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Abstract. A new peak picking algorithm for the analysis of mass spectrometric
(MS) data is presented, which is independent of the underlying machioe-o
ization method and is able to resolve highly convoluted and asymmetric signals
The method uses the multiscale nature of spectrometric data by first dgtibetin
mass peaks in the wavelet-transformed signal. Then, a given asyiomedk
function is fitted to the raw data. In an optional third stage, the resulting fit can
be further improved using techniques from nonlinear optimization. Irirasth

to currently established techniques (e.g. SNAP, Apex) our algorithmléstab
separate overlapping peaks of multiply charged peptides in ESI-MS tikta o
resolution. Its improved accuracy with respect to peak positions makeslt-

able preprocessing method for MS-based identification and quantificatjuer-
iments. The method has been validated on a number of different arthteate
cases, where it compares favorably in both runtime and accuracy witbntly
established techniques. An implementation of the algorithm is freely available in
our open source framework OpenMS.
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1 Introduction

Many applications, e.g. quantitative proteomics as wefbaprotein identification, use
the precise information about mass spectrometric peakspidcess of extracting this
information, that means the conversion of the "raw” ion dodata acquired by the
mass spectrometer into peak lists for further processingusily calledoeak picking

in the Mz dimension. This is often done by vendor software bundled with the nmaehi
However, it is often desirable to have more control over grizcess than is possible
with the limited intervention allowed by the vendor progsam

Two main objectives a peak picking algorithm has to achi®uest, the peak positions
should be estimated as near as possible to the true massge elatue of the measured
compound. This is especially important for identificatidgoasithms. Second, the algo-
rithm should run in real time, that means processing the slaald never exceed the
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time of acquiring it. Among the main difficulties in peak picy are: i) there is often
considerable asymmetry in the peaks which makes it hardrwpate a correct peak
position; ii) depending in the charge state and the resmiudf the machine convoluted
peaks need to be separated.

The above points were addressed by several recent publisfit?,3,4]. Strittmater
and coworkersd] use a fit of a Gaussian mixture to model the observed asyrgmetr
In connection with a calibration method for TOF machineytaehieve a considerable
improvement in mass accuracy for non convoluted ESI-TOR.d&mpka et al4]
elaborate on this mixture modelling and test also otherungs like a Lorentzian and
a Gaussian curve. They compare their results to the onemebtithy commercial peak
picking algorithms (SNAP) and conclude that they perforrtdyefor most peaks. For
small and considerably skewed peaks the improvement inacgis up to fivefold. The
results were obtained on highly resolved MALDI-TOF datahwiit convoluted peaks,
since these algorithms require baseline or close to basséiparation of isotopic pat-
terns.

In this paper we describe an algorithm that addresses thesabhentioned goals. It
computes accurately the mass over charge ratio not onlydtfresolved, but also for
convoluted data using an asymmetric peak shape. In additdmes so in real time
and does not make assumptions about the underlying machiimmirzation method
(MALDI or ESI), which makes the algorithm robust for diffetteexperimental settings.
This is achieved by addressing the problem from a signalétiegoint of view, which
tells us that spectral data like MS measurements are of amenhy multiscale nature.
Different effects, typically localized in different fregncy ranges, add up to result in
the final signal. In the following, we will assume that the exmentally obtained sig-
nal s can be decomposed into three such contributions: a higluémrcy noise term
n, a low-frequency baseline or background teimand the informatiori we are in-
terested in, often referred to as the analytical sighpWherei occupies a frequency
range in between noise and baseline. The algorithm preshete directly exploits the
multiscale nature of the measured spectrum. This becomesig® with the help of
a Continuous Wavelet Transform (CWT) — a mathematical todiqadarly suited for
the processing of data on different scales, which presémé@snation about the local-
ization of different frequencies in the signal in a nearioat manner. §]. Using the
CWT, we can split the signal into different frequency rangekength scales that can
be regarded independently of each other. Apparently, fgpét the signal at the correct
scale —in our case, a rough estimate of the typical peak widifiectively suppresses
both baseline and noise, keeping only the contribution duled analytical signal. This
decomposition allows us to determine each feature of a petileidomain from which
it can be computed best, i.e., either from the frequencyearighe analytical signal
the full signals, or from a combination of both. Our algorithm is a two-steghtgique
that first determines the positions of putative peaks in tlealét-transformed signal
and then fits an analytically given peak function to the dathaat region. In an optional
third stage, the resulting fit can be further improved usexhhiques from nonlinear
optimization.

The method has been validated on a number of different at@tbtast cases, where it
compares favorably in both runtime and accuracy with ctilyerstablished techniques.
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The algorithm has been implementedGn+. This implementation is freely available
in our open-source framework OpenM$[

In Section2 we explain our algorithm (for a more detailed presentateEm]) and
describe one data set we used. In Sec8ame demonstrate that our algorithm leads
to accurate predictions of the mass over charge positiordandnvolutes overlapping
peaks more accurately than the vendor software. Finally iseuds further develop-
ments in Sectiod.

2 Methods

2.1 Thegeneral scheme of our algorithm

In the following we explain the general scheme of our two gteak picking algorithm.
Figurel shows the workflow of the first step, tipeak detection.

Fig. 1. Workflow of the peak detection: 1. Compute the CWT, 2. Searchdak’s max-
imum position, 3. Search for peak’s endpoints, 4. Estimagecentroid, 5. Determine
the height

1. Compute the wavelet transform using the so called Marr Wavelet on a scale that
correspond to the typical width of the peaks.

2. Starting from the maximum position in the wavelet transfsear ch for thepeak’s
maximum position in the raw data. Since it is known that at least for symmetric
peaks, the maximum position in the CWT coincides with the mmaxn position in
the data @] and is a good first estimate even for asymmetric peaks.

3. Search for the peak’s endpoints. Defining the “ends” of a peak shape becomes
difficult when effects like noise or overlapping of peaks éé&v be considered. In
this case, we cannot expect that the peak’s intensity drelpsvba given threshold
before the next peak’s area of influence is reached. To shisgtoblem, we start
at the maximum position and proceed to the left and right eittier a minimum
is reached, or the value drops below a pre-defined noisehibicesA minimum
might either be caused by the rising flank of a neighborindcpaacould be a mere
noise effect. To decide between these two cases, we coreidér the CWT in
the neighborhood, where noise effects are typically smembtiut and peaks can be
clearly discerned.

4. Estimate the peak’s centroid by an intensity-weighted average of the cap of the
peak, which is defined as the consecutive set of points nekietonaximum with
intensity above a certain percentage of the peak’s heigh.
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5. Determinethe height.

Using the computed peak parameters of the first step, we &dadxtract addi-
tional information about the peak shape 2 in a second step of the algorithm.
In the literature, several different analytical expressithave been proposed for the
representation of mass spectrometric peaks. Since to awl&dge no universally ac-
cepted peak shape exists, our algorithm can fit the dataferelit peak functions. In
the current implementation, we use asymmetric Lorentzi@nof hyperbolic secans
squared &) functions. but other peak shapes like double Gaussiarige{®i4] can be
easily included. A peak can be fitted to the raw data in seveagb. In our implemen-
tation, we have chosen to use the peak’s previously detedréentroid and the area
under the experimental signal. Fitting the area of the peddnaatically introduces a
smoothing effect, yields very good approximations to thginal peak shape, and is
extremely efficient, since the peak’s width can be computenhfits area in constant
time for the functions considered here. Figarghows the workflow of the second step.

6. Estimate the area of the left peak’s half from the left endpoint until the peak’s
maximum position.
7. Fit a symmetric hyperbolic secans squared S; function to the left peak side,
that has the same left area, maximum position and heigheashpeak.
8. Estimate the area of theright peak’s half from the maximum position until the
the right peak endpoint.
9. Fit a symmetric hyperbolic secans squared S,. function to theright peak side,
that has the same right area, maximum position and heigheasitv peak.
10. The resultingissymmetric peak shape S consists of the left half of; and the right
half of S,.:
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Fig. 2. Workflow of the second step of the peak picking algorithm.girRate the peak’s
left area, 7. Fit a peak function to the left, 8. Estimate thakiright area, 9. Fit a peak
function to the right, 10. Define the asymmetric peak shape

At this stage of the algorithm, the fitted analytical destoip is typically in very
good correspondence with the experimental signal. Toduithprove the quality of the
fit, the correlation of the resulting peaks with the expeniaédata can be increased in
a subsequent, optional optimization step. This is of paldicimportance in two cases:
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first, if neighboring peaks overlap strongly enough thay tbennot be fitted well indi-
vidually, and second, if the resolution of the experimedtdh is low.

Optimzing the peak parameter. Let us assume that we have found several over-
lapping peak functions. In the previous stage, each of tlakpbas been fitted inde-
pendently of the others, but for a true separation, we neéttte sum of all peaks to
the experimental signal. This can be achieved using stdridanniques from nonlinear
optimization, like the Levenberg-Marquardt algorithih@].

2.2 Sample preparation and data generation

Data set A was obtained from a peptide mix (peptide standards mix #8268 Sigma
Aldrich) of nine known peptides (bradykinirFj, bradykinin fragment 1-58), Sub-
stance PH), [Arg®]-vasopressing), luteinizing hormone releasing hormone bombesin
(@), leucin enkephaling), methionine enkephalin{), oxytocin (D)). Sample concen-
tration was 0.25 ngi, injection volume 1.Qul. HPLC separation was performed on a
capillary column (monolithic polystyrene/-divinylbense phase, 60 mm x 0.3 mm)
with 0.05% trifluoroacetic acid (TFA) in water (eluent A) aBd5% TFA in acetoni-
trile (eluent B). Separation was achieved at a flow of /2/nin at 50°C with an iso-
cratic gradient of 0-25% eluent B over 7.5 min. Eluting pegs$i were detected in a
quadrupole ion trap mass spectrometer (Esquire HCT frorkéByBremen, Germany)
equipped with an electrospray ion source in full scan mode G00-1500).

Data set B The MALDI-TOF mass spectrum of a tryptic digest of bovineuser
albumin (BSA, Aldrich) was acquired from a preparation ofaanount correspond-
ing to 50 fmol of the digested protein. In brief, cystines eveeduced by incubation
with dithiotreitol (DTT) followed by carbamidomethylatiausing iodoacetamide, prior
to proteolysis. The sample was prepared for MALDI using tharir-affinity sample
preparation method with alpha-cyano-4-hydroxycinnamid as the matrix11]. Anal-
ysis of positively charged ions in the m/z range 500-5000pestormed on an Ultraflex
Il LIFT mass spectrometer (Bruker Daltonics, Bremen) ofggtén the reflectron mode
and using Panorama(TM) delayed ion extraction. A nearkimigr calibration was per-
formed using a peptide standard mixture.

3 Results

Assessing the quality of a peak picking scheme is a noratrprioblem for which no

straight-forward and general approach exists. Obvioagslgh an algorithm should com-
pute the peak’s centroid, height, and area as accuratelpssihe while featuring a
high sensitivity and specificity. To determine the accurafye.g., a peak’s centroid,
the correct mass value is needed, and thus peak pickingthlgsrare typically tested
against a spectrum of known composition. Comparing theufeatof the peaks found
in the spectrum with the theoretically detected ones theesgh measure of the algo-
rithm’s capabilities, typically expressed in the averagecdute and relative deviation
(measured in ppm) from the expected values. Unfortunatiebge results are heavily
affected by the quality of the experimental data, and aoldliti issues like calibration.
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Typically peak picking algorithms are tested against optimell-resolved and cali-
brated spectra. We chose to use a more realistic settingpithsThe spectra we chose
for evaluation contain badly resolved parts with many aeping peaks. Unfortunately
this means that we cannot directly compare our evaluatieultseto published peak
picking results on idealized spectra. To still be able to para our results to those of
well established techniques we use the vendor supplieddBiDiataAnalysis 3.2 soft-
ware on the same spectra as a reference.

To assess the performance of our peak picking scheme on &lsetMS runs on the
peptide mixture (dataset A), we determined how often eaghigee was found in the
expected retention time interval, whether the correspaniiotope patterns (given by
at least three consecutive peaks) were discovered andasegpaand computed the re-
sulting relative errors of the monoisotopic peak’s certrmdmpared to the theoretical
monoisotopic mass. The same analysis was performed witBrthleer software, using
the Apex algorithm recommended for ion trap data. The résolwf the data set is
critically low with a Am value 0of0.2, implying that each peak is represented by as
little as3—6 data points, and instead of a sophisticated calibratiomnigallowed for

a constant mass offset to keep the number of fit parametemsalbas possible.

Using recommended signal-to-noise settings in the Brubiware turned out to miss
a large number of the isotopic patterns due to the poor gualithe data. We therefore
decided to perform two tests against the Bruker software,with the recommended
setting, and one with a significantly reduced signal-tesadhreshold and peak bound,
leading to a total number of peaks comparable to our methioel rd@sults of these tests
are shown in Tablé. For each peptide, this table contains the theoretical msotapic
mass, the average relative error of the monoisotopic jpositind the number of scans
in which the peptide was correctly identified.

Table 1. Evaluation of dataset A. In the table, | denotes the resitiltseomethod pre-
sented here, lithe Apex algorithm with reduced thresholds, andApex with default
settings.

rel. err. [ppm] #oce.

Z Mineo [DA]] 111a 1| g Iy

A1l 556.269831 35 3922 35 19
B1 573.307116 24 1629 57 29
C1 574.225744 60 2119 44 15

D 1 1007.436%5 - 948 0 5
E 1 1084.437918 - 123 0 2
F 2 1061.561456 64 643 2 2
G 2 1183.573(15 - -7 00
H 2 1349.73628 - 138 0 1
| 2 1620.815137 - 113 0 O
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Considering the resolution of the raw data, and the lack phsticated internal
calibration, the mass accuracy that was obtained in thegseriexents is remarkable.
Particularly important is the behaviour on highly convellittharge two isotopic pat-
terns: as can be seen from the number of correctly identifirelseparated patterns
shown in Tablel, the algorithm presented in this work successfully dectutes sig-
nificantly more of these patterns than the established appes. The high quality of
this separation typically obtained after the optimizatitege of our algorithm is shown
in Figure 3. In addition, it should be mentioned that the algorithm rimseal time.
On the LC-MS spectra of about 100 Mb of data, the peak pickiagestook several
seconds on a typical recent PC, while the following optiri@arun lasted for about 1
to 5 minutes, depending on the number of iterations perfdrme
Of course, the applicability of the proposed scheme is rattioted to low-resolution
data, nor to ESI data. To demonstrate this, we made a sardtkan a well-resolved,
but difficult MALDI-MS spectrum of a tryptic digest of bovireerum albumin, data set
B. This time we performed a Mascaf}] peptide mass fingerprinting query with the
peaks determined by our implementation and by the Brukéwsoé. In both cases, the
bovine serum albumine was identified with a very high sigaifime, where the results
obtained with the vendor software led to a sequence coverhdé% and our peak
picking scheme achieved betwe&2%6 and67%, depending on the applied signal-to-
noise threshold. It should be noted that for these resuttsnternal calibration was
performed on the spectrum in order to prevent distortiomefresults by possible over-
fitting due to the calibration procedure. Consequentlyrésailting mass accuracy for
the peptides identified by Mascot is low with ab®at ppm for Bruker and abolg0
to 93 ppm for our method. A simple linear calibration using fourmosotopic masses
turned out to reduce the mass error significantly to al20ub 30 ppm for the same
sequence coverages mentioned above.

10;

591 591.5 592 592.5 593 593.5 594 594.5

Fig. 3. Charge two isotopic pattern of LHRH Decapeptid in scan 592sAsolid line:
sum of the fitted asymmetric peak shapes, dashed line: knegerpolated raw data,
circles: peak centroids with corresponding peak heighpe@MS), triangle: peak cen-
troid with corresponding peak height (Bruker Apex)). Thiatige error of the centroids
of the first four peaks as determined by our method are giveilbypm, 1.2 ppm, 35
ppm, and 16 ppm.
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4 Discussion

We have presented a wavelet-based peak picking technidteel $or the application
to the different kinds of mass spectrometric data arisingoimputational proteomics.
In contrast to many established approaches to this prokileenalgorithm presented
here has been particularly designed to work well even on afaliawv resolution with
strongly overlapping peaks. This is especially apparer@mdeconvoluting for exam-
ple charge two isotopic patterns with poor separation, asetarising in the LC-MS
datasets discussed above. Here, the good performanceafjouthm can be attributed
to two of its unique features: the ability to determine thd enints of a peak even if
it overlaps heavily with another one, which is due to the usthe® Wavelet transform
as discussed in Sectidh and the optional nonlinear optimization following the kea
picking stage. Applied to a high-quality MALDI-TOF speatnwof a tryptic digest, our
algorithm yields a high degree of sequence coverage whahassiput for a Mascot
fingerprinting query. In all applications, it compares véayorably with the algorithms
supplied by the vendor of the mass spectrometers. A free sperce implementation
is available in the OpenM&++ framework.
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