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1. INTRODUCTION
As battery-powered, resource-constrained systems continue to

grow in capability and complexity, it is increasingly difficult to ac-
curately measure and characterize the full-system power consump-
tion of real devices. However, we must do so if we are to effectively
model, predict, and optimize programs and systems to increase bat-
tery life. Extant approaches to measurement and characterization
of power and energy behavior include simulation, processor-level
metrics, and measurement via external monitoring devices (e.g.
multi-meters).

Hardware performance monitors (HPMs) have gained wide-spread
use recently for estimation of CPU processing power [9, 7, 2,6, 3,
4, 5]. In addition, other types of processor-level metrics have been
shown to be effective for predicting CPU performance and power
consumption, in particular those related to program phase behav-
ior [8, 1, 4, 5]. These processor-level metrics have been shown in
these prior works to correlate well with processor power consump-
tion [2, 3, 4, 5, 6]. Unfortunately, prior work does not evaluate how
well processor-level metrics correlate with or estimate the power
and energy consumed by the entire system (as opposed to simply
the CPU power and energy consumption) or focus on high-end pro-
cessors such as the Intel Pentium class of processors. We consider
Our understanding of full-system energy and of the behaviorof
energy-efficient processors (e.g. StrongARM and XScale CPUs) is
vital if we are to develop techniques for extending the batter life of
resource-constrained, mobile devices.

To enable the characterization of a full-system as easily and ac-
curately as possible, we developed a toolset called theRemote Per-
formance Monitor (RPM). RPM consists of both hardware and soft-
ware components. The hardware components include a set of high-
end tools to monitor the target microcomputer. The softwaretools
include utility programs to configure various system characteristics
of the monitored device, and operating system extensions and de-
vice drivers to collect performance data (such as HPM counters).
A GUI program and a web interface enables remote users (e.g. stu-
dents and researchers) to submit jobs for performance profiling to
our system, i.e, to extract accurate performance profiles without
investing in, installing, and managing their own system. RPM col-
lects power, energy, and HPM data for fixed- or variable-length

intervals. Interval lengths are in terms of dynamic binary instruc-
tions and can be set by the user upon job submission. Users of
our system can also control which metrics RPM collects and which
intervals RPM samples.

At present, we use a RPM to characterize a Crossbow Stargate
embedded microcomputer. The Stargate implements an Intel XS-
cale processor and a number of I/O devices. The Stargate is very
similar in functionality to an HP iPAQ handheld device (without the
LCD display), and it is used extensively in sensor network research.

In this paper, we employ RPM to investigate how well processor-
level metrics correlate with full-system power and energy consump-
tion by programs. We consider a number of different HPMs as well
as a technique that identifies code-based phases in program behav-
ior using simulation. We make many interesting observations using
RPM: We find that

• HPMs do not explain the variance in full-system power and
energy consumed by the device for the programs that we
have studied. This is in contrast to prior works that show
that HPMs are effective for explaining variance inprocessor
power consumption.

• IPC is also not highly correlated with power and that for
some programs IPC is correlated to some degree with energy.
Prior work shows that IPC is a good measure of processor
power consumption.

• I/O types and their OS support, e.g., volatile memory and
file systems, can impact the power and energy consumed by
a program significantly.

We believe that our work provides a shared infrastructure that
will enable researchers and students to collect fine-grained, highly
accurate power, energy, and HPM profiles from a real system using
real programs without investing in the necessary hardware.More-
over, our measurement analysis using RPM for real programs re-
veals that current approaches for processor-level power estimation
do not correlate well with full-system power and energy behavior.

2. REMOTE PERFORMANCE MONITOR-
ING (RPM)

One of the primary goals of RPM is to provide a research test-
bed for power studies on embedded systems. Understanding and
characterizing energy behavior is critical for techniquesthat ex-
tend battery life in embedded and mobile systems. To enable this,
we require mechanisms that measure the power and energy a de-
vice consumes at a high resolution (fine grain) with high accuracy.
Moreover, we must understand the power and energy behavior of
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Figure 1: RPM Overview.

the device as a whole to ensure that we identify the primary con-
tributing factors of battery drain and that the techniques we develop
reduce this drain (and do not accelerate it).

Recent research using real systems has shown that hardware per-
formance monitors correlate well with, and thus, can be usedto
estimate, the power consumption of the CPU [9, 7, 2, 6, 3, 4, 5].
Similarly, estimation based on patterns in the executing code, i.e.,
phase behavior, is also successful for CPU power estimation[1, 4,
5, 8]. For systems for which the CPU is the primary consumer of
energy, these techniques may be adequate. However, processors
vary greatly in capability, energy consumption, and the portion of
the full-system power and energy consumption to which they con-
tribute. Moreover, prior work has focused on power alone. How-
ever, high power consumption can result in lower total energy con-
sumed if the execution time is significantly decreased. Total energy
consumption is key to understanding and prolonging batterylife in
resource-constrained systems – so both must be measured, studied,
characterized, and accurately understood.

An alternative approach to measurement of power and energy
behavior for real systems is to employ a set of external measure-
ment tools. Such tools include a multi-meter, oscilloscope, and pro-
grammable power supply and enable highly accurate and very fine-
grained measurement (i.e., a large number of measurements per
millisecond) of power and energy consumed by a device. Unfortu-
nately, these tools are costly and immobile, making them less than
ideal for sharing between geographically disjoint research groups
and students. Moreover, these systems only collect power-related
metrics; access to the performance profiling capabilities that a de-
vice may have is not supported.

The goal of our work is to extend such a system to enable con-
current performance profiling and shared access to the system by
remote users. We refer to this system as theRemote Performance
Monitor (RPM) and provide an overview of its primary components
in Figure 1. RPM is a tightly integrated suite of tools to monitor
program energy, power, and CPU performance. The RPM includes
four components:

• A device driver and Linux kernel patches, called VPerfmon,
that enable and control HPM, power, and energy profiling.

• A user program, called VPMon, that executes a submitted
program under the control of VPerfmon.

• A user program, called SCL, that dynamically switches CPU
frequency level.

• A Windows XP GUI program called the PowerTool, that
monitors and controls the lab equipment (oscilloscope and
power supply), and sets the experimental parameters.

• A web interface through which remote users can submit pro-
grams to the system for execution and profile collection. Users
specify a set of parameters that control how often RPM pro-
files the program, the duration of profiling, profile granular-
ity and accuracy, CPU frequency, and the metrics that RPM
collects.

RPM monitors program power consumption at a very fine gran-
ularity (2K measurements/second) and high accuracy (1mW reso-
lution) by default. A key difference between RPM and past mea-
surement systems, is that RPM monitors the energy and power con-
sumed by the entire device. We can extend RPM to monitor indi-
vidual elements such as memory and CPU; however, our focus in
this work is full-system power consumption.

RPM consists of an Agilent deep-memory oscilloscope that mon-
itors the current passing through a high-precision resistor connected
to the target computer power supply. We connect the oscilloscope
to a workstation through a general purpose interface bus (GPIB).
The PowerTool executes on the workstation and consumes, ana-
lyzes, and packages the collected data. The PowerTool also con-
trols a high-precision, programmable power supply, the Agilent
E3648A. In addition, RPM users can investigate and rewrite the
boot-loader on the target devices using the PowerTool. We wrote
the PowerTool software in the portable C# language using theMi-
crosoft .Net platform.

RPM monitors atarget device on which we execute the VPMon.
The VPMon is the user interface to the target device that executes
the submitted program and controls HPM profiling by interacting
with VPerfmon. VPMon and VPerfmon are also portable to any
architecture that supports Linux and implements hardware perfor-
mance counters.
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Event Description
0x0 Instruction cache miss requires fetch from external memory.
0x1* Instruction cache cannot deliver an instruction. This could

indicate an ICache miss or an ITLB miss.
0x2* Stall due to a data dependency.
0x3 Instruction TLB miss.
0x4 Data TLB Miss
0x5 Branch instruction executed, branch may or may not have

changed program flow.
0x6 Branch mispredicted
0x7 Instructions executed
0x8* Stall because the data cache buffers are full.
0x9 Stall because the data cache buffers are full.
0xa Data cache access, not including Cache Operations.
0xb Data cache miss, not including Cache Operations.
0xc Data cache write-back. This event occurs once for each 1/2

line (four words) that are written back from the cache.
0xd PC Modified

Table 1: PXA-255 Performance Monitoring Events. The events
marked with a * counts the number of cycles that the condition
is present.

The target device that we currently support is the Stargate sensor
network intermediate node. The Stargate is representativeof mod-
ern battery-powered, resource constrained devices as it implements
the recent PXA-255 XScale processor and a wide range of popular
I/O devices. We detail the components of this system in Section 3.
We show the range of HPMs available (and thus available for RPM
profiling) in Table 1. The Stargate is very similar to an HP iPAQ
device without an LCD display.

VPerfmon is the control center for program profiling. VPerfmon
provides virtual hardware performance counters to each applica-
tion. The HPMs by default count global CPU events, i.e. they do
not track events at the program or thread level. VPerfmon provides
a layer that multiplexes the counters and that enables selective mon-
itoring of particular programs and threads. VPerfmon implements a
virtual instruction per cycle (IPC) counter by tracking instructions
(cycles are tracked by default on most devices). The virtualcoun-
ters are 64bits in size which reduces overflow problems. Users can
selectively enable and disable sampling during the monitoring.

In our target device, the Stargate processor, the PXA-255, imple-
ments three 32-bit event counters; the hardware uses one to moni-
tor dynamic clock cycles. VPerfmon sets the remaining counters to
any two of the 14 events supported. The VPerfmon virtual counters
reflect the same architecture ( (i.e. extended to 64 bits), ituses one
counter to count CPU clock cycles and the other two to monitor
events.

VPerfmon also manages the profiling parameters set by default
or by the RPM user. These parameters are forwarded to VPerfmon
by VPmon upon program instantiation. The parameters control sys-
tem call monitoring, exceptions and floating point operation moni-
toring, interval characteristics (size, variable versus fixed), and call-
backs to user code.

VPerfmon facilitates interval-based data collection via the GPIO
pin on the development board. Initially, RPM sets the GPIO pin to
logic 0 when a program starts. During program execution, VPerf-
mon toggles the pin’s value at then end of every interval. VPerf-
mon, as mentioned above tracks interval lengths (arbitraryor fixed)
using some performance event specified by the user. For the data in
this paper, we use instruction counts as the event and fixed-length
intervals of 10 million instructions. The oscilliscope is equipped
with two channels. One channel monitors the voltage shunt resistor
to measure power consumption. The second channel monitors the

Processor 32 Bit, 400 MHz Intel PXA-255 Xscale
Arm architecture Version 5TE ISA
32 KByte Instruction and 32 KByte Data cache
2 KByte Mini Data cache
2 KByte Mini Instruction cache

Memory 32 MB Intel StrataFlash
Expansion Ports 1 Type II CompactFlash Slot

(populated with 256 MB CF card)
1 PCMCIA slot

Network & Others 10 Base-T Wired Ethernet
RS-232
JTAG
USB (disabled at present)
I2C (disabled at present)

Table 2: Stargate device characteristics (RPM target device)

GPIO pin that VPerfmon toggles. Using this setup, RPM is able
to log and track power, energy, and performance data at interval
boundaries.

The WWW interface exports most RPM functionality to the re-
search and educational community. The features that we support
via the interface include:

• A tool chain for cross-compilation of programs for the target
device.

• An form to download the benchmark package. The pack-
age is a gzipped-compressed UNIX tar archive. The package
contains all of the necessary target binaries and input files. In
addition, the package includes (in its root directory) a shell
script, called start.sh, that initiates execution. We currently
support programs with execution durations of less than 10
minutes.

• An interface to control the execution (such as start, cancel,
and the number of times to repeat the experiment (currently
the max is 5)).

• An interface to control the VPerfmon configuration (fixed or
arbitrary intervals, the interval start data (if arbitraryintervals
are used), interval length (if fixed intervals are used), events
to monitor, etc.

• An interface to the measurement equipment to direct to ac-
cess experimental results and to power cycle the board before
or during the user’s experiments.

3. ANALYSIS
We are interested in the degree to which CPU-based events ex-

plain observed, full system power and energy performance. The
RPM target device that we study is the XScale-based Crossbow
Stargate sensor network intermediate node. We first presentour
empirical methodology and benchmarks. We then use RPM to
investigate the relationship between CPU-level HPM metrics and
full-system power and energy behavior.

3.1 Experimental Methodology
We present the characteristics of the RPM target device, theCross-

bow Stargate, in Figure 2. We list the various components that the
device implements broken down by those specific to the processor,
memory, expansion ports, and other components.

In our evaluation, we use six popular, embedded systems bench-
marks from the MediaBench benchmark suite. We show the bench-
mark programs and their characteristics that we collected using
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Benchmark Instr. Time Energy Diff. RPM
Count seconds joules % ovhd
10

6 EXT2 RAM EXT2 RAM %
gsmencode 2.59 10.88 10.87 15.30 15.21 0.63 7.1
gsmdecode 1.64 6.95 6.61 11.19 10.86 3.05 11.2
jpegencode 4.28 48.53 N/A 63.20 NA NA 7.2
jpegdecode 1.45 19.46 11.36 26.45 18.43 43.49 8.2
mpegencode 1.43 107.24 107.49 195.02 195.37 -0.18 3.6
mpegdecode 2.13 311.80 312.01 570.27 568.60 0.29 0.9

Table 3: Benchmark characteristics

Initialization Data Write
Post−ExecutionEffect

A single interval(10M
instructions)

Program Start End of program

Figure 2: Power consumption of JPEGDecode on Ext2 file sys-
tem. The top line shows the power consumption, and the bot-
tom line shows the interval detection output pin voltage read-
ings. The power phases (during the initialization and file write)
are marked with an arrow. A post-execution effect, due to
writes on compact flash, follows approximately 20 seconds after
execution and very consistent across runs.

RPM in Table 3. The first three columns show the instruction
count, execution time, and energy for each benchmark. The fourth
column shows the difference between EXT2 drive and RAM. The
fifth column shows the RPM overhead (in energy). The overhead
(relatively) decreases as the application becomes larger.To col-
lect benchmark energy characteristics, we run each benchmark five
times with RPM using the same input, delete the first run (due to
the high variability in performance due to system warmup), and av-
erage the results. We collect power data in fixed intervals each with
length 10 million instructions. We use this methodology through-
out our experimentation section.

We study the energy and power behavior for the benchmarks us-
ing two memory technologies: the compact flash card attachedvia a
PCMCIA bus and the internal RAM. The flash is supported by the
EXT2 file system. JPEGEncode benchmark does not fit in RAM
on this device, so we exclude it from our RAM-based experimen-
tal results. During the experiments, the wired network interface is
connected but idle and there are no other tasks running.

RPM supports all of the performance monitoring events that we
showed previously in Table 1. However, in this paper, we only
consider HPMs for instructions per cycle (IPC), instruction cache
miss, data stalls, instruction TLB misses, and data TLB misses.
These metrics have been shown to be important in modeling the
CPU power consumption [2]. To collect HPM event statistics,we
run the program repeatedly, collecting one statistic at a time.

3.2 Complexities in Full-System, Real Device
Behavior

Resource-constrained, battery-powered devices and theirsoft-
ware exhibit complex interactions and behaviors that RPM isable
to capture. As an example, Figure 2 displays the RPM output for
one of our benchmarks (JPEGDecode). The benchmark decodes a
large file (30MB) and writes to an EXT2 Linux file system. The
horizontal axis of the figure is time. There are two sets of data, one
per oscilloscope channel: Power (at the top) and execution progress
(at the bottom). The power data shows periods of stable behavior
(phases) and periods of instable behavior (transitions).

We indicate execution progress by toggling a binary switch each
time an interval completes. Interval sizes are fixed for thisexperi-
ment at 10 million instructions. The second channel simply outputs
a line of ones and zeros. and is set to 1 when the program startsas
indicated in the figure. Whitespace between interval togglevalues
indicate that the interval takes more time than other intervals which
appear to be blocks of adjacent lines. For example the first interval
in the program takes significantly more time than the intervals that
follow it.

Another interesting behavior occurs approximately 25 seconds
execution terminates at which point there is an increase in power
consumption. We refer to this as apost-execution effect. This be-
havior is consistent across runs and we do not observe this behavior
when we execute the application from the RAM device. Since most
HPM measurement ends when the program ends, HPM data is un-
able to capture such activities (and even this assumes that the HPMs
are operational during operating system execution). Similarly, sim-
ulation cannot capture such behavior unless the system is power
accurate and supports OS execution. Such phenomenon are real
and motivate the need for full system monitoring of energy, power,
and performance in a unified experimentation framework suchas
RPM.

3.3 The Relationship Between
HPMs and Energy/Power

The overall power, energy, and performance behavior of the indi-
vidual benchmarks varies significantly. The GSM benchmarksare
very stable and produce uniform behavior. MPEGEncode exhibits a
very regular bi-modal patterns. JPEGDecode, as we showed inthe
example above, varies significantly over the life of the program.

To evaluate the degree to which HPM metrics explain power and
energy behavior, we computed the correlation between each.Fig-
ure 3 shows the square of the correlation (multiplied by 100)which
is also known as thevariation explained andR

2 correlation statis-
tic. TheR

2 value indicates the percentage of the variance present in
the energy and power data, respectively, that is explained by each
HPM metric. SmallR2 values indicate that little variance is ex-
plained by the metric and thus, the metric may not be a good pre-
dictor of the behavior in the energy power data.

We investigated two different file systems and I/O devices for
storage, as we describe above. The left graph shows theR

2 values
for the EXT2 file system and the right graph shows the data when
we use the RAM drive. The data shows that across benchmarks,
each HPM metric explains a very small percentage of the variance
in either energy or power behavior and for either storage device.
The clock cycle metrics explain the largest percentage of variance,
i.e., cycles and IPC – however, the percent of the variance that is
explained by these metrics is still very low.
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(a) (b)

Figure 3: R
2 Correlation Statistic: Correlation squared times 100. This value shows the percent of the variability in energy (first

bar) or power (second bar) that is explained by the metric (x-axis). (a) shows the data for the EXT2 file system; (b) shows the data
for the RAM drive.

4. CONCLUSIONS
As resource-constrained, battery-powered devices and their soft-

ware continue to increase in complexity and capability, it is impor-
tant for us to understand full system energy and power behavior, if
we are to identify techniques that extend battery life. To facilitate
better understanding of the energy and performance characteristics
of these complex systems, we present RPM, the Remote Perfor-
mance Monitor.

RPM is a remotely accessible system to characterize anreal em-
bedded devices. We provide remote access via a user-friendly web
interface and hide most of the cumbersome lab equipment details
from the end user. We couple high-end external power and energy
measurement with device-level CPU performance monitors. RPM
characterizes the system in a number of different levels. For exam-
ple, users can monitor a single application or multiple applications
by including or excluding the effect of system calls. It is also pos-
sible for users to change the characteristics of the remote system.

We use RPM to investigate the degree to which commonly used
HPM metrics explain the variance in the power and energy con-
sumption behavior of programs. We find that only a very small
portion of the variance in power and energy curves is explained by
HPM behavior. Our results indicate that HPMs alone may not be
sufficient or accurate in estimating full-system energy performance
of resource constrained devices.
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