the simplified copying process. See Figure 3 for an
illustration. We refer to Section 5.4 for the remaining details of the proof
of Theorem 4.

4 Hierarchy Theorem

In this section, we establish our generic hierarchy theorem. We introduce
the notion of a semantic model of computation with advice and list the
modest properties we need for our hierarchy theorem to apply. We then
formally prove Theorems 1 and 2. We refer to Section 3.1 for the intuition
behind the proofs.
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Ii

ni,jni ni,j+1
ni,ki−1 n∗

i mi m∗
i

Fig. 3. Full construction of M on Ii in Theorem 3, combining simplified copying nodes
(black) with efficient safe simulation nodes (white). An arrow from length n′ to length
n denotes that M//1 (above line) or Mi//b (below line) at length n′ is used to construct
M//1 at length n.

4.1 Semantic Models

Fix an alphabet Σ containing the symbols 0 and 1. We abstractly view
a model of computation as consisting of a set M ⊆ Σ∗ of “machines”
(or “programs”), and a partial computable function γ : Σ∗ × Σ∗ → Σ∗.
For any M ∈ M and x ∈ Σ∗, γ(M,x) determines the output of M
on input x (possibly undefined). We also use the shorthand M(x) for
γ(M,x). A language L ⊆ Σ∗ is said to be “accepted” or “decided” by M
if M(x) = L(x) for each x ∈ Σ∗, where L(x) denotes the indicator for the
property “x ∈ L”, i.e., L(x) = 1 if x ∈ L and L(x) = 0 otherwise.

We assume there is an underlying notion of time. Whenever γ(M,x)
is defined, M halts and produces its output after a finite number of steps,
denoted tM (x). We say that M runs in time t at length n if tM (x) ≤ t
for each x ∈ Σn, and that M runs in time t(n) if M runs in time t(n) at
each length n.

We call a model of computation syntactic if M is computably enumer-
able. We call the model semantic if there exists a computably enumerable
set M′ ⊆ Σ∗ and a predicate π ⊆ Σ∗ × Σ∗ such that

M = {M ∈ M′ | (∀x ∈ Σ∗)π(M,x)}.

The predicate π can be thought of as a condition on or promise about
the behavior of M on input x. A machine M ∈ M′ has to satisfy the
promise on each input x in order to fall within the computation model
M. Note that we could abstract away the predicate π at this point and
just consider the model as defined by M and γ. However, the predicate π
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will play a critical role once we introduce advice. We assume the notion
of running time extends to every machine M in M′.

Examples of syntactic models include deterministic, nondeterministic,
and randomized machines, as well as alternating machines of any fixed
signature. Every syntactic model is also semantic but not vice versa. For
example, randomized machines with two-sided error form a semantic non-
syntactic model M. There does not exist a computable enumeration of
M but the model M′ of all randomized machines is syntactic and we can
obtain M as those machines of M′ that satisfy the promise of two-sided
error. Other examples of semantic non-syntactic models include random-
ized machines with one-sided or zero-sided error, quantum machines with
two-, one-, or zero-sided error, unambiguous machines, symmetric alter-
nation, Arthur-Merlin games of any signature, etc.

We point out that similar formalizations of the intuitive difference
between syntactic and semantic computation have been proposed before
in the literature [Pap94,FST05]. However, the earlier attempts all seem
to associate these notions with complexity classes rather than models
of computation. For example, BPP (the class of languages decidable by
polynomial-time randomized machines with two-sided error) is considered
a semantic non-syntactic class, whereas P is considered syntactic. This
leads to inconsistencies since BPP may coincide with P. Our approach
based on machines rather than languages does not suffer from that pitfall.

An advice sequence α of modulus a(n) is an infinite sequence of strings
α0, α1, α2, . . ., one for each length n, such that |αn| = a(n) for each n. We
define the behavior of a machine M ∈ M′ with advice α, denoted M/α,
on a given input x as equal to the behavior of M on input 〈x, α|x|〉, where
〈·, ·〉 denotes a standard pairing function. In particular, M/α satisfies the
promise on input x iff π(M, 〈x, α|x|〉) holds, and M/α(x) = M(〈x, α|x|〉).
Whenever we talk about a property of M/α at length n (like satisfying
the promise, running time, etc.), we refer to that property on all inputs
of the form 〈x, αn〉 where x is a string of length n. Note that the behavior
of M/α at length n depends on the component αn but not on the other
components of α. We use the shorthand M//αn to denote that behavior.

We consider M/α to fall within the model iff M ∈ M′ and M/α
satisfies the promise at each length. We point out that, apart from the
predicate π, the choice of the encapsulating syntactic model M′ and the
actual advice string α play a role. This differs from the Karp-Lipton no-
tion of computation with advice [KL82], who essentially only consider
those machines M ∈ M′ that robustly satisfy the promise, i.e., the ma-
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chines in M. More precisely, M/α falls within their model iff M/β falls
within our model for each advice sequence β of the same modulus as α.

4.2 Reasonable Semantic Models

We now introduce the additional requirements a semantic model of com-
putation has to satisfy for our hierarchy theorem to apply. The first one
deals with the existence of an efficient universal machine.

Definition 1. A universal machine is a machine U ∈ M′ such that for
each M ∈ M′, x ∈ Σ∗, and t ≥ tM(x), U satisfies the promise on
input 〈M,x, 0t〉 whenever M satisfies the promise on input x, and if so,
U(〈M,x, 0t〉) = M(x). We call U efficient if it runs in polynomial time.

The second condition states that the model can be complemented
within the model in exponential time. We phrase the condition in terms
of the universal machine U .

Definition 2. We say that U can be complemented within the model in
exponential time if there exists a machine S that runs in time 2nO(1)

,
satisfies the promise on every input, and such that S(x) = ¬U(x) for
every input x ∈ Σ∗ on which U satisfies the promise.

The final property states that the model is closed under deterministic
transducers. By the latter, we mean deterministic machines D that, on
input x, output either an answer a(x), or else a query q(x). Note that
a transducer that always outputs an answer is equivalent to a standard
Turing machine, and that a transducer that always outputs a query is
equivalent to a many-one reduction. For any M ′ ∈ M′, we use the follow-
ing notation:

DM ′
(x) =

{
a(x) if D outputs an answer on input x
M ′(q(x)) otherwise

and

tDM′ (x) =
{

tD(x) if D outputs an answer on input x
tD(x) + tM ′(q(x)) otherwise.

We are now ready to formally state the closure property we need.

Definition 3. A semantic model is closed under deterministic transduc-
ers if for each deterministic transducer D and each machine M ′ ∈ M′,
there exists a machine M ∈ M′ such that the following holds for all in-
puts x: If D(x) outputs an answer or if M ′ satisfies the promise on input
q(x), then M satisfies the promise on input x, and M(x) = DM ′

(x). We
say that the closure is efficient if M runs in time tDM′ (x) on input x.
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Our hierarchy theorem applies to any semantic model with the above
three properties.

Definition 4. A semantic model of computation is called reasonable if it
has an efficient universal machine that can be complemented deterministi-
cally in exponential time and if it is efficiently closed under deterministic
transducers.

All the concrete models mentioned in this paper are reasonable semantic
models.

We point out that for the proof of Theorem 1, we can relax the effi-
ciency requirement in Definition 3 to time (tDM′ (x))O(1) instead of time
tDM′ (x). However, for the strong hierarchy of Theorem 2, we seem to need
the efficiently requirement as stated in Definition 3.

4.3 Proof of Theorem 1

Assume a reasonable semantic model of computation. Let M be the set
of the machines belonging to the model. This set is contained in some
other set M′ that has a computable enumeration (Mi)∞i=1. This reasonable
semantic model has an efficient universal machine U which runs in time
nu for some constant u (Definition 1) and has a safe complementation S
within the model running in time 2ns

for some constant s (Definition 2).
Without loss of generality, we assume that c is a positive integer.

A disjoint interval Ii = [ni, n
∗
i ] of input lengths is reserved for every

machine Mi. Interval Ii contains the subintervals Ii,j = [li,j, ri,j ], 1 ≤ j ≤
ki, where li,1 = ni, ri,j < li,j+1 and ri,ki

= n∗
i . We set

ri,j = li,j + (2a)(ki−j) − 1 ki = 
log ni� .

Thus, for every n ∈ Ii,j we have n = li,j + ∆n, 0 ≤ ∆n < (2a)(ki−j). We
can think of Ii,j as the nodes at level ki − j of a full 2a-ary tree with root
at n∗

i . Let us fix li,j, 1 ≤ j ≤ ki, such that

li,j = ni
d(j−1)

d = max(
4a·c·s� , 2a).

It remains to fix the starting input lengths ni of the intervals Ii tak-
ing the following into account. For any number n we want to efficiently
compute a number i such that n ∈ Ii and the description of the ma-
chine Mi that corresponds to interval Ii. Since the enumeration (Mi)∞i=1

of machines in M′ can be very ineffective, we allow the intervals Ii to be
sparsely distributed over input lengths, and we let ni = max(n∗

i−1 +1,m)
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where m is such that the description of machine Mi is produced after m
steps of the enumerating procedure. As for the starting length n1, some of
the inequalities in the proof below require that every input length n of in-
terest (that is, belonging to some interval) is greater than some constant.
We choose n1 larger than all these constants. Notice that now, given a
number n, we can compute in linear time the numbers i and j, if any,
such that n ∈ Ii,j and produce the description of machine Mi.

To guarantee the disjointness of the subintervals Ii,j we need to check
that ri,j < li,j+1 for any i and any 1 ≤ j < ki. If n1 is big enough, we
have

(2a)(ki−j) ≤ (2a)(ki−1) ≤ (2a)log ni ≤ ni
a

ri,j = ni
d(j−1)

+ (2a)(ki−j) − 1 < ni
d(j−1)

+ ni
a < ni

dj
= li,j+1.

Let xi,b,n = 10n−a−1b where b is some string of length a. This works
provided n1 > a as then any input length n ∈ Ii,j is greater than a.

Given an input x of length n, machine M/α does the following.

1. Compute numbers i and j such that n ∈ Ii,j. If no such numbers exist,
output 0 and halt.

2. If j < ki and αn = 1 then
(a) Compute ∆n such that n = li,j + ∆n.
(b) Let n′ = li,j+1 + �∆n/2a and let b = ∆n mod 2a.
(c) Call U on 〈Mi//b, 0n′−nx, 0(n′)c〉.

3. If j = ki and x = 0n−mxi,b,m for some m ∈ Ii,1 then
(a) Call S on 〈Mi//b, xi,b,m, 0mc〉.

4. Output 0.

M uses its advice αn at length n only if n belongs to some subinterval
Ii,j, 1 ≤ j < ki. For such an input length n, let αn = 1 if Mi//b satisfies
the promise at length n′ and runs in time (n′)c (see the above algorithm
for definitions of n′ and b). Otherwise, let αn = 0.

Let us verify that the resulting machine M and advice α are such that
M/α:

(A) falls within the model,
(B) runs in polynomial time, and
(C) disagrees with any Mi/β for any advice sequence β of modulus a for

which Mi/β falls within the model and runs in time nc.

Note that we can translate a query y of length m to S into the query
〈S, y, 0t〉 to U with t = 2ms

. Using that translation, M becomes a de-
terministic transducer to machine U ∈ M′. The possible queries to U
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occur in steps 2(c) and 3(a) of the algorithm. Step 2(c) makes the query
〈Mi//b, 0n′−nx, 0(n′)c〉 to U . By the choice of the advice α, that step is
only executed if Mi//b satisfies the promise at length n′ and runs in time
(n′)c. As for step 3(a), by Definition 2, S satisfies the promise on every
input. It follows from Definition 1 that machine U satisfies the promise
on every query the transducer M makes. Thus, by Definition 3, M/α falls
within the model.

The length of the query 〈Mi//b, 0n′−nx, 0(n′)c〉 to U in step 2(c) is
polynomial in n since Mi is produced in time linear in n and n′ ≤ nd.
Step 3(a) runs S on input 〈Mi//b, xi,b,m, 0mc〉 for some m ∈ Ii,1 and is
only executed if the input to M is of length n∗

i . If n1 is big enough, we
have

|〈Mi//b, xi,b,m, 0mc〉| ≤ 2mc

m ≤ ni + (2a)ki−1 − 1 < ni + (ni)a ≤ 2ni
a

n2·a·c·s
i ≤ nlog d

i = dlog ni ≤ dki ≤ log(ndki

i ) = log((n∗
i )

d),

and step 3(a) using the simulation by U takes time at most

(2 · 2(2mc)s
)u ≤ 22s+1(2·na

i )c·su < 2n2a·c·s
i ≤ (n∗

i )
d.

The efficiency requirement in Definition 3 then implies that M runs in
polynomial time.

For property (C), consider an arbitrary machine Mi with an advice
sequence β of modulus a such that Mi/β falls within the model and runs
in time nc. Let us assume that Mi/β agrees with M/α at each length.
Then we can prove by induction on j from ki down to 1 that there exists
an input length n ∈ Ii,j such that M/α at length n copies M/α at length
n∗

i , i.e.,
(∀x ∈ {0, 1}n) M/α (x) = M/α (0n∗

i −nx).

The case when j = ki holds trivially. For any j < ki, by the induction
hypothesis, there is an input length n′ ∈ Ii,j+1 such that M/α at length
n′ copies M/α at length n∗

i . Then consider n = li,j + ∆n′ · 2a + βn′ . We
have that n ∈ Ii,j and n′ = li,j+1 + �∆n/2a. By the specification of M
and by the choice of the advice sequence α, M/α at length n copies M/α
at length n′ and, consequently, copies M/α at length n∗

i .
Hence, for some n ∈ Ii,1, M/α at length n copies M/α at length

n∗
i . At the same time, Mi/β at length n fails to copy M/α at length n∗

i

since M/α (0n∗
i −n xi,βn,n) = ¬Mi/β (xi,βn,n) whenever Mi/β satisfies the

promise at length n and runs in time nc. Therefore, Mi/β does not agree
with M/α at length n, which contradicts our assumption.
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This finishes the proof of Theorem 1.

Let us point out that we do not really need the strong form of efficiency
stated in Definition 3 for the above proof. The place where it plays a role
is in our argument for property (B); requiring the running time of M
to be (tDM′ (x))O(1) suffices for that argument. For the next proof we do
seem to need the stronger notion of efficiency.

4.4 Proof of Theorem 2

The proof of Theorem 2 follows from Theorem 1 by successive padding.
Assume that the statement of the theorem does not hold. Then every

language computable in time nd with a bits of advice is also computable in
time nc with a bits of advice. In what follows, we will employ a translation
argument to prove by induction on k ≥ 0 that every language computable
in time nc·rk

with a bits of advice is also computable in time nc with a
bits of advice, where r is some constant larger than 1. Since c · rk grows
unboundedly, we obtain a contradiction to Theorem 1.

We choose r to be a rational in the range 1 < r ≤ (d/c)1/3. The fact
that r is rational will make sure that we can perform all the arithmetic
needed sufficiently efficiently, e.g., computing

⌊
nc·rk

⌋
. The upper bound

on r guarantees that the cases of the inductive statement with k ≤ 3 are
implied by the assumption we made at the beginning of the proof. This
is because nc·rk ≤ nd for values of k ≤ 3. Thus, k ≤ 3 forms the base for
the induction.

In order to prove the induction step from k to k+1 for k ≥ 3, consider
an arbitrary language L computable in time nc·r(k+1)

with a bits of advice.
We will prove that L is also computable in time nc·rk

with a bits of advice
and thus, by the induction hypothesis, in time nc with a bits of advice.

The language L is recognized by some machine M with advice α of
modulus a such that M/α falls within the model and runs in time nc·r(k+1)

.
In order to apply the speed up provided by the induction hypothesis, we
construct the following padded version L′ of L:

L′ = {0σ(|x|)−|x|−1 1x : x ∈ L} where σ(n) =
⌈
nr2

⌉
.

We claim that we can compute L′ in time mc·rk
with a bits of advice on

inputs of length m. To see this, let us construct a machine M ′ with advice
α′ such that M ′/α′ recognizes L′. The advice α′ is defined so that for any
m = σ(n) in the range of σ, α′

m = α′
σ(n) = αn. Given an input y of length

m, M ′ first checks whether y is of the form y = 0σ(|x|)−|x|−1 1x; if so, it
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recovers the string x, say of length n. M ′ then runs M//α′
m = M//αn on

input x. By Definition 3, M ′/α′ falls within the model and runs in time

O(m) + nc·rk+1 ≤ O(m) + mc·rk−1 ≤ mc·rk − m

for sufficiently large m. By applying Definition 3 to a deterministic trans-
ducer that has the answers for small y’s hardwired and queries M ′ at y
otherwise, we can assume without loss of generality that M ′/α′ runs in
time mc·rk

for all lengths m. So, L′ is computable in time mc·rk
with a

bits of advice and therefore, by the induction hypothesis, also in time mc

with a bits of advice. That is, L′ is recognized by some machine N ′ with
advice sequence β′ of modulus a such that N ′/β′ falls within the model
and runs in time nc.

Next, we lift the computation N ′/β′ for L′ up to a computation N/β
for L. We define β such that βn = β′

σ(n). Given an input x of length n,

N constructs the string y = 0σ(n)−n−1 1x and runs N ′//βn = N ′//β′
m on

input y, where m = |y| = σ(n). Again, by Definition 3, N/β falls within
the model and runs in time

O(m) + mc = O(nc·r2
) ≤ nc·r3 ≤ nc·rk − n

for sufficiently large n. By a similar application of Definition 3 as above,
we can assume without loss of generality that the running time of N/β

is bounded by nc·rk
for all lengths n. Applying the inductive hypothesis

for k one more time, we have that L can be computed in time nc with a
bits of advice. This finishes the inductive step and thereby the proof of
Theorem 2.

We point out that if the efficiency requirement in Definition 3 is re-
laxed from time tDM′ (x) to time (tDM′ (x))e for some constant e, then
the above proof yields the statement of Theorem 2 but only for values of
d > e · c instead of d > c.

5 Separation Theorems

In this section, we establish our separation theorems. We review some
preliminaries about instance checkers and introduce the notion of a ran-
domized semantic model of computation with advice. We specify the prop-
erties we need for our generic separation theorem (Theorem 3) to apply
and then formally prove it. Finally, we establish our separation theorem
for randomized machines with one-sided error (Theorem 4). We refer to
Section 3.2 for the intuition behind the proofs.
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5.1 Instance Checkers and Randomized Semantic Models

An instance checker for a language L is a polynomial-time randomized
oracle machine C that can output 0, 1, or “I don’t know” such that for
any x ∈ Σ∗:

(Completeness) Pr[CL(x) = L(x)] = 1.
(Soundness) For any oracle P , Pr[CP (x) = L(x)] ≤ 2−|x|.

We will use an instance checker for a language L with the properties given
by the following lemma.

Lemma 1. There exists a paddable language L that is complete for expo-
nential time and has an instance checker C such that all queries C makes
on inputs of length n are of length f · n for some constant f ≥ 1.

Proof Sketch. The proof follows from the probabilistically checkable
proofs for deterministic time t that are computable in time tO(1) [AS98]
and their connection to instance checkers [BK89]. See [Bar02] for more
details. �

We do not know whether Lemma 1 holds with the additional restric-
tion that f = 1. If so, the formal proof of Theorem 3 in Section 5 can be
somewhat simplified.

We will actually run the instance checker of Lemma 1 with an “ora-
cle” P that isn’t a fixed language but rather the outcome of a randomized
process, i.e., P (y) is the outcome of a 0/1 coin flip with a bias depend-
ing on y. By a standard averaging argument3, the soundness property of
the instance checker also holds for such “oracles” P . Perfect complete-
ness typically does not carry over to this setting. However, provided P
has bounded error, we can bring the completeness to level 1 − 2−|x| or
higher by answering each query as the majority vote of a linear number
of independent runs.

In order to apply an instance checker C in a semantic model of compu-
tation (M′, γ, π), we need to augment the notion we introduced in Section
4.1. Intuitively, we would like to run C with an “oracle” P that is the
result of running a machine M ′ ∈ M′ on the queries y of the instance
checker. For that to make sense and interact well with the properties of
the instance checker, we need to associate a random variable M ′(y) with
the behavior of M ′ on input y. We call a model equipped with such ran-
dom variables a randomized model. Natural examples for M ′(y) include
3 W.l.o.g., we are assuming that no run of the instance checker C makes the same

query more than once.
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the acceptance indicator for randomized machines or for Arthur-Merlin
games under an optimal strategy for Merlin.

5.2 Reasonable Randomized Semantic Models

Once we have such an underlying random process, for any randomized
oracle machine D, we can define the random variable DM ′

(x) as the
outcome of a run of D where each query y is answered according to
a sample of M ′(y). We require that we can efficiently simulate such a
process in our model of computation and that the simulation be sound
whenever DM ′

has two-sided error on input x. More precisely, we stipulate
the following.

Definition 5. A randomized semantic model of computation is closed
under randomized reductions with two-sided error if for every randomized
oracle machine D and every machine M ′ ∈ M′, there exists a machine
M ∈ M′ such that the following holds for any string x: If DM ′

has two-
sided error on input x, then M satisfies the promise on input x and M(x)
equals the majority outcome of DM ′

on input x. We say that the closure
is efficient if M runs in time (tD(n) · max0≤m≤tD(n) tM ′(m))O(1).

Another condition we need is that the model has an efficient universal
machine U (see Definition 1) which can be simulated deterministically in
exponential time.

Definition 6. We say that U can be deterministically simulated in expo-
nential time if there exists a deterministic machine T which runs in time
2nO(1)

and such that T (x) = U(x) for each x ∈ Σ∗ on which U satisfies
the promise.

Our generic separation theorem applies to any reasonable randomized
semantic model defined as follows.

Definition 7. A randomized semantic model of computation is called
reasonable if it has an efficient universal machine that can be simulated
deterministically in exponential time and if it is efficiently closed under
randomized reductions with two-sided error.

Reasonable randomized semantic models include randomized and quan-
tum machines with two-sided error.

5.3 Proof of Theorem 3

Assume a reasonable randomized semantic model of computation. Let M
be the set of the machines belonging to the model. This set is contained
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in some other set M′ that has a computable enumeration (Mi)∞i=1. Let
U denote an efficient universal machine for the model, as in Definition
1. Let the modulus a(n) be a log n for some constant a. Without loss of
generality, we assume that a and c are positive integers.

Let L be a paddable language that is complete for deterministic expo-
nential time and has an instance checker C such that all queries C makes
on inputs of length m are of length f · m for some constant f ≥ 1. Such
a language exists by virtue of Lemma 1.

We use the instance checker C to construct an efficient randomized
reduction D to U that will allow M/α to copy L at length m provided
Mi/β “appropriately” copies L at length f · m for some advice sequence
β of modulus a(n). The critical point is that D is not given access to β.

Lemma 2. There exists a polynomial-time randomized reduction D with
the following property for any integers m ≥ 0 and n ≥ f · m and any
machine Mi: If there exists a string b ∈ {0, 1}a(n) such that Mi//b satisfies
the promise at length n and runs in time nc, and L at length f · m is a
copy of Mi//b at length n, i.e.,

(∀ z ∈ {0, 1}f ·m)Mi//b (0n−f ·mz) = L(z),

then
(∀ y ∈ {0, 1}m) Pr[DU (〈Mi, y, 0n〉) = L(y)] > 1 − 2−n.

Proof. The idea is to execute Mi at length n with any possible advice
string b of length a(n) and to use the instance checker C to verify the
answers. By making modifications to C as discussed after Lemma 1, we
obtain a polynomial-time randomized oracle machine C ′(·, ·) which out-
puts 0, 1, or “I don’t know” and such that for any y of length m, C ′(y, 0n)
only makes queries of length f ·m and the following holds for any n ≥ f ·m:

(Completeness) For any randomized oracle P which solves L with
two-sided error,

Pr[C ′P (y, 0n) = L(y)] > 1 − 1
na · 2n

.

(Soundness) For any randomized oracle P ,

Pr[C ′P (y, 0n) = ¬L(y)] <
1

na · 2n
.

Given input 〈Mi, y, 0n〉, reduction DU does the following:

1. For any advice string b of length a(n)
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(a) Simulate C ′(y, 0n) and when C makes a query z, answer it with
U(〈Mi//b, 0n−|z|z, 0nc〉).

(b) If C ′(y, 0n) ∈ {0, 1}, output that value and halt.
2. Output 0.

The number of advice strings we try is 2a(n) = na. Instance checker C
runs in time polynomial in n and the length of y, and every query z which
C asks is transformed into a query to U in polynomial time. Therefore,
procedure D runs in polynomial time.

Let b∗ be the value of b given in the statement of the lemma. When
trying the value b = b∗ in the algorithm, DU accepts the answer of Mi//b
with probability at least 1−(n−a·2−n). On the other hand, the probability
that DU accepts an incorrect answer of Mi//b when using some b �= b∗, is
less than (na − 1) · (n−a · 2−n). Therefore, DU succeeds and outputs L(y)
with probability more than 1 − 2−n.

Now we turn to the construction of M/α. We reserve a disjoint interval
Ii = [ñi, n

∗
i ] of input lengths for every machine Mi, and will construct a

machine M and advice α of modulus 1 such that M/α falls within the
model, runs in polynomial time and has the following property: For any
advice sequence β of modulus a(n) for which Mi/β falls within the model,
runs in time nc and agrees with M/α at every length n ∈ Ii \ {ñi}, M/α
disagrees with Mi/β at length ñi. With that goal in mind, for any string
b of length a(ñi), we let M/α on input xi,b = 0ñi−a(ñi)b compute and
output ¬Mi//b (xi,b). Evidently, M/α disagrees with Mi/β at length ñi,
because for b = βñi , we have M/α (xi,b) = ¬Mi/β (xi,b). The only hurdle
on the way to the time hierarchy is that the computation of Mi//b (xi,b)
must be done in time polynomial in ñi.

The value of Mi//b (xi,b) can be computed by means of the universal
machine as U(qi,b) where qi,b = 〈Mi//b, xi,b, 0ñc

i 〉. By Definition 6, there
exists a deterministic procedure T that simulates the universal machine U
in exponential time, and therefore also a deterministic exponential-time
machine S that simulates ¬U . Since L is complete for exponential time,
there is a polynomial-time many-one reduction R that translates every
query ¬U(qi,b) into some query L(zi,b). Since L is paddable, we can set
up R to produce queries zi,b of length exactly ni = (|Mi| · ñi)p for some
constant p > 1. It remains to make M/α efficiently compute L at length
ni.

As an exponential-time language, L is computable in time 2ne
on a

deterministic machine for some constant e. Let each interval Ii contain
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input lengths ni,j, 1 ≤ j ≤ ki, such that

ni,j+1 = (ni,j)d d = (2f)e ki = 
log ni� .

Let ni
.= ni,1 and n∗

i
.= ni,ki

. These settings enable M/α at length n∗
i to

solve L at length fki−1 · ni in time polynomial in the input length n∗
i ,

since

(fki−1 · ni)e ≤ (f log ni · ni)e = n
(1+log f)·e
i = nlog d

i = dlog ni ≤ dki = log((n∗
i )

d)

2(fki−1·ni)e ≤ (n∗
i )

d.

It remains to set the boundaries of the intervals Ii = [ñi, n
∗
i ]. As in the

proof of Theorem 1, we make the choice of the starting points ñi so that
the description of machine Mi can be produced in time linear in ñi. The
first length ñ1 is chosen large enough for every inequality in this proof to
hold.

Finally, we construct machine M with advice α. Given an input x of
length n, M/α does the following.

1. Compute numbers i and j such that n = ni,j or n = ñi. If no such
numbers exist, output 0 and halt.

2. If n = ñi for some i, x is of the form 0ñi−a(ñi)b, and αn = 1 then
(a) Let qi,b = 〈Mi//b, 0ñi−a(ñi)b, 0(ñi)c〉.
(b) Compute zi,b = R(qi,b) of length ni.
(c) Call M//1 on input zi,b.

3. If n = ni,j for some i and j, and x is of the form 0n−fj−1·niy then
(a) If n = n∗

i then
i. Evaluate L(y) deterministically, output the result, and halt.

(b) If αn = 1 then
i. Call DU on input 〈Mi, y, 0ni,j+1〉.

4. Output 0.

For any n = ni,j, 1 ≤ j < ki, let αn = 1 iff for some advice sequence
β of modulus a(n), Mi/β satisfies the promise at length ni,j+1 and runs
in time nc

i,j+1 and if L at length f j ·ni is a copy of Mi/β at length ni,j+1.
For n = ñi, let αn = 1 iff M//1 agrees with L at length ni. Let αn = 0 in
all other cases.

Let us verify that the machine M and advice sequence α we con-
structed are such that M/α:

(A) falls within the model,
(B) runs in polynomial time, and
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(C) disagrees with any Mi/β for any advice sequence β of modulus a(n)
for which Mi/β falls within the model and runs in time nc.

Note that step 2(c) can be expanded into step 3(b)i at length ni. After
doing that, machine M/α becomes a randomized reduction to machine U .
In order to prove that M/α falls within the model and runs in polynomial
time, we use the closure of the model under randomized reductions with
two-sided error (Definition 5). We consider several cases.

In all cases where M/α acts deterministically and does not call U ,
it follows from Definition 5 that M/α satisfies the promise since deter-
ministic behavior trivially satisfies the condition of two-sided error. In
all these cases, M/α also runs in polynomial time. For step 3(a)i, this is
because M/α can deterministically solve fki−1 · ni-long instances of L in
time polynomial in n∗

i , as we argued above.
There are two remaining cases. In step 3(b)i at length ni,j, 1 ≤ j < ki,

M/α invokes DU on input 〈Mi, y, 0ni,j+1〉 with |y| = f j−1 · ni. This only
happens if αni,j = 1, i.e., if for some advice sequence β, Mi/β satisfies the
promise at length ni,j+1 and runs in time nc

i,j+1 and if L at length f j · ni

is a copy of Mi/β at length ni,j+1. In that case, Lemma 2 guarantees that
DU satisfies the condition of two-sided error. By Definition 5, M/α then
satisfies the promise. Also, M/α runs in polynomial time since ni,j+1 =
(ni,j)d.

Finally, in step 2(c) at length ñi, M/α invokes itself on an input of
length ni. Both the promise and the running time then follow from the
previous case.

Now assume that Mi/β falls within the model, runs in time nc, and
agrees with M/α for some advice sequence β of modulus a(n). Then for
each 1 ≤ j ≤ ki, L at length f j−1 ·ni is a copy of M/α at length ni,j, i.e.,

(∀ y ∈ {0, 1}fj−1 ·ni)M/α (0ni,j−|y|y) = L(y). (5)

This can be proved by induction on j from ki down to 1. At length
ni,ki

= n∗
i , the construction of M/α explicitly satisfies (5). Let us prove

the transition from j+1 to j. By the induction hypothesis, as Mi/β agrees
with M/α, L at length f j · ni is a copy of Mi/β at length ni,j+1. Thus,
αni,j = 1 and at length ni,j, M/α executes step 3(b)i. By Lemma 2, this
implies that L at length f j−1 · ni is a copy of M/α at length ni,j.

For j = 1, we obtain that M/α agrees with L at length ni = ni,1.
Thus, αñi = 1 and, on input xi,b of length ñi, M/α computes L(zi,b) =
¬Mi/β (xi,b). Consequently, M/α disagrees with Mi/β at length ñi, which
contradicts our hypothesis.
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5.4 Proof of Theorem 4

Before presenting the proof of Theorem 4, let us recall the techniques
used in the proofs of Theorems 1 and 3. The main idea of the separa-
tion result for semantic models with two-sided error (Theorem 3) is to
copy an exponential-time complete language using an instance checker.
This allows M/α to compute Mi/β efficiently (under the assumption that
Mi/β agrees with M/α) and “do the opposite” while always keeping the
promise. The main idea of the hierarchy for general semantic models
(Theorem 1) is quite different. Informally speaking, it is a tree-like de-
layed diagonalization.

Returning to randomized computations with one-sided error, we face
the fact that we do not know how to “do the opposite” efficiently. How-
ever, computations with one-sided error have some nice properties, which
we want to employ to construct the machine M/α that disagrees with
Mi/β for any advice sequence β of super-constant modulus. As we men-
tioned earlier, tree-like delayed diagonalization fails in the case of super-
constant modulus. So, both techniques we used before individually fail
for randomized computations with one-sided error.

The solution is to combine both techniques, namely to use delayed
diagonalization, which enables M/α to “do the opposite,” and to employ
copying using membership proofs, which allows M/α to simulate M/β
efficiently for every step of the delayed diagonalization.

Let (Mi)∞i=1 denote a standard enumeration of all randomized ma-
chines and let a(n) = a log n where a is a constant. Without loss of
generality, we assume that a and c are positive integers.

We let L denote a nicely paddable version of the satisfiability prob-
lem, namely the language of all strings of the form 0�1φ, where � is any
nonnegative integer and φ is a satisfiable propositional formula. Note that
if M/α at length n copies L at length n′ > n then M/α actually com-
putes L at length n. Our definition of L also allows us to assume that
substituting a logical value for a variable of a formula does not change its
length.

We start by constructing a randomized machine D that will help M/α
to copy NP-complete behavior. Note that the machine D in the next
lemma does not receive any advice.

Lemma 3. There exists a randomized polynomial-time machine D with
the following property for any integers n,m ≥ 0, randomized machine Mi

and any b ∈ {0, 1}a(n): If Mi//b satisfies the promise at length n and runs
in time nc and if L at length m is a copy of Mi//b at length n copies L
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at length m, i.e.,

(∀ψ ∈ {0, 1}m) Mi//b (0n−mψ) = L(ψ),

then

(∀φ ∈ {0, 1}m)

{
Pr[D(〈Mi, φ, 0n〉) = 1] > 1/2 if φ ∈ L

Pr[D(〈Mi, φ, 0n〉) = 1] = 0 if φ �∈ L.

Proof. Machine D simply tries all possible advice strings b of length a(n)
and employs the self-reducibility of L to check the answer of Mi//b. Let
φ|xi=v denote the substitution of the logical value v for variable xi in
formula φ(x1, . . . , xk). On input 〈Mi, φ, 0n〉, D acts as follows.

1. Let k be the number of variables in φ(x1, . . . , xk).
2. For each b ∈ {0, 1}a(n) do

(a) Let φ0 = φ.
(b) For each j from 1 to k do

i. For 
log 2n� times, simulate Mi//b (0n−|φ|φj−1|xj=0) for nc steps.
ii. If at least one of the answers is 1, then let φj = φj−1|xj=0.
iii. Otherwise, let φj = φj−1|xj=1.

(c) If φ evaluates to 1, then output 1 and halt.
3. Output 0.

Basically, machine D executes a polynomial number of self-reductions,
each time using a polynomial number of runs of Mi to decide whether to
substitute a value 0 or 1 for variable xj in the formula. Note that the
simulation of nc steps of a randomized machine Mi with one-sided error
can be accomplished in time polynomial in n and |Mi|. Thus, D runs in
time polynomial in its input length.

Let b∗ denote the value of b given in the statement of the lemma.
Consider the iteration of the above algorithm with b = b∗. In step 2(b)i,
if φj−1|xj=0 is satisfiable, D discovers this with probability greater than
1 − (1/2)log 2n = 1 − 1/2n and sets φj = φj−1|xj=0. On the other hand,
if φj−1|xj=0 is not satisfiable, then D always sets φj = φj−1|xj=1. As
a result, provided φj−1 is satisfiable, D produces a satisfiable φj with
probability greater than 1 − 1/2n. Therefore, for any satisfiable formula
φ, machine D produces a satisfied φk and outputs 1 when trying b = b∗

with probability greater than 1 − k · 1/2n ≥ 1/2. Given an unsatisfiable
φ, D always produces an unsatisfied φk and therefore always outputs 0.

Now we turn to the construction of machine M/α that witnesses the
statement of Theorem 4 for the given values of a and c. We reserve a
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disjoint interval Ii = [ni,m
∗
i ] of input lengths for each machine Mi. We

will implement the following scheme of delayed diagonalization against
Mi/β:

M(xi,β)/α = Mi(0ni,2−nixi,β)/β = M(0ni,2−nixi,β)/α = Mi(0ni,3−nixi,β)/β = . . .

. . . = M(0ni,ki−1−nixi,β)/α = Mi(0n∗
i −nixi,β)/β = M(0n∗

i −nixi,β)/α = ¬Mi(xi,β)/β.
(6)

Let us define the strings xi,β on which M/α diagonalizes against Mi/β
as follows:

xi,β = 0s ◦ βni,1 ◦ . . . ◦ βni,ki
,

where s is such that |xi,β| = ni.
We set the input lengths ni,j at which the delayed diagonalization is

realized as follows:

ni,j+1 = (ni,j)d d = (a + 1)c ki = min{k : nd
i,k ≥ 2nc

i },

where ni
.= ni,1 and n∗

i
.= ni,ki

as usual.
By the choice of ki and ni,j, M/α at length n∗

i is able to simulate
nc

i steps of ¬Mi/β at length ni in time polynomial in n∗
i . Also, we have

enough strings at length ni to represent all the behaviors of Mi/β on
input lengths ni,j, 1 ≤ j ≤ ki, because

n∗
i ≤ (2nc

i )d
−1

ni,ki−j ≤ (2nc
i )d

−(j+1)

ki∑
j=1

a(ni,j) =
ki∑

j=1

a · (log ni,j)1/c ≤
ki∑

j=1

a · ni · d−j/c < a · ni · 1
d1/c − 1

= ni.

(7)
Therefore, the strings xi,β are well-defined.

As mentioned in Section 3.2, there exists a universal machine U that
can be mimicked by a nondeterministic polynomial-time machine N . Ev-
ery query to U can therefore be translated in polynomial time into a
query to the NP-complete language L. We denote this polynomial-time
reduction by R. If M/α can solve L efficiently at the lengths we need, it
can also efficiently compute U(〈Mi//βni , 0

ni,j−nixi,β, 0(ni,j )c〉) and execute
the delayed diagonalization scheme (6) in polynomial time.

The paddability properties of L and the polynomial running time of R
allow us to assume without loss of generality that |R(〈Mi//βni , 0

ni,j−nixi,β, 0nc
i,j 〉)| =

(|Mi|·ni,j)r for some constant r. Thus, the maximum length of an instance
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of L that M/α needs to evaluate when diagonalizing against machine Mi

is mi = (|Mi| · n∗
i )

r. So we let m∗
i = 2mi , and devote all lengths in

Ii = [ni,m
∗
i ] except those that are already used for the delayed diago-

nalization, for copying L. The goal is that for each n ∈ Ii \ {ni,j}ki
j=1, L

at length min(mi, n) is a copy of M/α at length n. In particular, M/α
computes L at any such n ≤ mi.

Given an input x of length n, M/α does the following:

1. If n = ni,j for some i and j, then
(a) If j = ki and x is of the form 0n∗

i −nixi,β then % complement M

i. Extract βni from xi,β.
ii. Deterministically simulate Mi//βni (xi,β) for nc

i steps, output
the complement and halt.

(b) Else if j < ki, x is of the form 0n−nixi,β, and αn = 1 then %
copy M

i. Let n′ = ni,j+1.
ii. Extract b = βn′ from xi,β.
iii. Compute φ = R(〈Mi, 0n′−nixi,β, 0(n′)c〉).
iv. Let m′ = |φ|+1 if |φ|+1 �∈ {ni,�}ki

�=1; otherwise, let m′ = |φ|+2.
v. Call D on input 〈Mi, φ, 0m′〉.

2. If n ∈ Ii \ {ni,j}ki
j=1 then

(a) If n = m∗
i and x is of the form 0m∗

i −miφ then % compute L

i. Deterministically compute L(φ), output that value and halt.
(b) If n < m∗

i , x is of the form 0n−min(mi, n)φ, and αn = 1, then %
copy L

i. Let m′′ = n + 1 if n + 1 �∈ {ni,�}ki
�=1; otherwise, let m′′ = n + 2.

ii. Call D on input 〈Mi, φ, 0m′′〉.
3. Output 0.

Notice that m′ and m′′ lie in Ii \ {ni,j}ki
j=1.

For any n = ni,j, 1 ≤ j < ki, let αn = 1 iff for some advice sequence
β of modulus a(n), Mi/β satisfies the promise at length m′ (see the al-
gorithm above), runs in time (m′)c, and computes L at length m′. For
any n ∈ Ii \ {ni,j}ki

j=1 \ {m∗
i }, let αn = 1 iff for some advice sequence β

of modulus a(n), Mi/β satisfies the promise at length m′′ (see the algo-
rithm above), runs in time (m′′)c, and L at length min(mi,m

′′) is a copy
of Mi/β at length m′′. In all other cases, let αn = 0.

We defined the advice α in such a way that whenever D is called on
some input, Lemma 3 guarantees that D satisfies the condition of one-
sided error on that input. Since M/α acts deterministically in all other
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cases, it follows that M/α falls within the model independently of the
behavior of machine Mi/β.

As to time requirements for M/α, note that m′ and m′′, the lengths
for which the polynomial-time procedure D is invoked, are polynomial in
the input length n. Also, M/α at length n∗

i simulates Mi/β at length ni

in time polynomial in n∗
i . M/α at length m∗

i = 2mi computes L at length
mi in time polynomial in m∗

i . Therefore, M/α runs in polynomial time
on every input.

Now assume that Mi/β falls within the model, runs in time nc, and
agrees with M/α for some advice sequence β of modulus a(n). In that
case, by induction on n from m∗

i down to ni, we can show that L at length
min(mi, n) is a copy of M/α at length n for each n in Ii \ {ni,j}ki

j=1. In
particular, at all lengths m′ in the above algorithm, M/α computes L.
This enables M/α to implement the delayed diagonalization scheme (6),
which contradicts that M/α and Mi/β agree on xi,β. This finishes the
proof of Theorem 4.

6 Further Research

In this paper, we established a hierarchy theorem that applies to any “rea-
sonable” semantic model of computation with one bit of advice (Theorems
1 and 2). The most pertinent open problem is to eliminate the need for
the one bit of advice. Ideally, we would like to do that without further
restricting the meaning of “reasonable” but the question remains open
for any semantic non-syntactic model.

For randomized machines with two-sided error, the question whether
a hierarchy theorem would require nonrelativizing techniques is still up
for debate [FS89,FS97,RV01]. Prior to our work, a hierarchy theorem with
one bit of advice was established using nonrelativizing techniques. Our
proof shows that the result itself does relativize. Whether our generic
separation theorem (Theorem 3) relativizes remains open.

Improving the advice bound in our separation results (Theorems 3 and
4) forms another possible direction for further research. As for Theorem
4, one can abstract the properties the model needs for our proof to carry
through, just as we did for our other arguments. We refrained from stating
Theorem 4 in such generality because randomized machines with one-
sided error are the only interesting application we could think of. Are
there others?

Finally, one can ask about strong hierarchy theorems, in which the
more restricted machines fail to decide the hard language for almost all
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input lengths (instead of just one or infinitely many). Even with advice,
no such hierarchy theorems are known for a non-syntactic model.
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