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Abstract. Dynamic processes frequently occur in many applications.
Visualizations of dynamically evolving data, for example as part of the
data analysis, are typically restricted to a cumulative static view or an
animation/sequential view. Both methods have their benefits and are
often complementary in their use. In this article, we present a hybrid
model that combines the two techniques. This is accomplished by 2.5D
drawings which are calculated in an incremental way. The method has
been evaluated on collaboration networks.

1 Introduction

Dynamic graphs occur in many applications such as software visualization, an-
imation of graph algorithms or social network analysis. Most of the time a dy-
namic graph is given by a sequence of graphs that each are snapshots of an
ongoing process. While the visualization of individual points in time helps to un-
derstand the current situation, a visualization of the whole sequence can reveal
information about the evolution in general. So far most visual representations
use either a static cumulative view of the sequence or a dynamic animation.

We describe a new hybrid model for dynamic graph drawing that allows a
simultaneous representation of both, a cumulative and an animated view. Both
views are integrated in such a way that the hybrid layout reveals each of them by
changing the perspective or adjusting visual effects, like color or transparency.
It is assumed that not only the graph structure but also weights of nodes and
edges change over time. A benefit of our approach is the integration of the past
evolution of weights by incorporating a cumulative as well as a regressive change,
i. e., the weights of nodes and edges reflected in the drawing can also decrease
over time. Our approach uses 2.5D drawings where time is represented by the
third dimension. However, the technique can be generalized to d.5D drawings
for arbitrary dimensions d.
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Multidimensional visualizations where one or more axes are fixed have been
proposed frequently for network data from various applications. Related methods
use the third dimension to display structural information [3], a hierarchy [4, 8,
1], or an evolution over time [2]. Other visualization techniques for dynamics
that are based on conventional 2D or 3D drawings or animations are [9, 11, 5].
See also [6] for an overview and [10] for a more recent work.

The paper is organized as follows. Section 2 introduces our model and the
corresponding layout technique. It also includes a short discussion of its bene-
fits and potential drawbacks. The special case of evolving graphs and updating
dynamic layouts are topic in Section 3. The results are presented in Section 4.
For illustrative purpose, data from the DBLP1 are used. Finally, Section 5 gives
the conclusion.

2 Hybrid Model

In this section, the basic hybrid model is introduced. Section 2.2 and 2.3 provide
the description on the model and the algorithmic realization. This is followed by
a short discussion of accumulating weights over time while preserving the mental
map.

2.1 Notation

A dynamic graph G is given by a mapping of a time interval T into the set of
weighted graphs. In the following, we assume that there are only finitely many
different images of G and G(t) = (V (t), E(t)) denotes the graph at time t ∈ T .
Without loss of generality we assume that T can be covered by left-closed and
right-open intervals [t, t′[ such that G is fixed on each such interval, and changes
on subsequent intervals. For any given point in time t ∈ T , we denote the earliest
time of the left-adjacent corresponding interval with pred(t) and the earliest time
of the right-adjacent corresponding interval with succ(t). Let G(t) = (V (t), E(t))
be the graph at time t ∈ [t1, t2[, then the nodes that have not been in any
previous graph are denoted by Vnew (t) := {v ∈ V (t) | ∀t′ < t1 : v 6∈ V (t′)}
and corresponds to ‘new’ nodes. Similarly Vold (t) := V (t) \ Vnew (t) denotes the
‘old’ nodes. Let ωt denote the weight of a node respectively edge at time t, i. e.,
ωt : V (t) ∪ E(t) → R+

0 .
In this way a dynamic graph corresponds to the observations of the (dynamic)

process and approximates it with a step function. The changes need not be ho-
mogeneously distributed over time and additional observations could be created
artifically using interpolation. Furthermore, it reflects the realized changes in the
dynamic graph drawing setting.

2.2 Paradigm

The original dynamic graph drawing problem has two realizations: First, the cu-
mulative view, which consists of one static layout that emphasizes major trends
1 http://www.informatik.uni-trier.de/˜ley/db/
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during the evolution but hides sporadic fluctuations in the graph structure. Sec-
ondly, the animated or sequential view, which requires a static layout for each
graph that highlights current changes while preserving the general mental map.
Both have in common that they are based on the whole sequence. We address a
more general problem: Given a dynamic graph G and its time interval T := [0, T [.
For any subinterval T ′ = [t1, t2[ of T construct suitable layouts that represent
the evolution during T ′ based on the history of the interval [0, t1[.

ti
m

e
Fig. 1. Hybrid model

Our hybrid model consists of one 2D lay-
out for each graph of a sequence embedded
layer-wise in 3D where the additional dimen-
sion represents the time. A sketch of this sit-
uation is given in Figure 1. To be more pre-
cise, we use one layer for the history [0, t1[ and
one layer for each different graph in the inter-
val [t1, t2[. By tuning the perspective and the
individual properties of the layers, the origi-
nal views, i. e., cumulative and sequential, are
obtained: Looking along the time axes (in its
negative direction) yields the cumulative view
while showing only one layer at a time results in the sequential view. A third
kind of view is obtained when identical nodes in different time slots are con-
nected and the perspective is parallel to the layers. It shows the nodes’ changes
over time. The model is realized by an incremental layout algorithm. First, the
history-layer is initialized with a suitable layout obtained by some established
algorithm. For every additional layer the nodes are split into two groups, old and
new nodes. The old nodes can be easily placed respecting their former positions.
The new nodes first need a good initial placement, before the whole layout can
be optimized to meet esthetic criteria as well as preserving the mental map.

2.3 Algorithmic Framework

The incremental algorithm, which is associated with the hybrid model, is given in
pseudo code in Algorithm 1. It has a large degree of freedom that allows to derive
several versions which are optimized for running time, achieved quality, or de-
pendency of temporal knowledge. Especially the last issue also provides means
to layout dynamic graphs where only partial information is available during the
process. However, a fundamental problem might occur through lack of (future)
knowledge, i. e., the position of a connected component which is completely con-
tained in Vnew (t) has great influence on the overall quality of a drawing. But
the component cannot be properly placed without using information about its
future role. Section 3.1 discusses these aspects for dynamic graphs with complete
information (evolving graphs).

In the following, some simple methods for Step 1 and 2 are stated. For the
initial placement, we suggest a two step approach which combines a barycentric
layout with a localized force-directed relaxation. In this way, new nodes are
close to their older “anchor” nodes and ‘uniformly’ spread. This requires that
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every connected component of G(t) has at least one node in Vold (t). As for the
general optimization step, a modified force-directed approach works well if no
further layout properties have to be ensured. The modifications mainly target
the incorporation of node and edge weights, i. e., large/heavy nodes should be
well distributed, thick/heavy edges should be short.

2.4 Adjustments for Weights and Position

As mentioned in the introduction, the hybrid model is capable of dealing with
decreasing weights. In fact, we propose an updating of the weights of nodes and
edges to incorporate both their current and their accumulated weight. Basically,
there is a tradeoff between old, heavy, and inactive nodes versus young, light,
and extremely active nodes. For every interval [t2, t3[ and its left-adjacent inter-
val [t1, t2[, we define a semi-cumulative version ω̃ of ωt as shown in Equation (1).

ω̃c(v, t2) :=
ω̃(v, t1)

s
+

ωt2(v)
t2 − t1

continuous version

ω̃d(v, t2) :=
ω̃(v, t1)
st2−t1

+ ωt2(v) discrete version.
(1)

If there is no left-adjacent interval, then ω̃(v, t) := ωt(v). The function ω̃ can
be extended to a continous function via interpolation. Depending on a scaling
parameter s, different behavior is favored, i. e., for s = 1 it is the standard cu-
mulative version, for s > 1 young and active nodes are preferred over old and
inactive nodes while it is vice versa for 0 < s < 1. The difference between the
two versions is the interpretation of time, i. e., the continuous version assumes
that the weight ωt(v) has been accumulated since the last observation t1 while
the discrete version interpretes the weight ωt(v) as an instantaneous impulse at
time t and that no other impulse has occurred since time t1. Both models can
be justified, the continuous weighting reflects steady growth in contrast to sin-
gleton events during an elementary time window that is imitated in the discrete

Algorithm 1: Generic hybrid layouter

Input: dynamic graph G with time interval [0, T [ and a subinterval [t1, t2[⊆ [0, T [

initialize G([0, t1[) with a suitable layout
t← t1
while t ≤ t2 do

adjust weights on nodes and edges
for v ∈ Vold (t) do

initialize v with its last used position

1 initialize Vnew (t)
2 optimize G(t) to meet esthetic criteria while preserving the mental map

t← succ(t)

project each G(t) to the t.th layer
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version. In collaboration networks which are restricted to certain publications,
like certain conference publications only, one would prefer the discrete version
over the continuous one because of the time dependency.

Similar to other approaches, we introduce additional forces to ensure that the
movement of old nodes stays uniform. There are several different ways to anchor
a node to its copies in different snapshots. The simplest approach introduces an
edge between two identical nodes in consecutive snapshots of ideal length zero.
Thus the copies of a node are connected via a path. By introducing additional
edges the movement of a node can be further restricted. In the extreme case, all
copies of a node are connected to a clique. This type of connection ensures best
to preserve the mental map but might slow down the actual layout computation.
However, since only one (time) layer is active at a point in time t, there are only T
additional positions at which a node might be anchored, where T is the number
of previous intervals. Thus even a clique-like connection between identical nodes
results in only O(T · |V (t)|) additional active edges which does not slow down
the computation too much. Actually, most of the known techniques to control
the movement of nodes can be directly integrated in the hybrid model and its
incremental layout method.

3 Extensions of the Hybrid Model

After the basic hybrid model has been introduced in Section 2, two adjustments
for specific tasks are presented. First, the modification for evolving graph, i. e.,
dynamic graph where the whole function is given, and second, a dynamic version
of the dynamic graph drawing problem, i. e., given a dynamic graph with a layout,
find an extention of this layout if additional time layers are introduced.

3.1 Adjustments for Evolving Graphs

As already mentioned in Section 2.3, incremental layouts cannot find a good
position for connected components consisting of only new nodes. Algorithms
that are based on the whole sequence avoid this problem through their ‘future’
dependencies. For example, in [5, 10] identical nodes in consecutive (time-)layers
are connected with an edge. During the minimization of the overall forces, a good
position of the connected components in early layers is ensured by the position
in subsequent layers in which the component has been connected to an already
placed part. Thus the relative placement is propagated back in time. A similar
scheme can be integrated in the hybrid model: First, the earliest succeeding
time is calculated in which the component is connected to some already placed
nodes. This layer is then used to estimate the relative position of the component
to its anchor nodes and projected back. The optimization step (Algorithm 1,
Step 2) treats the components independently and uses the relative placement to
ensure that none of them are interfering with each other. If a component has
no anchoring nodes, its placement is independent from the remaining graph and
can be done arbitrarily. This additional step can be done in linear time plus
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the time for finding the relative position, which depends on the involved layout
technique (Step 1 and 2).

Potential drawbacks are the overhead, if several connected components have
anchoring nodes in different time layers, then the relative position for each com-
ponent involves a ‘whole’ layout step for each corresponding time-layer. Also, the
case where some connected components of a time layer get connected with each
other before anchoring nodes appear is a bit problematic. But the above method
can be extended to include these cases as well. A different issue is the impact on
the overall quality, i. e., because only a relative placement is estimated, certain
areas of the layout can become wide-stretched while others are too condensed.
This usually happens if the components are rather sparsely connected. By man-
ually adjusting the strength of edges, one can counterweight this effect, however
simultaneously diminish the relation between distance in the layout and edge
weights.

3.2 Updating Layouts of Dynamic Graphs

In contrast to the connected components, the hybrid models benefits the ex-
tension or update of the dynamic graph layout when additional data become
available. In other words, given two dynamic graphs G and G′ such that G′ re-
fines G, i. e., both graphs coincide on some parts of their time interval and differ
on the remaining, and a layout L for G, find a new layout L′ for G′ such that
if G(t) = G′(t) then also L(t) = L(t′). This can be interpreted as constraint
dynamic graph drawing problem.

Independent of the algorithm, one can always use interpolation of two ad-
jacent fixed time layers for intermediate layers. Using the hybrid model, our
approach is to refine the interpolation via bisection, i. e., calculating a rough
estimate of the layout for an intermediate layer and using this as an auxiliary
layout for the interpolation, more precisely: Let [t1, t2k[ be an interval on which G
is constant and t1 < t2 < · · · < t2k be a subdivision such that G′ is constant
on [ti, ti+1[ for 1 ≤ i < 2k and differs from G. First, a rough placement L(tk) for
time tk is estimated and afterwards recursively applied to the interval [t1, tk[.
Upon reaching time t2, an ‘exact’ placement is calculated instead of the rough
placement. Afterwards layouts for t3, . . . , tk are determined in the incremental
fashion of the hybrid model. The process is then repeated on the interval [tk, t2k[.

Instead of the bisection approach one could only use the incremental algo-
rithm to interpolate the interval [t1, t2k[, however, if the intervals have many
unknown intermediate points or the layout for t1 and t2k differs a lot, then the
overall quality significantly drops.

Consistency So far, the hybrid model and other dynamic visualization algo-
rithms behaved similar to the update problem. However, there is a difference
when comparing the L′ with the layout L′′ for G′ ignoring the constraint L. A
fully time-dependent algorithm, like the one in [10] can produce very different
results for L′ and L′′, while general incremental algorithms will give the same
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partial layouts on the interval [t0, t1[ where t0 is the earliest time and t1 the time
of the first deviation of G and G′.

Also, the hybrid model will produce the same partial layout on [t0, t1[. Fur-
thermore, if the modifications of the intermediate time slots are small or even
consistent with our continual weighting (Section 2.4), then the layouts L′ and L′′

of the hybrid model will be very similar. The following observation verifies this
claim: If the introduced modifications are small, then both graphs, the original
and the modified one, should have similar high-quality layouts. Moreover using
a local optimum of force-direction layout of the original graph as initialization
for the modified one will quickly convert to a close local optimum.

Thus the similarity of L′ and L′′ on a refined interval [t, t′[ highly depends
on the similarity or consistency of the intermediate graphs and the impact on
previous modifications but not on succeeding ones. An extreme case would be
consistent refinement together with a large modification at the end of the se-
quence. Traditional algorithms that use the whole available information would
produce very different layouts L′ and L′′ while incremental and especially the
hybrid model would result in very different layouts upto the heavy modification.
However, this is paid in terms of achieved overall layout quality.

4 Results

We illustrate some results of our hybrid model for citation networks extracted
for the DBLP which is a well-maintained database with approximately 500,000
articles in the area of computer science.

4.1 Data Sets

DBLP maintains information of certain publications. We extracted the overall
collaboration graph, i. e., nodes are people and edges connect to nodes if they
have common publications. Because the publication activity varies a lot and a
single publication can have up to 36 authors, we weighted the edges correspond-
ingly. The weight of a single publication is reciprocal to the number of authors
and the weight of all publications in a year is the sum of the individual weights.
The weight of a node is the sum of the weights of its incident edges (for a given
year).

4.2 Visualizations

In the following, we present several drawings of collaboration networks. In each
visualization, there are the following correspondences: node size and cumulative
publication weight, node color and time, edge thickness and publication weight,
edge color and time. If an edge has a checked pattern, it connects two identical
nodes in consecutive snapshots. When speaking of cumulative weight, we always
refer to the continuous version shown in Equation (1).

7



(a) evolution of the collaboration
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Fig. 2. Collaboration between Giuseppe Di Battista (GB), Ioannis Tollis (IT), Peter
Eades (PE) and Roberto Tamassia (RT) between 1986 and 2000.

A first example is the authorship of [7], which is one of the first books about
graph drawing. Figure 2(a) shows the evolution of their collaboration between
1986 and 2000. It is clearly visible when common publications have occurred,
although individual publications are not identifiable. For example the first col-
laboration between the four authors happened in 1994. Also the node size re-
flects the continuity of cooperations between authors. However, the visualization
in Figure 2(a) is limited to the four authors and only their collaboration. Fig-
ure 2(b) shows the publication weight of each author within the whole collabora-
tion network. Also, Figure 2(a) illustrates the effect of consistent modifications
(Section 3.2) quite well. Between 1991 and 2000, the modifications have been
very small, i. e., some reweighting on the nodes and edges, one node appeared
while another node disappeared for some time, but the overall layout has been
quite stable.

The second example is the collaboration between Ulrik Brandes, Dorothea
Wagner and their direct coauthors. Both have published several articles in the
graph drawing area and others. Figure 3(a) shows the evolution for 2001 and
2002. The whole network is rather dense, a static cumulative view (without edge
weights) is given in Figure 3(c). The static graph has 50 nodes and 161 edges
while the time-expanded graph has 206 nodes and 434 edges. Some individual
layers are presented in Figure 3(d) and 4 and present the collaboration at specific
points in time. In every layer only those nodes that have published something
are shown. Again Figure 4(a) and 4(b) clearly indicate that the node size is
only relative to the selected network, i. e., nodes like Peter Eades, Joe Marks
or Michael Kaufmann who have a large weight in the whole network (see for
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(a) evolution between 2000 and 2001
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Fig. 3. Collaboration between Ulrik Brandes (UB), Dorothea Wagner (DW) and their
direct coauthors between 1989 and 2002. (Other abbreviations are SC for Sabine Cor-
nelsen and PE Peter Eades.)
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(a) 1999 (b) 2003

Fig. 4. Snapshots of the collaboration between Ulrik Brandes, Dorothea Wagner and
their direct coauthors at different points in time.

example Figure 2(b)) have a rather peripheral role in this collaboration network.
The balance between old and active nodes and young and active nodes is also
visible in Figure 3(a). As shown in Figure 3(b), Ulrik Brandes and Dorothea
Wagner have roughly the same amount of weighted publications since 1997.
However, Dorothea Wagner has been active since 1989, while Ulrik Brandes
started in 1997. However, in the evolutionary view both have a similar size which
reflects the similar accumulated publication weight. Using a purely cumulative
weight, this would not be the case. Finally, Figure 5 shows the collaboration in a
broader sense, i. e., a network with increased number of intermediate coauthors.
The visualization shows a sparse connection between the main part that contains
both Ulrik Brandes and Dorothea Wagner and a peripheral part.

The final example is a collection of some program committee members of the
International Symposium on Graph Drawing. Figure 6(a) shows a 2D project of
the evolution between 1986 and 2003 which mask the time axis while a perspec-
tive view is given in Figure 6(b). This example reflects both that certain groups
are formed over time that collaborate very closely, but also that occasional col-
laboration tend to be repeated. Some of the artifacts on the layer 2003 are due
to incomplete data.
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Fig. 5. Partial view of the collaboration between Ulrik Brandes and Dorothea Wagner
using more intermediate coauthors.

(a) top view (b) perspective view

Fig. 6. Collaboration between some PC member between 1986 and 2003. (Abbrevia-
tions are GL for Guiseppe Liotta, PE Peter Eades and SK for Stephen Kobourov.)
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5 Conclusion

We introduced a hybrid model for drawing dynamic and evolving graphs based
on 2.5D visualizations. It combines several aspects of static cumulative views
and animated/sequential views. The obtained layout permits the general view
of the evolution while integrating individual aspects of certain points in time as
well as cumulative and regressive changes of weight functions. The method has
been evaluated on networks modeling collaboration. In the layouts, structural
important nodes were well visible and long-existent nodes did not mask younger
nodes. Also sparsely connected components were spatially separated.
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