
04051 Abstracts Collection

Perspectives Workshop: Empirical Theory and

the Science of Software Engineering

� Dagstuhl Seminar �

James D. Herbsleb1 and Walter F. Tichy2

1 CMU - Pittsburgh, US
jherbsleb@acm.org

2 Univ. Karlsruhe, DE
tichy@ira.uka.de

Abstract. From 25.01.04 to 29.01.04, the Dagstuhl Seminar 04051 �Per-
spectives Workshop: Empirical Theory and the Science of Software En-
gineering� was held in the International Conference and Research Center
(IBFI), Schloss Dagstuhl. During the seminar, several participants pre-
sented their current research, and ongoing work and open problems were
discussed. Abstracts of the presentations given during the seminar as well
as abstracts of seminar results and ideas are put together in this paper.
The �rst section describes the seminar topics and goals in general. Links
to extended abstracts or full papers are provided, if available.

Theory for studying e�ective work practices for Open

Source Software development

Kevin Crowston (Syracuse University, USA)

In my talk, I will discuss an on-going project examining the general research
question: what practices make some Free/Libre Open Source Software (FLOSS)
development teams more e�ective than others? In the talk, I'll �rst talk a bit
about theory in general, then discuss the general framework for the study, the
role of theory and the proposed design, and conclude by reviewing some recent
results.

As a conceptual basis for our study, we draw on Hackman's model of e�ective-
ness of work teams. Following on work by Crowston and Kammerer, we also use
coordination theory and collective mind to extend Hackman's model by further
elaborating team practices relevant to software development. The literature on
shared mental models, collective mind theory in particular, focuses our attention
on actions that develop and exhibit shared understandings. Coordination theory
suggests identifying tasks, interdependences among tasks and resources and the
coordination mechanisms that are adopted.

The recent results are from a social network analysis of interaction in FLOSS
teams for bug �xing.We found teams exhibited a wide range of centralizations,

Dagstuhl Seminar Proceedings 04051
Perspectives Workshop: Empirical Theory and the Science of Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2006/532

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J. D. Herbsleb and W. F. Tichy

contrary to our expectation from FLOSS publications that they would be gen-
erally centralized.

Let's get Metaphysical! or Validating requirements and

validating scienti�c theories

Steve Easterbrook (University of Toronto, CDN)

In this talk I address the question of validation. My starting point was a con-
sideration of how we validate requirements. By drawing an analagy between
requirements and scienti�c theories, I conclude that the empirical di�culties
that a�ect the scienti�c method are also relevant to requirements engineering. I
brie�y survey key ideas in the philosophy of science and the sociology of science,
to show that empirical validation (of scienti�c theories) is neither as precise nor
as complete as is generally supposed. I then contrast logical positivism with
postmodernism to gain vastly di�erent perspectives on the role of validation.

Finally, if we wish to apply these ideas to the question of theory building
in software engineering, we need to consider whether software engineering really
can be considered to be science-like, so I explore the nature of engineering, the
nature of design, and the reasons why software design is radically di�erent from
industrial design. I conclude that any attempt at theory building in SE must
be with respect to a given Weltanschauung, so I attempt to articulate my own
Weltanschauung, to illustrate how it in�uences my own theory- building. As a
postscript to the talk, I o�er a brief survey of common research idioms in software
engineering.

Toward a social psychology of software engineering

Thomas Finholt (University of Michigan, USA)

The social nature of software development and use suggests the applicability of
theory from social psychology to understanding aspects of software engineering.
Speci�cally, the concept of common ground can be used to explore communi-
cation dysfunction in software development teams. Common ground is a term
developed by Clark to describe the extent of mutual understanding that exists
among two or more people engaged in cognitively complex work. In particular,
following from Nisbett's "geography of thought" this talk argues that di�erent
cultural orientations, either de�ned by national or professional culture, make it
di�cult to achieve common ground. For example, within the NEESgrid project,
the collaboratory element of the NSF's George E.Brown, Jr. Network for Earth-
quake Engineering Simulation, software and earthquake engineers used common
terms - but with di�erent meanings. Therefore, early in the project the two
groups worked at cross-purposes, resulting in poorly calibrated expectations by

Perspectives Workshop: Empirical Theory 3

the system users (earthquake engineers) and incomplete understanding of re-
quirements by the system builders (software engineers).

There are two approaches that may help avoid breakdowns in the creation and
maintenance of common ground. First, because of the di�culty associated with
collecting communication data to test hypotheses about common ground, there
is a potentially important role for computational simulation in understanding
communication and collaboration in software teams. An aim of this simulation
work should be models that allow researchers and practitioners to easily ex-
plore competing explanations. Second, improved understanding of the impact of
common ground on group process and performance requires new methods and
measures. These new methods and measures must be easy to opreationalize and
use, such that feedback becomes more proximate to actions. For instance, dy-
namic social network visualizations of communication patterns provide a means
to quickly analyze information �ow within a team, such as from email tra�c. To
conclude, there are well-understood theories from psychology, such as common
ground, that can be used to understand important processes in software engi-
neering - given that methods and measures are developed that allow quick and
e�cient analysis.

Modeling Software Changes

Audris Mockus (Avaya - Basking Ridge, USA)

Software systems are changed constantly throughout their lifetime.
Understanding relationships between di�erent types of changes and the ef-

fects of these changes on the success of software projects is essential to make
progress in Software Engineering. By using novel methods and tools to retrieve,
process, and model data from ubiquitous change management databases at the
granularity of Modi�cation Requests (individual changes to software) we have
gained insights regarding the relationships between process/product factors and
key outcomes, such as, quality, e�ort, and interval.

We exemplify this approach by describing models based on a premise that
each modi�cation to software will cause changes later and investigate their the-
oretical properties and applications to several software projects. The models
present a uni�ed framework to investigate and predict e�ort, schedule, and de-
fects of a software project. The results of applying these models con�rm a fun-
damental relationship between the new feature and defect repair changes and
demonstrate model's predictive capabilities in large software projects.

4 J. D. Herbsleb and W. F. Tichy

Non-linear Modelling in Software Engineering

Frank Padberg (Universität Karlsruhe, D)

Here are a few - possibly controversial - statements about theory building in
software engineering:

• In software engineering, we encounter non-linear phenomena all the time.
The reason are feedback loops in the underlying processes.

•There are techniques in statistics, operations research, and machine learn-
ing for detecting and handling non-linearity.

•We have an abundance of models at various levels of abstraction. Most mod-
els - in particular, formal models with explanatory power - have an underlying
theory. Hence, we do know how to build theories; we�re just not explicit enough
about this.

•We should start to classify existing models in software engineering along
several dimensions, including model scope, explanatory power, generalization
ability, model purpose, and applicability exceptions.

•We already can perform tradeo� analysis (and even optimization) based on
empirical observations and regression models without necessarily being able to
explain the mechanisms underlying a phenomenon, that is, without having an
underlying theory for the process. An example is our tradeo� analysis for pair
programming.

Software Process Simulation: A Potential Platform for

Enriching Empirical Studies

David M. Ra�o (Portland State University, USA)

Software Process Simulation is a tool that has shown some success in address-
ing issues of strategic management, project management planning and control,
technology adoption, training and understanding. Some of the unique advan-
tages over other types of model formulations include:
1. Ability to incorporate relationships from multiple modeling paradigms,
2. Relaxed restrictions compared to closed form analytic paradigms,
3. Ability to include empirically observed distributions, ability to capture rich
causality models, and
4. Freedom to explore risks and changes in scenarios to address questions.Capturing
of dynamic system behavior

This paper presents an overview of currently utilized simulation paradigms
along with their advantages and limitations. We then discuss the usefulness of

Perspectives Workshop: Empirical Theory 5

simulation as a tool to support software engineering theory formulation and
testing. Moreover, we present how simulation can be used to enrich software
engineering theory through extension, condition contingency and boundary ex-
ploration. Examples from previous work are shown.

Goodness Criteria for Empirical Theory

Susan Elliott Sim (Univ. California - Irvine, USA)

Literature from philosophy, sociology, psychology, political science, and others
were reviewed for criteria for evaluating empirical theory. Three types of good-
ness criteria were identi�ed: empirical, analytical, and pragmatic. The empiri-
cal criteria are postdictive power, predictive power, testability, and relevance.
The analytic criteria are logical soundness, generality of explanans, hypothetical
yield, progressive research program, breadth of policy implications, and parsi-
mony. The pragmatic criteria are increase in understanding and persuasiveness
to scienti�c peers. Use of these criteria were illustrated using a theory of bench-
marking, which I developed to account for the impact of benchmarking on a
scienti�c community.

De�ning the scope of empirical theories in software

engineering

Dag Sjøberg (Simula Reseach Laboratory - Lysaker, N)

The need for empirical evaluation of software engineering technologies (processes,
methods, techniques, languages or tools) has been more widely recognized in the
last decade. In mature sciences, building theories is the way to gain and cumu-
late general language. Initial attempts have been made to formulate and test
theories based on empirical evidence in software engineering, but there are few
guidelines for how to develop theories that are useful to the software engineering
community. An important part of a theory is its universe of discourse � its scope,
that is, for what populations and settings are the propositions or hypotheses of a
theory expected to hold? I suggest that empirical theories in software engineer-
ing should represent knowledge about which technology is useful for whom to
conduct which (software engineering) tasks in which contexts. Hence, a theory
should be considered in terms of (1) the subjects that are supposed to bene�t
from the technology, (2) the tasks that it should support (including the system
on which the tasks should be applied), and (3) the contexts in which the technol-
ogy is supposed to be useful. An example of a series of experiments that extend
the scope along these three dimensions will presented.

6 J. D. Herbsleb and W. F. Tichy

The Limits of Empiricism

Walter F. Tichy (Universität Karlsruhe, D)

Software research has come to depend on empirical studies to validate contri-
butions to the �eld. However, empirical research alone does not accumulate a
coherent body of knowledge. Validating, for example, that method A is superior
to method B does not necessarily tell us anything about other, existing or yet-
to-be-developed methods. Nor do experiments provide reasons why a method
is better than others or which hypotheses are most in need of testing. In the
mature sciences, these roles are played by scienti�c theory and models.

We illustrate the power of models with several examples. First, we suggest
that chunking theory explains why design patterns have the empirically observed,
positive e�ects on programmer performance.

Next, we summarize the theory about software inspections by Sauer et al. A
model for pair programming (a core practice of Extreme Programming) demon-
strates the explanatory and predictive power of a simple model. Finally, we
introduce a stochastic model for software cost estimation and suggest that sto-
chastic models that provide probabilty distributions for the variables of interest
should be sought.

	04051 Abstracts Collection Perspectives Workshop: Empirical Theory and the Science of Software Engineering --- Dagstuhl Seminar ---
	 James D. Herbsleb and Walter F. Tichy

