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Abstract

We develop a new method for estimating the discrepancy of tensors
associated with multiparty communication problems in the “Number
on the Forehead” model of Chandra, Furst and Lipton. We define an
analogue of the Hadamard property of matrices for tensors in multiple
dimensions and show that any k-party communication problem rep-
resented by a Hadamard tensor must have Ω(n/2k) multiparty com-
munication complexity. We also exhibit constructions of Hadamard
tensors, giving Ω(n/2k) lower bounds on multiparty communication
complexity for a new class of explicitly defined Boolean functions.

1 Introduction

Communication complexity was introduced by Yao [26] in 1979. Two players
wish to compute f(x, y). One player knows x, and the other knows y. Both
have unlimited computational power. The communication complexity of f
is the number of bits they must exchange on an arbitrary input in order to
determine the value of f . This model and many of its variants have been
widely studied [15]. Communication complexity arguments have been used
to derive results in circuit complexity and in other computational models.

∗A preliminary version of this paper appeared in the Proceedings of ICALP (2005) [12].
The authors were supported in part by NSF CAREER Award CCR-9874862, NSF Grant
CCF-0430695 and an Alfred P. Sloan Research Fellowship.

1Dagstuhl Seminar Proceedings 06111
Complexity of Boolean Functions
http://drops.dagstuhl.de/opus/volltexte/2006/607

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


We consider the multiparty model of Chandra, Furst and Lipton [7] usu-
ally called the “Number on the Forehead” model. With k players, the input
is partitioned into k parts: x1, . . . , xk. The i-th player has access to every
xj except xi. The Number on the Forehead model is stronger than the 2-
party model, and sometimes the overlap between the players’ inputs can be
used to obtain surprising upper bounds (e.g. [21, 20]). This model is harder
to analyze than the 2-party model, and very few lower bounds are known.
On the other hand, lower bounds in this model have many applications in
complexity theory, including constructions of pseudorandom generators for
space bounded computation, universal traversal sequences, and time-space
tradeoffs [2], as well as circuit complexity lower bounds [14, 19, 21].

Currently the largest known lower bounds for explicit functions are of
the form Ω(n/2k) where k is the number of players, and n is the number of
bits each player misses. The first bounds of this form were given by Babai,
Nisan and Szegedy [2] for the “quadratic character of the sum of coordinates”
(QCS) function. Ω(n/ck) lower bounds were also proved for the “generalized
inner product” (GIP) function in [2] and by Chung and Tetali [10]. Chung
[9] and Raz [22] generalized the method of [2] to give a sufficient condition
for a function to have Ω(n/ck) multiparty communication complexity. Raz
[22] also obtained Ω(

√
n/2k) lower bounds for a new function based upon

matrix multiplication over GF(2). Babai, Hayes and Kimmel [3] obtained
further examples of functions with Ω(n/2k) multiparty communication com-
plexity. All of these lower bounds were obtained by estimating discrepancy,
and so they also hold in the distributional and randomized communication
complexity models.

The known bounds all decrease exponentially as the number of players
grows, becoming trivial for k > log n. It is a major open problem, with
important implications in circuit complexity, to prove nontrivial lower bounds
on multiparty communication problems for a large number of players. The
class ACC0, defined by Barrington [4], consists of languages recognized by
constant depth, unbounded fan-in polynomial size circuit families with AND,
OR, NOT and MODm gates for a fixed m. By the results of [27, 5, 14],
families of functions that belong to ACC0 can be computed by multiparty
protocols with polylogarithmic (in n) communication by polylogarithmic (in
n) number of players (where n is the number of bits each player misses).
Separating ACC0 from other complexity classes (e.g. NP) is a major open
problem, and a sufficiently large multiparty communication complexity lower
bound would resolve it.
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Chor and Goldreich showed in [8] that any Boolean function defined by a
Hadamard matrix has Ω(n) 2-party communication complexity. Their proof
uses a lemma by Lindsey (see [11] p. 88) that estimates the largest possible
sum of entries in a submatrix of a Hadamard matrix. Lindsey’s lemma implies
upper bounds on the discrepancy of functions defined by Hadamard matrices
and “nearly” Hadamard matrices. Babai, Nisan and Szegedy [2] generalized
the proof of Lindsey’s lemma to obtain upper bounds on the discrepancy
of tensors associated with certain multiparty communication problems. The
lower bounds that followed (e.g. [9, 10, 22, 3]) all used this approach. These
papers did not consider generalizing the Hadamard property to tensors. In
fact, [10] mentions that it is not clear how to generalize Hadamard matrices
to tensors.

In this paper we propose a generalization of the Hadamard property of
matrices to tensors of arbitrary dimension. We show that any k-party com-
munication problem represented by a Hadamard tensor must have Ω(n/2k)
multiparty communication complexity. We construct families of Hadamard
tensors, giving Ω(n/2k) lower bounds for a new class of explicitly defined
Boolean functions. Our Hadamard property is stronger than the sufficient
condition of Chung [9] and Raz [22] for Ω(n/2k) bounds, and could yield
larger than Ω(n/2k) lower bounds. There are no matching upper bounds
known for functions represented by Hadamard tensors. We show how the
Chung-Raz condition and some previous lower bounds fit into a “nearly”
Hadamard framework. We believe that Hadamard tensors may also be of
independent interest.

Our approach is based upon a new general upper bound on the discrep-
ancy of tensors in terms of the largest possible value achievable by multiplying
a collection of lines of the tensor by −1 and taking the sum of the entries
of the resulting tensor. We refer to this value as the weight. This measure
has been analyzed for matrices (see e.g. [1, 23]), and the corresponding ma-
trix problem is sometimes called the “switching lights game”. Generalizing
the switching lights game to tensors was previously suggested in [10]. As
far as we know, the general upper bound we give for the discrepancy of a
tensor in terms of its weight is new. We also show that this upper bound
is not too much larger than the actual discrepancy. Thus, the weight will
give good bounds and may be easier to use than directly computing discrep-
ancy. Since our lower bounds are based on discrepancy, they also hold in the
distributional and randomized models.
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2 Preliminaries

In the k-party model of Chandra, Furst and Lipton [7], k players with
unlimited computational power wish to compute the value of a function
f : X1 × · · · × Xk → {−1, 1} on input ~x = (x1, . . . , xk). Usually we as-
sume that X1 = · · · = Xk = {0, 1}n. The function f is known to each
player, and player Pi gets all of the input except xi ∈ Xi. Players commu-
nicate by broadcasting messages, so all players receive all messages. If each
player misses n bits of input, then n + 1 bits of communication is sufficient:
Player P2 broadcasts x1, and then player P1, who now has the entire input,
broadcasts the answer.

Definition 2.1 The deterministic k-party communication complexity of f
(denoted C(f)) is the number of bits communicated by the players on the
worst input ~x using the best protocol for computing f .

Definition 2.2 Let µ be a probability distribution over the input of f . The
bias achieved by a protocol P is defined as |Pr[P (~x) = f(~x)] − Pr[P (~x) 6=
f(~x)]|, where ~x is chosen according to the distribution µ.

The ε-distributional communication complexity of f (denoted Cε,µ(f)) is
the number of bits communicated by the players on the worst input ~x us-
ing the best protocol for computing f that achieves bias at least ε under the
distribution µ. When µ is the uniform distribution we abbreviate to Cε(f).

Definition 2.3 [2] A subset Zi ⊆ X1 × · · · × Xk is called a cylinder in
the i-th dimension, if membership in Zi does not depend on the i-th coordi-
nate; that is, for every (x1, . . . , xi, . . . , xk) ∈ Zi and every x′i ∈ Xi we have
(x1, . . . , x

′
i, . . . , xk) ∈ Zi as well. A subset Z ⊆ X1 × · · · × Xk is called a

cylinder intersection if it can be represented as Z = ∩k
i=1Zi, where each Zi is

a cylinder in the i-th dimension.

A protocol can be thought of as reducing the space of possible inputs
at each step until all the remaining possibilities give the same output. A
message from player Pi winnows the input space, but not along the i-th
dimension. Thus it causes the space of possible inputs to be intersected with
a cylinder in the i-th dimension. After each message the consistent inputs
form a cylinder intersection.
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Definition 2.4 The discrepancy of f on the cylinder intersection Z (de-
noted DiscZ(f)) is defined by

DiscZ(f) = |Pr[(~x ∈ Z) ∧ (f(~x) = 1)]− Pr[(~x ∈ Z) ∧ (f(~x) 6= 1)]| ,

where ~x is chosen according to the uniform distribution. The discrepancy
of f (denoted Disc(f)) is the maximum value of DiscZ(f) over all cylinder
intersections Z.

Since we define Disc(f) with respect to the uniform distribution, and the
output of f is from {−1, 1}, we have the following:

DiscZ(f) = |
∑
~x∈Z

f(~x)| / |X1 × · · · ×Xk|.

Lemma 2.1 [2] For any function f : X1×X2×· · ·×Xk → {−1, 1}, C(f) ≥
log2(1/Disc(f)) and Cε(f) ≥ log2(ε/Disc(f)).

3 A General Upper Bound on Discrepancy

Problems in 2-party communication complexity can be represented as matri-
ces with rows labeled by the possible inputs for player P1 and columns labeled
by the possible inputs for player P2. An entry in the matrix at location (x, y)
is given by f(x, y).

A multiparty communication complexity problem can be represented by
a tensor, the multidimensional analogue of a matrix. Each dimension of the
tensor is labeled by the piece of input missed by a player. That is, given
a function f : X1 × · · · × Xk → {−1, 1}, the i-th dimension of the tensor
representing f is indexed by the elements of Xi. We denote by A(x1, . . . , xk)
the entry of the k-dimensional tensor A at location (x1, . . . , xk). For tensor
Af representing function f we have Af (x1, . . . , xk) = f(x1, . . . , xk). If |X1| =
· · · = |Xk| = N , we say that the tensor has order N .

Definition 3.1 Given a tensor A in k dimensions, a line of A is any vector
formed by fixing all but one coordinate of A. A face of A is any (k − 1)-
dimensional tensor formed by fixing one coordinate of A.

A tensor of order N has N entries in each line and Nk−1 entries in each face.
It has Nk−1 lines and N faces along each of the k dimensions.
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Definition 3.2 Let A be a tensor with ±1 entries. We say that a line of the
tensor A is flipped if each entry in that line is multiplied by −1.

Definition 3.3 We say that a tensor is cylindrical in the i-th dimension, if
it does not depend on the i-th coordinate xi.

If a tensor is cylindrical in the i-th dimension, the entries of any given
line along the i-th dimension are identical, and the corresponding N faces
are identical. Thus, a k-dimensional cylindrical tensor can be specified by a
(k − 1)-dimensional tensor (specifying the face that is repeated N times).

Definition 3.4 We define the excess of a tensor A (denoted S(A)) to be the
sum of its entries; that is, S(A) =

∑
~x∈X1×···×Xk

A(~x).

Lemma 3.1 (implicit in [10]) Disc(f) = max S(Af ◦C1◦· · ·◦Ck)/N
k, where

Af is the ±1 tensor representing f , and each Ci is a 0/1 tensor that is
cylindrical in the i-th dimension. (Af ◦ C1 ◦ · · · ◦ Ck denotes the entry-wise
product of the tensors A, C1, . . . , Ck.)

Proof : Let Zi ⊆ X1 × · · · ×Xk be a cylinder in the i-th dimension, and let
Ci be the 0/1 tensor representing the characteristic function of the cylinder
Zi. Then Ci is cylindrical in the i-th dimension. Conversely, every 0/1
tensor which is cylindrical in the i-th dimension represents the characteristic
function of some cylinder in the i-th dimension. The lemma immediately
follows from the definitions and our notation.

Definition 3.5 We define the weight of a tensor A (denoted W (A)) to be
the largest possible excess of a tensor A′ where A′ can be obtained from A
by flipping an arbitrary collection of lines (in any direction). Note that the
order in which the flips are performed does not matter.

Alternatively, W (A) can be described as W (A) = max S(A◦T1 ◦ · · · ◦Tk),
where each Ti is a ±1 tensor that is cylindrical in the i-th dimension. (A ◦
T1 ◦ · · · ◦ Tk denotes the entry-wise product of the tensors A, T1, . . . , Tk.)

Theorem 3.2 Consider a function f : X1 × · · · ×Xk → {1,−1} where for
i ∈ {1, . . . , k}, |Xi| = N . Let Af be the tensor of order N representing f .
Then Disc(f) ≤ W (Af )/N

k.
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Proof : For i = 1, . . . , k, let Ci be an arbitrary 0/1 tensor which is cylindrical
in the i-th dimension. We inductively define related ±1 tensors Ĉi and Ti.
For each i = 1, . . . , k, we define a (k−1)-dimensional ±1 tensor Ĉi, where the
i-th coordinate is left out. For example, Ĉ1 is a (k − 1)-dimensional tensor
that depends on the k−1 coordinates x2, . . . , xk. To simplify notation, we will
denote the entries of these tensors by Ĉi(~x), with the understanding that for
Ĉi, xi is not used for indexing. For example, Ĉ1(~x) represents Ĉ1(x2, . . . , xk).

We define Ĉ1 as follows: Ĉ1(~x) = sign(
∑

x1
Af (~x) · C2(~x) · · ·Ck(~x)). In

other words, to obtain Ĉ1, we collapse the k dimensional tensor Af◦C2◦· · ·◦Ck

to a k − 1 dimensional tensor by summing the entries of each line along the
first dimension and taking the sign of each line sum as an entry of Ĉ1. (If
a given line sums to a negative number, the corresponding entry in Ĉ1 is
−1, otherwise it is 1.) We use Ĉ1 to define the ±1 tensor T1, which is k-
dimensional, and cylindrical in the first dimension. T1 is obtained by taking
N copies of Ĉ1 and using them as the faces of T1 (along the first dimension).

Assume that T1, . . . , Ti−1 are already defined. We define Ĉi as follows:

Ĉi(~x) = sign(
∑
xi

Af (~x) · T1(~x) · · ·Ti−1(~x) · Ci+1(~x) · · ·Ck(~x))

Once Ĉi is defined we use it to obtain Ti which is k-dimensional, and cylin-
drical in the i-th dimension. Ti is obtained by taking N copies of Ĉi and
using them as the faces of Ti (along the i-th dimension).

First we show S(Af ◦C1◦C2◦· · ·◦Ck) ≤ S(Af ◦T1◦C2◦· · ·◦Ck). When we
replace C1 by T1, the contribution of each line of the tensor Af◦C1◦C2◦· · ·◦Ck

(along the first dimension) is replaced by a nonnegative value at least as large
as the absolute value of the sum of the entries of the original line. To see
this, notice that by definition, Ĉ1 and T1 contain the signs of the sum of the
entries of the corresponding lines of Af ◦C2◦· · ·◦Ck. (If the sum is 0, we use 1
for the sign.) Obtaining Af ◦T1◦C2◦· · ·◦Ck corresponds to multiplying each
entry of a given line of Af ◦C2◦· · ·◦Ck by the sign of the sum of the entries of
that line. Recall that each Ci is cylindrical, thus the lines of C1 along the x1

coordinate are constants (all 0 or all 1). If all entries of a given line of C1 are 0
then the corresponding line of Af◦C1◦C2◦· · ·◦Ck did not contribute anything
to the sum, while after the replacement it contributes a nonnegative value.
For the lines of C1 that are constant 1, the contribution of the corresponding
line of Af ◦ C1 ◦ · · · ◦ Ck is replaced by its absolute value. Thus, we never
decrease the total sum. Similarly, at each inductive step above, we maintain
that S(Af ◦T1 ◦ · · · ◦Ti−1 ◦Ci ◦ · · · ◦Ck) ≤ S(Af ◦T1 ◦ · · · ◦Ti ◦Ci+1 ◦ · · · ◦Ck).
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It follows that S(Af ◦ C1 ◦ · · · ◦ Ck) ≤ S(Af ◦ T1 ◦ · · · ◦ Tk). By Lemma 3.1
and the definition of W (Af ) the theorem follows.

The following simple example shows that the discrepancy Disc(f) can be
strictly smaller than W (Af )/N

k. Let k = 2, and f be the parity function,
i.e., f is 1 if the number of 1’s among the input bits is even, and −1 otherwise.
Then the discrepancy Disc(f) = 1/4, while W (Af )/N

2 = 1. To see this, note
that in the matrix corresponding to the parity function the sum of entries in
any rectangle is at most N2/4. On the other hand, it is possible to flip the
lines of the matrix so that we obtain the all 1 matrix. (Theorem 8 in [10]
appears to claim that Disc(f) = W (Af )/N

k. However, this seems to be a
mistake in notation, and they in fact prove Lemma 3.1.)

The following theorem shows that the discrepancy can not be too much
smaller than the bound given by the weight. Thus, using the weight for
bounding discrepancy will give good bounds.

Theorem 3.3 Let f : X1 × · · · ×Xk → {1,−1} be a function where for all
i, |Xi| = N . Let Af be the tensor of order N representing f . Then

Disc(f) ≥ W (Af )/(2
kNk).

Proof : Consider the lines used to generate W (Af ). Partition the entries of
Af into 2k groups according to whether they were flipped by the lines along
each of the k dimensions. Along each dimension the entries flipped by the
lines form a cylinder, as do the unflipped entries. Thus the partition splits
the entries of Af into 2k cylinder intersections. At least one of these cylinder
intersections has entry sum with absolute value at least W (Af )/2

k. Using
that cylinder intersection in the discrepancy definition gives discrepancy at
least W (Af )/(2

kNk).
It is known that W (A) ≥ N3/2/

√
2 for any N by N matrix A with ±1

entries (see Theorem 5.1 in [1]; see also [6] (c.f. [17])). We show the following
extension of that result:

Theorem 3.4 Let A be any k-dimensional ±1 tensor of order N . Then

W (A) ≥ Nk− 1
2 /
√

2.

Proof : Consider the set of matrices formed by fixing all but the first two
dimensions of A. Each of the matrices has weight at least N3/2/

√
2. They
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do not intersect, so their lines can be flipped independently giving a tensor
weight at least Nk−2(N3/2/

√
2).

The following standard probabilistic argument shows that there are ten-
sors with weight O(

√
kNk− 1

2 ).

Theorem 3.5 For any N and k, a (1−2−kNk−1
)-fraction of the k-dimensional

tensors with order N have weight O(
√

kNk−(1/2)).

Proof : Consider the effect of flipping a particular set of lines on a random
tensor A. The entries in the flipped tensor A′ are all independent random
variables with equal probability of being 1 or −1. Thus, using Chernoff’s
bound,

Pr[sum of entries of A′ ≥ cNk−(1/2)] ≤ e−c2Nk−1/2.

The k players each have Nk−1 lines available to flip, so there are 2k(Nk−1) sets
of lines. Summing this probability over all of these sets gives the probability
that one of them generates a tensor with entry sum above cNk−(1/2) is no
more than

2k(Nk−1)e−c2Nk−1/2 = 2Nk−1(k−c2 log e/2) .

Consider c = 2
√

(k/ log e). Then the probability is at most 2−kNk−1
. Thus at

least a (1 − 2−kNk−1
)-fraction of the tensors have weight at most cNk−(1/2).

Proving a similar upper bound on the weight of explicitly defined tensors
would yield lower bounds of the form Ω(n) on multiparty communication
complexity, for any number of players. Thus, estimating the weight of tensors
can potentially give close to optimal bounds on the discrepancy, and on the
multiparty communication complexity of the corresponding functions.

4 Hadamard Tensors

An N by N matrix with ±1 entries is called a Hadamard matrix if the inner
product of any two distinct rows is 0. It is equivalent to state the condition
for columns: The product of any two distinct rows is 0 if and only if the
product of any two distinct columns is 0.

The Hadamard property is invariant under the arbitrary flipping of lines.
Thus, Lindsey’s lemma (see [11] p. 88) gives the following well known state-
ment:
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Lemma 4.1 For any Hadamard matrix A of order N , W (A) ≤ N3/2.

We define the product of t lines (along the same dimension) of a tensor
as the sum of entries in their entry-wise product. For example, if l1, . . . , lt
are lines along the first dimension, then their product is

∑
x1

l1(x1) · · · lt(x1).
Let A be a k-dimensional tensor of order N with ±1 entries. For each

of the first k − 1 dimensions i = 1, . . . , k − 1, choose two distinct indices
yi, zi ∈ Xi. Picking exactly one of yi or zi for each i = 1, . . . , k − 1 gives a
point in X1 × · · · ×Xk−1, and each such point specifies a line of A along the
last coordinate xk. There are 2k−1 possible choices for the selection described
above, and since for each i = 1, . . . , k − 1, yi 6= zi, we get 2k−1 distinct lines
this way. We say that the tensor A is Hadamard, if the product of any 2k−1

lines chosen in this way is 0. More formally, we define Hadamard tensors as
follows:

Definition 4.1 Let A be a k-dimensional tensor of order N with ±1 entries.
We say that A is a Hadamard tensor if for any y1, z1 ∈ X1, . . . , yk−1, zk−1 ∈
Xk−1 such that yi 6= zi for i = 1, . . . , k − 1, the following holds:∑

xk∈Xk

∏
x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}

A(x1, x2, . . . , xk) = 0.

When k = 2 this definition is identical to the definition of Hadamard matri-
ces.

Since the k-th coordinate plays a special role in the above definition of
a Hadamard tensor, we can say that the definition is given with respect to
the k-th dimension. Just as the Hadamard condition on the rows of a matrix
implies the condition on the columns, we show the following for tensors:

Lemma 4.2 Let A be a k-dimensional Hadamard tensor with respect to the
i-th dimension for some 1 ≤ i ≤ k. Then for any j 6= i, 1 ≤ j ≤ k, A is a
k-dimensional Hadamard tensor with respect to the j-th dimension.

Proof : Choose for all other dimensions m different from i and j two distinct
indices ym and zm. Consider the matrix formed with columns indexed by
dimension i and rows by dimension j where each entry is the product of the
2k−2 entries of A corresponding to that coordinate and the choices of ym’s
and zm’s. Since the property holds for dimension i, we know that the inner
product of any two of the rows of this matrix is 0. Thus it is a Hadamard
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matrix, and so the inner product of any two columns is 0. Since this is true
for all choices of ym’s and zm’s, A is a Hadamard tensor with respect to the
j-th dimension.

Here is a different way to view the Hadamard property.

Definition 4.2 A three dimensional tensor is Hadamard if the entry-wise
product of any two distinct faces along the same dimension is a Hadamard
matrix. A k-dimensional tensor for k > 3 is Hadamard if the entry-wise
product of any two distinct faces along the same dimension is a Hadamard
tensor in k − 1 dimensions.

Lemma 4.3 Definition 4.1 and Definition 4.2 are equivalent.

Proof : Let Axi denote the face of A obtained by fixing the i-th coordinate
to the value xi.

The statement follows by observing that for k ≥ 3,∑
xk∈Xk

∏
x1∈{y1,z1},...,xk−2∈{yk−2,zk−2}

Ayk−1 ◦ Azk−1(x1, . . . , xk−2, xk) =

∑
xk∈Xk

∏
x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}

A(x1, . . . , xk−2, xk−1, xk),

and using induction on k.
Next we prove that the Hadamard property of tensors is invariant under

arbitrary flipping of lines.

Lemma 4.4 Let A′ be a tensor obtained from a Hadamard tensor A by flip-
ping a collection of lines. Then A′ is a Hadamard tensor.

Proof : This follows by induction from the characterization of Hadamard
tensors given by Definition 4.2. The result holds for matrices since after
flipping a row or column any row or column product that was 0 remains 0.
Suppose the result holds for tensors of dimension k − 1. Consider any face
product Ayi ◦ Azi of a k-dimensional Hadamard tensor A. Flipping a line of
A may miss Ayi and Azi entirely, intersect both in one entry, or flip an entire
line of Ayi or Azi . In the first case the face product is unaffected. In the
second case the face product is unchanged since the corresponding entry is
negated twice. In the third case the face product has a line flipped. By the
induction hypothesis this is still a Hadamard tensor.
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4.1 The Discrepancy of Hadamard Tensors

In light of Theorem 3.2, we can prove upper bounds on the discrepancy of
any tensor A by proving upper bounds on W (A). Let Wk(N) denote the
largest possible value of W (A) if A is a k-dimensional Hadamard tensor of
order N .

Lemma 4.5 Let A be a k-dimensional Hadamard tensor of order N . Then

(W (A))2 ≤ N2k−1 + Nk+1(Wk−1(N)).

Proof : Let A′ be the k-dimensional tensor obtained from A by flipping
a collection of lines that achieves maximal excess, that is W (A) = S(A′).
By Lemma 4.4, A′ is a Hadamard tensor, and by Definition 4.2 the entry-
wise product of any two distinct faces of A′ is a Hadamard tensor in k −
1 dimensions. Thus, we have the following estimates (using the Cauchy-
Schwartz inequality).

(S(A′))2 =

 ∑
~x∈X1×···×Xk

A′(~x)

2

≤ Nk−1
∑

x1,...,xk−1

(∑
xk

A′(~x)

)2

= Nk−1

Nk +
∑
i6=j

∑
x1,...,xk−1

A′(x1, . . . , xk−1, i)A
′(x1, . . . , xk−1, j)


≤ Nk−1(Nk + (N2 −N)(Wk−1(N)))

≤ N2k−1 + Nk+1(Wk−1(N))).

Theorem 4.6 Let A be a k-dimensional Hadamard tensor of order N . Then
W (A) ≤ φNk−(1/2k−1) where φ = (1 +

√
5)/2.

Proof : Let A be a three dimensional Hadamard tensor with order N . Using
Lemma 4.5 and Lemma 4.1,

W (A) ≤ (N2(N3 + (N2 −N)(N3/2)))1/2

≤ N(2N7/2)1/2

≤
√

2N3−(1/4)

≤ φN3−(1/4).
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Suppose the theorem holds for all Hadamard tensors of dimension k − 1.
Let A be a k-dimensional Hadamard tensor.

W (A) ≤ (Nk−1(Nk + (N2 −N)(φN (k−1)−(1/2k−2))))1/2

≤ (Nk−1((1 + φ)(N (k+1)−(1/2k−2))))1/2

= ((1 + φ)N2k−(1/2k−2))1/2

=
√

1 + φNk−(1/2k−1)

= φNk−(1/2k−1).

Theorem 4.7 Let f : ({0, 1}n)k → {1,−1} be a function represented by a
Hadamard tensor. Then Disc(f) ≤ φN−1/2k−1

where φ = (1 +
√

5)/2.

Proof : This follows directly from Theorem 4.6 and Theorem 3.2.
By the results of [2] (see Lemma 2.1) this yields the following:

Theorem 4.8 Let f : ({0, 1}n)k → {1,−1} be a function represented by a
Hadamard tensor. Then C(f) = Ω(n/2k), and Cε(f) = Ω((n/2k) + log2 ε).

4.2 Constructions of Hadamard Tensors

Let x1, ..., xk be n-bit strings. Consider each of these strings as an element of
the finite field GF(2n), representing the field elements as univariate polyno-
mials over GF(2) modulo a fixed irreducible polynomial of degree n. (In this
representation the i-th bit (0 ≤ i ≤ n − 1) of a given n-bit string indicates
whether the corresponding polynomial p(a) contains the term ai.)

Let χS stand for the function obtained by raising −1 to the parity of the
bits with coordinates in S, such that χS is 1 when the parity is even, and −1
when the parity is odd. It is not hard to see that for any x, y ∈ {0, 1}n,

χS(x)χS(y) = χS(x + y), (1)

where + represents addition in GF(2n). (In fact the χS are the additive
characters of GF(2n).) By the definition of χS, χS(x)χS(y) = χS(x ⊕ y),
viewing x and y as strings and taking bitwise XOR, which is the same as
χS(x + y) using addition in the field.
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Definition 4.3 Given a function f : {0, 1}n → {1,−1}, we define the func-
tion FFMn,k

f : ({0, 1}n)k → {1,−1} by

FFMn,k
f (x1, . . . , xk) = f(x1 · x2 · . . . · xk),

where x1 ·x2 · . . . ·xk denotes the product of the field elements x1, . . . , xk, and
f is applied to the n-bit string representing the resulting field element.

For S ⊆ {0, 1, . . . , n− 1}, we denote by FFMn,k
S the function FFMn,k

χS
.

“FFM” is an abbreviation for “Finite Field Multiplication”.

Theorem 4.9 For every ∅ 6= S ⊆ {0, 1, . . . , n−1}, the k-dimensional tensor
associated with FFMn,k

S is Hadamard.

Proof : We need the following observation: For any t and for any y1, z1, . . . , yt, zt ∈
GF(2n) with y1 6= z1, . . . , yt 6= zt,∑

x1∈{y1,z1},...,xt∈{yt,zt}
x1x2 · · ·xt 6= 0.

To see this, note that

∑
x1∈{y1,z1},...,xt∈{yt,zt}

x1x2 · · ·xt =
t∏

i=1

(yi + zi).

For distinct yi and zi, yi + zi is nonzero since in GF(2n) each element is its
own additive inverse.

Consider the following sum from Definition 4.1:∑
xk

∏
x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}

χS(x1x2 · · ·xk)

By (1) this is the same as

∑
xk

χS

 ∑
x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}

x1x2 · · ·xk


=

∑
xk

χS

xk

∑
x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}

x1x2 · · ·xk−1


As shown above, the inner sum evaluates to a non-zero field element, so

for some fixed non-zero w, we obtain
∑

xk
χS(xkw) =

∑
xk

χS(xk) = 0
Using Theorem 4.8 we immediately obtain the following:
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Theorem 4.10 For every ∅ 6= S ⊆ {0, 1, . . . , n−1}, C(FFMn,k
S ) = Ω(n/2k),

and Cε(FFMn,k
S ) = Ω(n/2k + log2 ε).

Although all finite fields of order 2n are isomorphic, it is necessary to
specify exactly which one is being used for obtaining explicit constructions of
Boolean functions this way. The deterministic algorithm developed by Shoup
[24] can be used to construct an irreducible polynomial of degree n for any
given n. Thus the family of Boolean functions associated with the tensors
FFMS belongs to the complexity class P . Note also that the polynomial
xn + xn/2 + 1 is irreducible over GF(2) when n is of the form n = 2 · 3m

(Theorem 1.1.28 in [18]).

Theorem 4.11 The Boolean version of the function given by FFMn,k
S for

S ⊆ {0, 1, . . . , n − 1} can be computed by polynomial size unbounded fan-in
circuits with AND, OR, NOT and MOD2 gates, in depth log k.

Proof : We use that multiplication in a finite field is bilinear. That is, for
every n there is a set of n binary matrices A(0), . . . , A(n−1), each of size n×n,
such that for any two field elements x and y viewed as binary vectors, the
t-th bit of the product xy is given by xA(t)y. (All operations are in GF(2).)

Multiplication of the finite field elements using these matrices can be done
in constant depth, and k multiplications are sufficient, giving the log k depth.

4.3 Relaxations of the Hadamard Property

Chung [9] and Raz [22] state a sufficient condition for a function to have
Ω(n/ck) multiparty communication complexity, generalizing the method of
[2]. We can show that satisfying the condition of [9] and [22] is related to
being nearly Hadamard in the following, relaxed sense: Instead of requiring
that all the products of the 2k−1-tuples of lines selected according to the
Hadamard definition are 0, require that the products are small on average;
e.g. that the sum of the squares of the line products is small. The tensor
corresponding to the “generalized inner product” (GIP) function of [2] is
nearly Hadamard in this relaxed sense, but it is not Hadamard.

For the tensor corresponding to the “quadratic character of the sum of
coordinates” (QCS) function of [2] we can show that each (nontrivial) product
of the selected 2k−1 tuples of lines is small (at most 2k

√
N).
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Definition 4.4 A matrix is d-Hadamard if the inner product of any two
distinct rows is at most d. A tensor is d-Hadamard if the sum of the entries
of any vector formed by taking the entry-wise product of lines as in Definition
4.1 is at most d.

Similarly to the equivalence between the two definitions of Hadamard
tensors, the following holds:

Lemma 4.12 For k ≤ 3, a k-dimensional tensor is d-Hadamard if and only
if the entry-wise product of any two of its faces along the same dimension is
a d-Hadamard tensor in k − 1 dimensions.

The proof is identical to the proof of Lemma 4.3.

Theorem 4.13 Let A be a d-Hadamard matrix of order N . Then

W (A) ≤ N3/2(1 + d)1/2.

Proof : Let A′ be a matrix formed by flipping lines of A. We will apply the
Cauchy-Schwartz inequality to an expression for the excess of A′, eventually
simplifying to an expression in terms of the products of the rows of A.

N∑
i=1

N∑
j=1

A′(i, j) ≤ [N
N∑

i=1

(
N∑

j=1

A′(i, j))2]1/2 ≤ [N
N∑

j1=1

N∑
j2=1

N∑
i=1

A′(i, j1)A
′(i, j2)]

1/2.

The sum over i, j1, and j2 is the sum over all choices of two rows of the
matrix of the inner product of those two rows. Note that flipping rows or
columns of A′ does not affect any of these inner products except possibly in
sign, so this is no more than

[N
N∑

j1=1

N∑
j2=1

|
N∑

i=1

A(i, j1)A(i, j2)|]1/2.

So the excess of A′ is at most

[N(N2 + (N2 −N)d)](1/2) ≤ N3/2(1 + d)1/2.

Theorem 4.14 Let A be an d-Hadamard tensor in k dimensions. Then

W (A) ≤ φNk−1/2k−1

(1 + d)1/2k−1
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The corresponding induction used in the proof of Theorem 4.6 gives the
proof.

Theorem 4.15 Let f : ({0, 1}n)k → {1,−1} be a function represented by a
d-Hadamard tensor Af . Then D(f) ≥ (log(N/(φ(1 + d))))/2k−1.

Proof : This follows from Theorems 4.14 and 3.2 and Lemma 2.1.
To show QCS is d-Hadamard we need a technical lemma.

Lemma 4.16 Let p be any odd prime. Let y1, z1, . . . , yk, zk be elements of
Zp where for each i, yi 6= zi. Let S1 = {y1, z1}. For i > 1, let SYi = yi+Si−1,
SZi = zi + Si−1, and Si = (SYi ∪ SZi) \ (SYi ∩ SZi). In other words, Si

contains elements formed by adding either yi or zi to an element of Si−1 but
not those formed both ways. Then Sk is nonempty.

Proof : Suppose Si−1 is nonempty and that SYi = SZi. Let s ∈ SYi−1. We
know s + yi ∈ SYi and s + yi ∈ SZi. This means s + yi − zi ∈ Si−1. Thus
s + (yi − zi) + yi ∈ SYi. So s + (yi − zi) + yi ∈ SZi. So s + 2(yi − zi) ∈ Si−1.
And for any n, s + n(yi − zi) ∈ Si−1. But since yi − zi is not 0, it generates
Zp, and so all elements of Zp are in Si−1. This is a contradiction since there
are an odd number of elements of Zp, but our construction builds sets with
an even number of elements in each Si.

Definition 4.5 [2] Let QCSp,k : {0, 1, . . . , p − 1}k → {1,−1} for prime p
be the function which maps (x1, . . . , xk) to 1 if x1 + · · · + xk is a quadratic
residue mod p and −1 otherwise.

Theorem 4.17 QCSp,k is (2k√p)-Hadamard.

Proof : Choose y1, z1, . . . yk−1, zk−1 ∈ {0, 1, . . . , p−1} where for each i, yi 6= zi.
Consider the following:∑

xk

∏
x1∈{y1,z1}

∏
x2∈{y2,z2}

· · ·
∏

xk−1∈{yk−1,zk−1}
QCSp,k(x1, x2, . . . , xk)

Let χ : {0, 1, . . . , p − 1} → {1, 0,−1} be the quadratic character function
mapping 0 to 0, other squares to 1, and everything else to -1. It is a mul-
tiplicative character on GF(p), meaning that χ(x)χ(y) = χ(xy) for any el-
ements of GF(p). The QCS function on input x1, . . . , xk is the same as
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χ(x1 + · · ·+ xk) for all inputs except those where x1 + · · ·+ xk is 0. However
for any line, this occurs exactly once. So the sum above is no more than

2k−1 +
∑
xk

∏
x1∈{y1,z1}

∏
x2∈{y2,z2}

· · ·
∏

xk−1∈{yk−1,zk−1}
χ(x1 + · · ·+ xk)

where the first term accounts for the entries that are 0 after switching from
QCS to χ. Since χ is a multiplicative character, the summation is a summa-
tion over all values of xk of χ applied to a polynomial in xk of degree 2k−1.
According to Weil’s character sum estimate ([25], see also in [2]), if we can
show that this polynomial is not a square of some smaller polynomial, then
the sum is bounded by (2k−1 − 1)

√
p. The polynomial we are considering is

already factored into terms of the form (xk + a). Since factoring is unique,
this means that the only way this polynomial is a square is if after removing
terms of the form (xk +a)2, no terms are left. Using Lemma 4.16 this cannot
happen. So the original sum is bounded by 2k−1 + (2k−1 − 1)

√
p which is at

most 2k√p.

Theorem 4.18 Let k ≤ log(p1/4−p−1/2). Then C(QCSp,k) = Ω((log p)/2k).

Proof : The statement follows by Theorem 4.17 and Theorem 4.15.
Note that the property we prove for QCS is stronger than the condition

required in [9, 22], but weaker than the Hadamard property.
Raz [22] considered the function defined as follows: each part of the input

xi ∈ {0, 1}n is interpreted as a
√

n by
√

n matrix with 0, 1 entries. The func-
tion is defined by the bit in the upper left corner of the matrix obtained by
taking the product (over GF(2)) of the k matrices. Raz [22] proved that this
function has (probabilistic) k-party communication complexity Ω(

√
n/2k).

The tensor associated with this function is not Hadamard, but we can show
that it contains a subtensor of order 2

√
n which is Hadamard. Thus, our meth-

ods give Ω(
√

n/2k) lower bounds on the k-party communication complexity
of the function.

Grolmusz [13] showed an O(kn/2k) upper bound on the multiparty com-
munication complexity of GIP. There are no similar upper bounds known
for any of the functions that we presented as examples of Hadamard tensors.
The examples of Hadamard tensors we give and the QCS function from [2] are
candidates for having Ω(n/poly(k)) multiparty communication complexity.

18



References

[1] N. Alon, J. H. Spencer, “The Probabilistic Method”, Wiley-Interscience,
2000.

[2] L. Babai, N. Nisan, M. Szegedy, “Multiparty Protocols, Pseudorandom
Generators for Logspace, and Time-Space Trade-Offs”, JCSS, 45(2):204-
232, 1992.

[3] L. Babai, T. P. Hayes, P. G. Kimmel, “The Cost of the Missing Bit:
Communication Complexity with Help”, Proc. 30th ACM STOC, 673-
682, 1998.

[4] D. Barrington, “Bounded-width polynomial size branching programs
recognize exactly those languages in NC1”, JCSS, 38(1):150-164, 1989.

[5] R. Beigel, J. Tarui, “On ACC”, Proc. 32nd IEEE FOCS, 783-792, 1991.

[6] M. R. Best, “The Excess of a Hadamard Matrix”, Indag. Math.,
39(5):357-361, 1977.

[7] A. Chandra, M. Furst, R. Lipton: “Multiparty protocols”, Proc. 15th
ACM STOC, 94-99, 1983.

[8] B. Chor, O. Goldreich, “Unbiased Bits from Sources of Weak Random-
ness and Probabilistic Communication Complexity”, SIAM J. Comp.
17:230-261, 1988.

[9] F. Chung, “Quasi-Random Classes of Hypergraphs”, Random Structures
and Algorithms, 1(4):363-382, 1990.

[10] F. Chung, P. Tetali, “Communication complexity and quasi random-
ness”, SIAM J. Discrete Math., 6(1):110-123, 1993.
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[21] P. Pudlák, V. Rödl, J. Sgall, “Boolean circuits, tensor ranks and com-
munication complexity”, SIAM J. Comp., 26:605-633, 1997.

[22] R. Raz, “The BNS-Chung criterion for multiparty communication com-
plexity”, Computational Complexity, 9(2):113-122, 2000.

[23] J. Spencer, “Ten lectures on the probabilistic method”, Soc. for Indus-
trial and Applied Math., 1987.

[24] V. Shoup, “New Algorithms for Finding Irreducible Polynomials over
Finite Fields”, Mathematics of Computation, 54:435-447, 1990.

[25] A. Weil, “On some exponential sums”, Proc. of the National Academy
of Sciences of the USA, 34 (5), pp. 204-207, 1948.

[26] A. Yao, “Some complexity questions related to distributed computing”,
Proc. 11th ACM STOC, 209-213, 1979.

[27] A. Yao, “On ACC and threshold circuits”, Proc. 31st IEEE FOCS, 619-
627, 1990.

20


