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Abstract. One of the main difficulties faced when analyzing Markov chains
modelling evolutionary algorithms is that their cardinality grows quite fast. A
reasonable way to deal with this issue is to introduce an appropriate notion of
a “coarse graining” or, in mathematical language, a quotient of such a Markov
chain. The main topic of the current work is the construction of such a notion.
We shell introduce a general construction of a quotient of an irreducible Markov
chain with respect to an arbitrary equivalence relation on the state space. The
stationary distribution of the quotient chain is “coherent” with the stationary dis-
tribution of the original chain. Although the transition probabilities of the quo-
tient chain depend on the stationary distribution of the original chain, in some
cases we can still exploit the quotient construction to deduce some properties of
the stationary distribution of the original chain. As an example we shell estab-
lish some inequalities telling us how fast the stationary distribution of Markov
chains modelling EAs concentrates on the homogenous populations as mutation
rate converges to 0.

1 Introduction

One of the aspects of the theoretical analysis of the evolutionary algorithms is study-
ing the properties of the Markov chains associated to these algorithms. Many research
articles in the field of evolutionary computing have been devoted to this subject (see,
for instance, [6], [7], [9] and [1] for a survey of known results and open questions).
The main difficulty faced with this approach is that the number of states of this Markov
chain grows very fast with respect to the size of the search space and the number of
elements in a population. Indeed, if Ω denotes the search space, the number of sates of
this Markov chain for a population of size m is |Ω|m which grows polynomially with
respect to |Ω| and exponentially with respect to the population size m. In the current
paper we introduce a construction which can be viewed as a “quotient” (or, accord-
ing to a commonly accepted EA terminology, a “coarse graining”) of a Markov chain
with respect to an equivalence relation. This construction is applicable to all irreducible
Markov chains (which is true of Markov chains modelling EAs with positive mutation
rate: see, for instance, [9] or [1]). The “quotient chain” will be shown to be irreducible
as well and its unique stationary distribution is coherent with that of the original chain.
Although the transition probabilities of the quotient chain depend on the stationary dis-
tribution of the original chain (which is the subject of our investigation), we can still

Dagstuhl Seminar Proceedings 06061
Theory of Evolutionary Algorithms
http://drops.dagstuhl.de/opus/volltexte/2006/596

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


use the quotient construction to deduce some interesting properties of the stationary dis-
tribution of the quotient chain (and, hence, of the original chain as well). To illustrate
this technique, we shell establish some inequalities related to how fast the stationary
distribution of a Markov chain modelling an EA concentrates on the homogenous pop-
ulations (populations consisting of the repeated copies of the same individual only) with
respect to the decreasing mutation rate. It should be noted that an inequality analogous
to the one in corollary 16 has been obtained in [7] using entirely different methods. To
the best of the author’s knowledge, the inequality in corollary 17 is completely new. This
inequality establishes a connection between the rate of concentration of the stationary
distribution of the Markov chain modelling EAs on the homogenous populations and
the maximum expected waiting time to reach a homogenous population starting from
any other population. Estimating such expectations for various recombination operators
remains an open problem for now. We hope that the main contribution of the current
paper are not so much the results on the rate of concentration of the stationary distri-
bution on the homogenous populations but the innovative quotient of the Markov chain
construction which allows us to deduce these results as simple corollaries for we hope
to find other useful applications of this method.

2 Notation

Ω is a finite set, called a search space.
f : Ω → (0,∞) is a function, called a fitness function. The goal is to find a maxi-

mum of the function f .
Fq is a collection of q-ary operations on Ω. Intuitively Fq can be thought of as the

collection of reproduction operators: some q parents produce one offspring. In nature
often q = 2, for every child has two parents, but in the artificial setting there seems to
be no special reason to assume that every child has no more than two parents. When
q = 1, the family F1 can be thought of as asexual reproductions or mutations. The fol-
lowing definitions will be used in section 3 to describe the general evolutionary search
algorithm. This approach makes it easy to state the Geiringer Theorem.

Definition 1 A population P of size m is simply an element of Ωm. (Intuitively it is
convenient to think of a population as a “column vector”.) The diagonal elements of
Ωm are called homogenous populations (in other words, a population is homogenous if
it is of the form (x, x, . . . , x)T for some x ∈ Ω).

Remark 2 There are 2 primary methods for representing populations: multi-sets and
ordered multi-sets. Each has advantages, depending upon the particular analytical goals.
Lothar Shmitt has published a number of papers which use the ordered multi-set rep-
resentation to advantage (see, for instance, [6] and [7]). According to definition 1, in
the current paper we continue the development of analysis based upon the presenta-
tion pioneered by Lothar Schmitt. The following example illustrates an aspect of the
representation which the reader would do well to keep in mind:
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Example 3 Let Ω = {0, 1}3. Consider the populations




0 0 0
1 1 1
1 1 1


,




1 1 1
0 0 0
1 1 1


 and




1 1 1
1 1 1
0 0 0


.

According to definition 1 (the ordered multi-set model which is exploited in the current
paper) these are distinct populations despite the fact that they represent the same popu-
lation under the multi-set model.

An elementary step is a probabilistic rule which takes one population as an input and
produces another population of the same size as an output. For example, the follow-
ing elementary step corresponds to the fitness-proportional selection which has been
studied in detail by Wright and Fisher (see [10] and [2]).

Definition 4 An elementary step of type 1 (alternatively, of type selection) takes a given

population P =




x1

x2

...
xm


 with xi ∈ Ω as an input. The individuals of P are evaluated:




x1

x2

...
xm




→ f(x1)
→ f(x2)
...

...
→ f(xm)

A new population

P ′ =




y1

y2

...
ym




is obtained where yi’s are chosen independently m times form the individuals of P and
yi = xj with probability f(xj)

Σm
l=1f(xl)

.
In other words, all of the individuals of P ′ are among those of P , and the expectation

of the number of occurrences of any individual of P in P ′ is proportional to the number
of occurrences of that individual in P times the individual’s fitness value. In particular,
the fitter the individual is, the more copies of that individual are likely to be present
in P ′. On the other hand, the individuals having relatively small fitness value are not
likely to enter into P ′ at all. This is designed to imitate the natural survival of the fittest
principle.

Another two types of elementary steps involved in an evolutionary algorithm are recom-
bination and mutation. Detailed descriptions and some theoretical properties of these
elementary steps, such as finite-population versions of Geiringer theorem, have been
introduced and studied in [3], [4] and [5]. For the purposes of the current paper we shell
not be interested in the details of the elementary step of recombination. The only two
features of recombination which are of interest to us will be the following “week” form
of purity (see [8] for the original notion) and a rather week technical condition (closely
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related to the notion of a non-annihilating Markov transition matrix) which ensures irre-
ducibility of the corresponding Markov chain modelling the EA. Both of these notions
are defined below:

Definition 5 We say that an elementary step s is pure if an output of a homogenous
population (see definition 1) under the action of s is also homogenous with probability
1.

Definition 6 We say that an elementary step s is non-annihilating if ∀ y ∈ X ∃ x ∈ X
such that y can be obtained as an output of the elementary step s on the input x with
positive probability.

Definition 7 Mutation is an elementary step s determined by the mutation tuple (M, µ)
where M is some family of functions from Ω into itself containing the identity map
and µ is a probability distribution on M which assigns a positive probability to every

element of M. Given an input population P =




x1

x2

...
xm


, the output of the population

P under the elementary step s is the population P =




F1(x1)
F2(x2)

...
Fm(xm)


 where the functions

Fi ∈ M are sampled independently with respect to the probability distribution µ. We
say that mutation elementary step is ergodic if ∀x and y ∈ Ω ∃ a transformation F ∈M
such that F (x) = y. Let 1 : Ω → Ω denote the identity map. Then we shell say that
ε = µ(M−{1}) is the mutation rate.

Definition 8 A cycle is a finite sequence of elementary steps, say {sn}j
n=1, which are

either of type 1 or of type 2 and such that all of the steps in the sequence {sn}j
n=1 have

the same underlying search space and the same arity of input/output.

Remark 9 Intuitively, these steps are linked together in such a way that the output of
the step si is the input of the step si+1. This is why all of the steps in the same cycle must
have the same underlying search space and the same arity of input/output (otherwise the
input/output relationship does not make sense).

We are finally ready to describe a rather wide class of evolutionary heuristic search
algorithms.

3 How Does a Heuristic Search Algorithm Work?

A general evolutionary search algorithm works as follows: Fix a cycle, say C = {sn}j
n=1

(see definition 8). Now start the algorithm with an initial population P =




x1

x2

...
xm


 The
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initial population P may be selected completely randomly, or it may also be prede-
termined depending on the circumstances. The actual method of selecting the initial
population P is irrelevant for the purposes of the current paper. To run the algorithm
with cycle C = {sn}, simply input P into s1, run s1, then input the output of s1 into s2

... input the output of sj−1 into sj and produce the new output, say P ′. Now use P ′ as
an initial population and run the cycle C again. Continue this loop finitely many times
depending on the circumstances.

4 The Markov Chain Associated to an Evolutionary Algorithm

In [9] it has been pointed out that heuristic search algorithms give rise to the following
Markov process1 (see also [1], for instance): The state space of this Markov process
is the set of all populations of a fixed size m. This set, in our notation, is simply Ωm.
The transition probability pxy is simply the probability that the population y ∈ Ωm is
obtained from the population x by going through the cycle once (where the notion of a
cycle is described in section 3: see definition 8 and remark 9). The aim of the current
paper is to continue the investigation of the properties of the stationary distribution of
the Markov chain modelling EAs initiated in [5]. In the current paper we study the rate
of concentration of the stationary distribution of the Markov chain modelling EAs on
the homogenous populations.

5 Quotients of irreducible Markov Chains

Throughout the current section we shell be dealing with an irreducible Markov chain
M over a finite state space X . {px,y} denotes the markov transition Matrix with the
convention that px,y is the probability of getting y in the next stage given x. Suppose
we are given an equivalence relation ∼ partitioning the state space X . The main idea
of the current section is to construct an irreducible Markov chain over the equivalence
classes under ∼ (i.e. over the set X/ ∼) whose stationary distribution is compatible
with that of M. This construction is a slight generalization of the construction in (site
later):

Definition 10 Given an irreducible Markov chain M over a finite state space X deter-
mined by the transition matrix {px,y} and an equivalence relation ∼ on X , let π denote
the unique stationary distribution of the Markov chain M. Define the quotient Markov
chain M/ ∼ over the state space X/ ∼ of equivalence classes via ∼ to be determined
by the transition matrix {p̃U,V}U,V∈X/∼ defined as

p̃U,V =
1

π(U)

∑

x∈U
π(x) · px,V =

1
π(U)

∑

x∈U

∑

y∈V
π(x) · px,y

where px,V denotes the transition probability of getting somewhere inside of V given x.
Since V =

⋃
y∈V{y} it follows that px,V =

∑
y∈V px,y and hence the equation above

holds.
1 In the current paper we use the ordered multi-set representation.
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Intuitively, the quotient Markov chain M/ ∼ is obtained by running the original chain
M starting with the stationary distribution and computing the transition probabilities
conditioned with respect to the stationary input. If one starts with an arbitrary distribu-
tion and runs the process for a long period of time then the transition probabilities in
definition 10 serve as a good approximation to the transition probabilities induced by
the corresponding stochastic process. The following fact should not appear surprising
then:

Theorem 11 Let π denote the stationary distribution of an irreducible Markov chain
determined by the transition matrix {px,y}x, y∈X . Suppose we are given an equivalence
relation ∼ partitioning the state space X . Then the quotient Markov chain M/ ∼ is
irreducible and its unique stationary distribution π̃ is compatible with π in the sense
that for every O ∈ X/ ∼ we have π̃({O}) = π(O).

Proof. Since the original chain M is assumed to be irreducible, it follows that there
exists an n ∈ N such that for all x, y ∈ X we have pn

x, y > 0 where pn
x, y denotes

the probability that y is reached from x after exactly n time steps. This, in turn, is
equivalent to saying that there exists a sequence of states x1 = x, x2, . . . ,xn = y such
that pxi, xi+1

> 0. Let Oi denote the equivalence class of xi under ∼. Now we see that

p̃Oi,Oi+1 =
1

π(Oi)

∑

x∈Oi

∑

z∈Oi+1

π(x) · px,z ≥ 1
π(Oi)

· π(xi) · pxi, xi+1 > 0.

This shows that p̃n
O1,On

> 0. Since the equivalence classes are nonempty and and the
choices of x and y are arbitrary, it follows that p̃n

U,V > 0 ∀U , V ∈ X/ ∼. This
shows that the Markov chain M/ ∼ is irreducible and, hence, has a unique stationary
distribution π̃. The fact that π̃({O}) = π(O) is the stationary distribution of M/ ∼ can
now be verified by direct computation. Indeed, we obtain

∑

O∈X/∼
π̃({O}) · p̃O,U =

∑

O∈X/∼
π(O) · 1

π(O)

∑

x∈O

∑

z∈U
π(x) · px,z =

=
∑

x∈X

∑

z∈U
π(x)·px,z =

∑

z∈U

∑

x∈X
π(x)·px,z

by stationarity of π
=

∑

z∈U
π(z) = π(U) = π̃({U}).

This establishes the stationarity of π̃ and theorem 11 now follows.

Although theorem 11 is rather elementary it allows us to make useful observations of
the following type:

Corollary 12 Suppose we are given an irreducible Markov chain M over the state
space X , and let X = A ∪ B with A ∩ B = ∅. Suppose for every a ∈ A we have
pa, B < ε while for every b ∈ B pb, A > κ. Then, if π denotes the unique stationary
distribution of M, we have π(B) < ε

κ and π(A) > 1− ε
κ .

Proof. Let ∼ denote the equivalence relation corresponding to the partition {A, B} of
X . Now consider the Markov chain M/ ∼. This is a Markov chain determined by the
2× 2 transition matrix (

pA,A pB, A

pA,B pB, B

)
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where pA,B = 1
π(A)

∑
a∈A π(a) · pa, B < 1

π(A)

∑
a∈A π(a) · ε = ε and, likewise,

pB,A = 1
π(B)

∑
b∈B π(b) · pb, A > 1

π(B)

∑
b∈B π(b) · κ = κ. According to theorem 11,

Markov chain M/ ∼ is irreducible and its unique stationary distribution π̃ satisfies
π̃({A}) = π(A) and π̃({B}) = π(B). Moreover, by direct computation it is easy
to see that the stationary distribution of the Markov chain determined by the 2 × 2
transition matrix above (i.e. of the Markov chain M/ ∼) is π̃({A}) = pB,A

pA,B+pB,A
and

π̃({B}) = pA,B

pA,B+pB,A
. We finally obtain the desired inequalities π(B) = π̃({B}) =

pA,B

pA,B+pB,A
< ε

κ and π(A) = 1− π(B) > 1− ε
κ

Corollary 12 can be somewhat strengthened by observing that any power of a Markov
transition matrix determining an irreducible Markov chain also determines an irre-
ducible Markov chain having the same stationary distribution as the original one. Ap-
plying corollary 12 to every power of a Markov transition matrix then gives us the
following fact:

Corollary 13 Suppose we are given an irreducible Markov chain M over the state
space X , and let X = A ∪ B with A ∩ B = ∅. Suppose for every a ∈ A we have
pn

a, B < εn while for every b ∈ B pn
b, A > κn. Then, if π denotes the unique stationary

distribution ofM, we have π(B) < inf{ εn

κn
|n ∈ N} and π(A) > 1− inf{ εn

κn
|n ∈ N}.

6 Main Results:

Corollary 13 readily implies some basic observations about the rate of concentration
of the stationary distribution of Markov chains modelling EAs. Our bound applies to a
rather wide class of EAs described in the definition below:

Definition 14 Let A denote an evolutionary algorithm determined by a cycle C =
{sn}j

n=1. We say that A is ergodic if there exists an i such that si is the elementary
step of ergodic mutation and sk is non-annihilating for every k with 1 ≤ k ≤ j (see
definitions 6 and 7). Moreover, if, in addition, all but one of the elementary steps in C
are pure (see definition 5), we say that A is standard.

First of all, we need to establish the irreducibility of the Markov chain modelling EAs
in the framework of the current paper:

Proposition 15 Suppose we are given an ergodic algorithmA (see definition 14 above).
Then the Markov chain modelling the algorithm A (see section 4) is irreducible.

Proof. Let C = {sn}j
n=1 denote the cycle determining the algorithm A. Suppose, si is

the elementary step defining mutation. We shell prove that the Markov transition matrix
associated to the algorithm A has all positive entries (which suffices for irreducibility).
Indeed, fix populations x and y ∈ Ωm. Construct a sequence of states (populations)
x = x1, x2, . . . ,xi as follows: given that xl is already constructed, let xl+1 be any
population such that xl+1 is obtained with positive probability as an output of the ele-
mentary step sl on the input xl (such a population exists since the total probability of
getting at least somewhere is 1 > 0). Now choose a sequence yi+1, yi+2, . . . ,yn = y

7



recursively as follows: yi−1 is chosen so that the elementary step si−1 produces y on
the input yi−1 with positive probability. Such a yi−1 can be found thanks to the as-
sumption that the EA A is standard (see definitions 14 and 6). Since the elementary
step si is an ergodic mutation, it follows that the probability of getting from xi to yi+1

upon the application of si is positive. It follows now that the probability of obtaining y
from x upon the completion of the cycle C is at least as big as the product of positive
numbers which is again positive and the desired conclusion now follows.

The main idea of what follows is to apply corollaries 12 and 13 to the subset H ⊆ Ωm

of the homogenous populations and its complement.

Corollary 16 Suppose we are given a standard algorithm A with mutation rate ε. Let
π denote the unique stationary distribution of the Markov chain associated to the algo-
rithm A. Then we have π(H) ≥ 1− mm+1

(1−ε)m ε.

Proof. This is an immediate application of corollary 12. Indeed, the event of destroying
a given homogenous population is equivalent to the event of applying the nonidentity
transformation to either one of the elements of that population and so is a union of
events happening with probability ε each. Hence the probability of destroying a given
homogenous population is bounded above by mε. The probability of passing from a
non-homogenous population to a homogenous one is at least as large as the probability
of consecutive m independent drawings of the most fit individual. The probability of
picking the most fit individual in a population is bounded below by the probability of
picking a given individual form a population where all the individuals have the same
fitness, which is 1

m . Doing so consecutively and independently m times is 1
mm . After-

wards, with probability (1 − ε)m everyone stays the same. The desired equation now
follows immediately from corollary 12

The bound in corollary 16 is a rather weak one. This is not too surprising the more so
that it applies to a wide class of algorithms. One should be able to improve the bound in
corollary 16 for specific types of algorithms using corollary 13 instead of corollary 12.

Corollary 17 Suppose we are given a standard algorithm A with mutation rate ε. Let
T (x) denote the random variable measuring the number of steps it takes for an EA to
reach a homogenous population starting with the population x.Let π denote the unique
stationary distribution of the Markov chain associated to the algorithm A. Then we
have π(H) ≥ 1− 2m·maxx∈Ωm−H E(T (x))

(1−ε)2m maxx∈Ωm−H E(T (x)) ε.

Proof. First note that

∀x ∈ Ωm −H pL
x,H ≥ P (T (x) < L) · (1− ε)Lm.

By Markov inequality we have

P (T (x) < L) ≥ 1− E(T (x))
L

≥ 1
2

for L ≥ 2E(T (x)).

We then deduce that

p
2 maxx∈Ωm−H E(T (x))
y,H ≥ 1

2
(1− ε)2m maxx∈Ωm−H E(T (x)) ∀ y ∈ Ωm −H.
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Just like in the proof of corollary 16, we have

p
2 maxx∈Ωm−H E(T (x))
y,Ωm−H ≤ m · max

x∈Ωm−H
E(T (x))ε

which finally gives π(H) ≥ 1− 2m·maxx∈Ωm−H E(T (x))

(1−ε)2m maxx∈Ωm−H E(T (x)) ε

7 Conclusions and Future Work:

In the current paper we constructed a quotient (or, in the language used by the evolu-
tionary computation community, a “coarse graining”) of an irreducible Markov chain
with respect to an arbitrary equivalence relation. As an illustration of how this construc-
tion can be useful we established some inequalities which tell us haw fast the stationary
distribution of a Markov chain modelling an EA concentrates on the homogenous pop-
ulations (populations consisting of the repeated copies of a single individual only). It
was shown (see corollary 12 and 13 that the stationary distribution value of the set of
homogenous populations is bounded below by 1−kε where ε is the mutation rate and k
is a multiplicative constant depending on the population size. It should be noted that a
similar result was obtained in [7] by completely different methods. Our method seems
to show a little more though. Corollary 13 demonstrates that this bound is closely related
to the maximum over all populations x of the expected waiting times until we reach a
homogenous population starting with the population x.) We hope that the quotient of
Markov chains construction can be useful for other purposes as well.
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