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Abstract

It is known that, for every constant k ≥ 3, the presence of a k-clique (a
complete subgraph on k vertices) in an n-vertex graph cannot be detected
by a monotone boolean circuit using fewer than Ω((n/ log n)k) gates. We
show that, for every constant k, the presence of an (n− k)-clique in an n-
vertex graph can be detected by a monotone circuit using only O(n2 log n)
gates. Moreover, if we allow unbounded fanin, then O(log n) gates are
enough.
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1 Introduction

We consider the well-known Clique function CLIQUE(n, s). This is a monotone
boolean function on

(n
2

)
boolean variables representing the edges of an undi-

rected graph G on n vertices, whose value is 1 iff G contains an s-clique. We
are interested in proving good upper bounds on the size of monotone circuits
with fanin-2 AND and OR gates computing CLIQUE(n, s).

The only non-trivial upper bound for CLIQUE(n, s) we are aware of is a non-
monotone upper bound O(n2.5ds/3e) given in [3, 10] (see also [1]). This bound
is obtained by a reduction to boolean matrix multiplication. Until recently, no
monotone circuits better than DNFs for this function were known.

A trivial depth-2 formula—its minimal DNF—has
(n
s

)
−1 fanin-2 OR gates.

Can we reduce the number of gates by allowing larger depth? In particular,
can this number be made polynomial in n for growing s?
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That it is impossible to save even one OR gate using so-called multilinear
monotone circuits—where inputs to each AND gate are computed from disjoint
sets of variables—was recently shown by Krieger in [8]: for any s, multilinear
monotone circuits for CLIQUE(n, s) require

(n
s

)
− 1 OR gates—just as many as

the minimal DNF of this function! That substantial savings are impossible even
in the class of all monotone circuits follows from well known lower bounds on the
monotone circuit complexity of the clique function obtained by Razborov [12]
and numerically improved by Alon and Boppana [1]: for every constant s ≥ 3,
the function CLIQUE(n, s) cannot be computed by a monotone circuit using
fewer than Ω((n/ log n)s) gates, and for growing s we need at least 2Ω(

√
s) gates,

as long as s ≤ (n/ log n)2/3/4.
By a padding argument, this implies that even CLIQUE(n, n− k) requires

super-polynomial number of gates, as long as k ≤ n/2 grows faster than log3 n.
To see this, let m be the maximal number such that m − s ≤ k where s =
(m/ log m)2/3/4. Then s = Ω(k2/3) and CLIQUE(m, s) is a sub-function of
(i.e. can be obtained by setting to 1 some variables in) CLIQUE(n, n−k): just
consider only the n-vertex graphs containing a fixed clique on n − m vertices
connected to all the remaining vertices (the rest may be arbitrary). Thus,
the function CLIQUE(m, s), and hence also the function CLIQUE(n, n − k),
requires at least 2Ω(

√
s) = 2Ω(k1/3) gates, which is super-polynomial (in n) for

k = ω(log3 n).
But what is the complexity of CLIQUE(n, n − k) when k is indeed small,

say, constant—can then this function be computed by a monotone circuit using
much fewer than

(n
k

)
OR gates?

For k = 1 this was recently answered affirmatively by Krieger in [8]: the
function CLIQUE(n, n−1) can be computed by a monotone ΠΣΠ-formula using
only O(log n) OR gates. (Note that a DNF for this function has n−1 OR gates.)
The argument of [8] uses the existence of particular error-correcting codes to
encode (n− 1)-cliques, and does not seem to work for k > 1.

In this paper we use another argument (based on perfect hashing) to obtain
a more general result: a logarithmic number of OR gates is enough for every
constant k, and a polynomial number of gates is enough also for growing k,
as long as k = O(

√
log n). Moreover, we can define the desired ΠΣΠ-formulas

explicitely.

2 Results

Theorem 2.1. For every constant k, the function CLIQUE(n, n − k) can be
computed by a monotone ΠΣΠ-formula containing at most O(log n) OR gates.

This theorem is a direct consequence of the following more general result
which, for every constant k, allows us also to explicitely construct such a for-
mula.

Recall that a vertex cover in a graph H is a set of its vertices containing
at least one endpoint of each edge. The vertex cover number of H, denoted
by τ(H), is the minimum size of such a set. A graph is τ -critical if removal
of any its edges reduces the vertex cover number. For example, there are only
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two τ -critical non-isomorphic graphs H with τ(H) = 2, a triangle and a graph
consisting of two disjoint edges. Erdős, Hajnal and Moon [4] prove that every
τ -critical graph has at most

(τ(H)+1
2

)
edges.

In what follows, let G(r, k) denote the set of all τ -critical graphs on [r] =
{1, . . . , r} with τ(H) = k + 1.

Given a family F of functions f : [n] → [r], where [n] = {1, . . . , n}, consider
the following monotone ΠΣΠ-formula

ΦF (X) =
∧

H∈G(r,k)

∧
f∈F

∨
{a,b}∈E(H)

∧
e∈f−1(a)×f−1(b)

xe.

This formula rejects a given graph G = ([n], E) iff there exists a graph H ∈
G(r, k) and a function f ∈ F such that for each edge {a, b} of H there is at least
one edge in the complement G of G between f−1(a) and f−1(b). The formula
ΦF (X) has at most

(|G(r, k)|+ |F |)
(

k + 2
2

)
≤ 2O(k2 log(r/k)) + O(k2|F |)

OR gates, which is linear in |F | if both r and k are constants.
A family F of functions f : [n] → [r] is s-perfect (n, r ≥ s) if for every

subset S ⊆ [n] of size |S| = s there is an f ∈ F such that |f(S)| = |S|. That
is, for every s-element subset of [n] at least one function in F is one-to-one
when restricted to this subset. Such families are also known in the literature as
(n, r, s)-perfect hash families.

Theorem 2.2. Let F be a (n, r, s)-perfect hash family with s = 2(k + 1). Then
the formula ΦF (X) computes CLIQUE(n, n− k).

Using a simple probabilistic argument, Mehlhorn [9] shows that (n, r, s)-
perfect hash families F of size |F | ≤ ses2/r log n exist. Thus, taking r = s, we
obtain that for every k, a desired monotone ΠΣΠ-formula for CLIQUE(n, n−k)
with

ϕ(n, k) = 2O(k2) + O(k2e2k log n)

OR gates exists. This is O(log n) for every constant k, and polynomial for
k = O(

√
log n). Recall that already for k = ω(log3 n), any monotone circuit for

CLIQUE(n, n− k) requires a super-polynomial number of gates.

Remark 2.3. In the class of ΠΣΠ-formulas, the upper bound ϕ(n, k) can-
not be substantially improved because, as shown by Radhakrishnan [11], every
(not necessarily monotone) ΠΣΠ-formula for the threshold function Tn

n−k with

k < (log log n)2 requires at least 2Ω(
√

k/ ln k) log n OR gates. This lower bound
implies the same lower bound for CLIQUE(n, n−k), because Tn

s is a monotone
projection of CLIQUE(n, s): just assign all variables xe of CLIQUE(n, s) with
i ∈ e the value of the i-th variable of Tn

s , that is, identify complete stars with
their centers.
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Using explicit (n, r, s)-perfect hash families we can obtain explicit formulas.
For any constant s, (n, r, s)-perfect hash families F with |F | = O(logs n) can
be obtained by the following simple construction.

Let M = {ma,i} be an n × b matrix with b = dlog ne whose rows are
distinct 0-1 vectors of length b. Let F = {f1, . . . , fb} be the family of functions
fi : [n] → {0, 1} determined by the columns of M ; hence, fi(a) = ma,i. Let G
be an arbitrary (s + 1)-perfect family of functions g : {0, 1}s → [r]. Bondy’s
theorem [2] says that the projections of any set of s+1 distict binary vectors on
some set of s coordinates must all be distinct. Hence, for any set a1, . . . , as+1

of s + 1 rows there exist s columns fi1 , . . . , fis such that all s + 1 vectors
~vj = (fi1(aj), . . . , fis(aj)), j = 1, . . . , s + 1 are distinct. Since the family G is
(s+1)-perfect, at least one function g ∈ G will take different values on all these
s + 1 vectors. Hence, the function h(x) = g(fi1(x), . . . , fis(x)) takes different
values on all s+1 points a1, . . . , as+1, as desired. Thus, taking the superposition
of functions from G with s-tuples of functions from F , we obtain a family H of

|H| ≤
(
|F |
s

)
· |G| = O(|G| logs n)

functions h : [n] → [r] which is (s + 1)-perfect.
If s is constant then, for example, we can take r = 2s and let G consist

of the single function g(x) =
∑s

i=1 xi2i−1. Then |H| = O(logs n). To make
the range size r smaller one can use, for example, the fact, due to Fredman,
Komlós and Szemerédi [5], that if p is a prime larger than m, then the func-
tions g1, g2, . . . , gp−1 with gα(x) = (αx mod p) mod r form a family of per-
fect (m, r, s)-hash functions for every r ≥ s2. Using this fact, we can reduce
the range size r till r = s2 at the cost of increasing the size of the family G
till |G| = O(2k).

Anyway, for constant k, Theorem 2.2 and our construction yields

Corollary 2.4. For every constant k, there is an explicit monotone ΠΣΠ-
formula for CLIQUE(n, n− k) using only O(log2k+2 n) OR gates.

Remark 2.5. For fixed values of r and s, infinite classes of (n, r, s)-perfect hash
families F even with |F | = O(log n) were constructed by Wang and Xing in [13]
using algebraic curves over finite fields. Using this (more involved) construction
one can achieve the upper bounds stated in Theorem 2.1 by explicit monotone
ΠΣΠ-formulas.

Remark 2.6. Let k be an arbitrary constant. In the proof of Theorem 2.2
we construct a monotone ΣΠΣ-formula with O(log n) OR gates for the dual
function of CLIQUE(n, n − k). (Recall that a dual of a boolean function
f(x1, . . . , xn) is the function f∗(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn), where “¬”
denotes negation.) Moreover, this formula is multilinear, i.e. inputs to each
its AND gate are computed from disjoint sets of variables. On the other hand,
Krieger [8] shows that every monotone multilinear circuit for CLIQUE(n, n−k)
requires at least

(n
k

)
−1 OR gates. This gives an example of a boolean function,

whose dual requires much larger multilinear circuits than the function itself.
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3 Proof of Theorem 2.2

Instead of the function CLIQUE(n, n− k) it will be convenient to consider the
dual function CLIQUE∗(n, n−k). Note that this function accepts a given graph
G = ([n], E) iff G has no independent set with n−k vertices, which is equivalent
to τ(G) ≥ k + 1. Hence, the graphs in G(n, k) are the smallest (with respect
to the number of edges) graphs accepted by CLIQUE∗(n, n − k). Recall that
G(n, k) consists of all τ -critical graphs on [r] = {1, . . . , r} with τ(H) = k + 1.
We will construct a monotone ΣΠΣ-formula for CLIQUE∗(n, n−k). Replacing
OR gates by AND gates (and vice versa) in this formula we obtain a monotone
ΠΣΠ-formula for CLIQUE(n, n− k).

Important for our construction is that the number of non-isolated vertices
in graphs H ∈ G(n, k) depends only on k, and not on n. This is a direct
consequence of a result, due to Hajnal [6], that in a τ -critical graph without
isolated vertices every independent set of size s has at least s neighbors. (For
completeness, we include a short proof of this interesting result in the appendix.)

Claim 3.1. Every graph in G(n, k) has at most s = 2(k + 1) non-isolated
vertices.

Proof. Let G = (V,E) be a τ -critical graph without isolated vertices which
cannot be covered by k vertices. Since G is minimal, it can be covered by some
set S of |S| = k + 1 vertices and by no smaller set. Hence the complement
T = V − S is an independent set. By Hajnal’s theorem, the set T must have
at least |T | neighbors. Since all these neighbors must lie in S, the desired
upper bound |V | = |S|+ |T | ≤ 2|S| ≤ 2(k + 1) on the total number of vertices
follows.

Let now F be an arbitrary s-perfect family of functions f : [n] → [r], and
consider the following monotone ΣΠΣ-formula

Φ∗(X) =
∨

H∈G(r,k)

∨
f∈F

Kf,H(X),

where
Kf,H(X) =

∧
{a,b}∈E(H)

∨
e∈f−1(a)×f−1(b)

xe.

To verify that this formula computes CLIQUE∗(n, n − k), is enough to show
that:

(i) τ(G) ≥ k + 1 for every graph G accepted by Φ∗(X), and

(ii) Φ∗(X) accepts all graphs from G(n, k).

To show (i), suppose that Φ∗(X) accepts some graph G. Then this graph
must be accepted by some sub-formula Kf,H with f ∈ F and H ∈ G(r, k).
That is, for every edge {a, b} in H there must be an edge in G joining some
vertex i ∈ f−1(a) with some vertex j ∈ f−1(b). Hence, if a set S covers
the edge {i, j}, then the set f(S) must cover the edge {a, b}. Thus, if S is a
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minimal vertex cover in G, then f(S) is a vertex cover in H, implying that
τ(G) = |S| ≥ |f(S)| ≥ τ(H) = k + 1.

To show (ii), take an arbitrary graph G = ([n], E) in G(n, k). By Claim 3.1,
G has at most s non-isolated vertices. By the definition of F , some function f :
[n] → [r] must be one-to-one on these vertices. Consider the graph H = ([r], E′)
with {a, b} ∈ E′ iff {f−1(a), f−1(b)}∩E 6= ∅. Since G ∈ G(n, k) and f is one-to-
one on all non-isolated vertices of G, the graph H belongs to G(r, k). Moreover,
for every edge {a, b} of H, the pair e = {i, j} with f(i) = a and f(j) = b is
an edge of G, implying that xe = 1. This means that the sub-formula Kf,H of
Φ∗(X), and hence, the formula itself must accept G.

This completes the proof of Theorem 2.2.
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4 Appendix

Theorem 4.1 (Hajnal [6]). In a τ -critical graph without isolated vertices, every
independent set of size s has at least s neighbors.

Proof. (due to Lovász [7]) Let G = (V,E) be a τ -critical graph without isolated
vertices. Then G is also α-critical in that removal of any its edge increases its
independence number α(G), i.e. the maximum size of an independent set in G.
An independent set T is maximal if |T | = α(G).

Let us first show that every vertex belongs to at least one maximal inde-
pendent set but not to all such sets. For this, take a vertex x and an edge
e = {x, y}. Remove e from G. Since G is α-critical, the resulting graph has
an independent set T of size α(G) + 1. Since T was not independent in G,
x, y ∈ T . Then T −{x} is an independent set in G of size |T −{x}| = α(G), i.e.
is a maximal independent set avoiding the vertex x, and T − {y} is a maximal
independent set containing x.

Hence, if X is an arbitrary independent set in G, then the intersection of X
with all maximal independent sets in G is empty. It remains therefore to show
that, if Y is an arbitrary independent set, and S is an intersection of Y with
an arbitrary number of maximal independent sets, then

|N(Y )| − |N(S)| ≥ |Y | − |S|,

where N(Y ) is the set of all neighbors of Y , i.e. the set of all vertices adjacent
to at least one vertex in Y . Since an intersection of independent sets is an
independent set, it is enough to prove the claim for the case when T is a
maximal independent set and S = Y ∩ T . Since clearly N(S) ⊆ N(Y )− T , we
have

|N(Y )| − |N(S)| ≥ |N(Y ) ∩ T | = |T | − |S| − |T − Y −N(Y )|
= α(G)− |S|+ |Y | − |(T ∪ Y )−N(Y )| ≥ |Y | − |S|,

where the last inequality holds because the set (T ∪Y )−N(Y ) is independent.




