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Abstract

The construction of an And-Or dependence graphs is illustrated,
and its use in slicing statecharts is described. The additional structure
allows for more precise slices to be constructed in the event of addi-
tional information, such as may be provided by static analysis and
model checking, and with constraints on the global state and external
events.

1 Introduction

We take a slice to be some syntactic projection of a syntactic object expressed
in a language that has a well-defined operational interpretation. Usually
we are interested in selecting a projection based upon some slicing criteria.
The slice should in some sense preserve the operational behaviour of the
original object’s with respect to the slicing criteria.1

Here we consider slicing of statecharts. Slicing statecharts can help with
specification comprehension, static analysis (Heimdahl and Whalen, 1997),
and model checking (Wang et al., 2002). It may also help with specification
based testing.2

As originally introduced, slicing was original targeted at programs
(Weiser, 1979). Following our generic definition, a program slice is then
an order-preserving projection of statements from the original program.
The slicing criteria is usually a pair consisting of a variable and program
point of interest (or a collection of such pairs). The slice should preserve
the behaviour of the original program with respect to those variables at

1Sometimes additional work is required for the slice to be well-formed, in which case
the unadulterated slice can be taken to indicate some of the syntactic constituents of an
appropriate projection of the original object.

2R. Hierons, PC.
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the relevant program points.3 There are variants of program slicing (for
example, forward slicing, dynamic slicing, conditioned slicing), which we
will not consider here.

In the case of a statechart, a slice will be a well-formed structure pre-
serving projection of the original. The slicing criteria can be stated in terms
of collections of states, transitions, actions, and variable names (assuming
that there is a global or local state with variables that are updated by actions
and tested by guards). Actions and variables can be preprocessed to give
an appropriate collection of states and transitions (Wang et al., 2002).

This paper proposes the use of dependence graphs (Kuck et al., 1981)
for slicing statecharts. Such graphs are already used for efficient slicing of
programs (Ottenstein and Ottenstein, 1984; Horwitz et al., 1990, for exam-
ple). In itself, this may not be particularly novel (Heimdahl et al., 1998).
However, here we propose to use slightly richer to dependence graphs, that
record And-Or dependencies. This promises to give rise to smaller slices
when supplemented with additional analysis; if it can be shown that an
apparent dependence can never be realised (e.g. by model checking, in-
terference analysis, or conditions on external events and global variables),
then all the dependencies with which it is conjoined can also be eliminated
when constructing the slice.

2 Statecharts

Statecharts were originally conceived by Harel et al. (1987). He extended
state transition diagram with the notions of hierarchy, concurrency and
communication. The main purpose of using statecharts is to specify be-
haviour of complex reactive systems. Reactive systems, unlike what might
be described as transformational systems, have to react to external and
internal stimuli. Examples of reactive systems include telephones, auto-
mobiles, communication networks, operating systems, missile and avionic
systems (Harel et al., 1987).

The notion of a statechart has been adopted and extended by the Open
Management Group (OMG)4 as one of the specification formalisms of the
Unified Modelling Language (UML)5, and also by W3C in the form of
SCXML.6

3There is room for debate about whether or not the slice should preserve all side-effect
behaviour, such as input and output activity. If input behaviour is not preserved, then
the relevant behaviour may only be preserved if we also “slice” the input stream in an
appropriate fashion. In the case of output, were we considering the behaviour of the
program within some pipeline, then we might have to reflect on how to manage the impact
of the slice through any down-stream programs.

4http://www.omg.org.
5http://www.uml.org.
6SCXML (http://www.w3.org/TR/scxml/) was originally targeted at specifying voice
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Statecharts are usually presented in a graphical form, although there are
standard “textual” formats, including SCXML, and XML Metadata Inter-
change (XMI)7 for UML.

Typically, a state is represented by a rectangle and a transition between
states is shown by an labelled arc. The label specifies a trigger event, a
guard condition and an action, although one or more of these elements
may be absent. Following the example in Figure 1, if event t occurs (either
externally, or as a result of the activity of some concurrent process) and
condition g is true then the state of the system will be changed from state x
to state y after completing action a.

In general, guards may be propositions about variables in the global
state, perhaps involving Boolean valued functions and method calls, and
actions may be operations on the global state that update the values of
global variables, or make method calls. However, in order to simplify the
presentation, hereinafter we take the actions, guards and triggers to be
atomic.8

x y
t[g]/a

Figure 1: Basic Transition

We can organise states into a composite state as shown in Figure 2. Only
one of the states in the composite state is active. The figure also shows a
default state or an initial state represented by a small arrow pointing to state
x. That means when entering this composite state, it will enter to state x.

Statecharts support concurrency. The usual visual presentation is to
combine the concurrent parts in one containing box, and separate them by
way of dashed lines, as shown in Figure 3. If the concurrent process is
active, then one state in each of the regions will be active.

There are many features of statecharts that we do not consider in this
paper. Readers can find more details in Harel et al. (1987). For example, fea-
tures that are not covered in this paper include: the condition and selection
circled connectives; delays and timeouts expression; entry/exit activity and
activities inside a state; transitions between composite activities; histories.

browser related behaviour, but consists of a complete statechart modelling language that is
closely related to Harel and UML statecharts.

7http://www.oasis-open.org/cover/xmi.html
8This means that some dependencies are not considered here. It should be straightfor-

ward to extend the approach to include operations and expressions involving functions on
variables. In general, if Object Constraint Language (OCL) expressions and method calls can
appear as labels, as in UML 2.0 statecharts, then there may be additional dependencies that
will be hard to take into account without a more complete model of the relevant methods,
objects and classes, and the dependencies between them.
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Figure 2: A Composite State
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a[f]/c

b[h]/t

Figure 3: Statechart with Concurrency
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We assume the synchronous, microstep semantics for concurrency. In
summary, on receiving an external trigger, any transitions that can be taken
will be. Any resulting internal actions that are triggers for available transi-
tions will be dealt with in the order that they arise. External triggers will
be queued until all internal transitions have completed. Any global state
will remain the same for the purposes of evaluation whilst transitions are
in progress.9

3 Dependencies in Statecharts

In this section we explain how we can model dependencies in statecharts
in terms of graph dependencies.

A vertex in a dependence graph represents any object that can be de-
pended upon, or which can depend upon other objects. Arcs between ver-
tices indicate a potential dependence, the item represented by the source
vertex depending upon that represented by the target vertex.

Unlike dependence graphs for programs, dependencies arising from a
common transition in the original statechart can be considered as being
conjoined; if one of the constituent dependencies can be shown to be infea-
sible, for example through interference analysis (Ranganath and Hatcliff,
2003, 2004), some form of conditioning (Jiang and Brayton, 2003) or similar
techniques, perhaps in conjunctions with constraints on the environment.

The construction of a dependence graph for a statechart is sketched
here in terms of an algorithm. A method for traversing the initial statechart
is assumed. It is also possible to describe the dependence graph for a
statechart by way of a declarative definition.

3.1 Initialisation

Every item in the statechart which can depend upon another, or which can
be depended upon itself, is added as a vertex to the dependence graph.
This includes states, actions, triggers, and guards.

For simplicity of presentation, here we treat actions, guards and triggers
as atomic items, as already mentioned. A slightly more elaborate analysis
is required to deal with additional dependencies that arise with non-atomic
labels, as might be used if actions and guards involve variables in some
global state: in this case, variables would appear as vertices in the depen-
dence graph.

Some preprocessing is required to cope with state-internal actions, and
transitions involving non-atomic states. Actions and guards that involve
method calls may require an even more involved analysis.

9This does not exclude various forms of non-deterministic behaviour.
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3.2 Adding Dependencies

For every transition of the following form given in Figure 1 in the statechart,
then the dependence arcs in Figure 4 are added to the dependence graph.
If any of the trigger, guard or action are missing, then the relevant arc in the
dependence graph of Figure 4 is simply omitted.

x

y

&

t g

a

&

Figure 4: Dependence graph for the statechart in Figure 1

Note that the dependencies that arise in an individual transition are
conjoined; the dependencies are all or nothing. However, the dependencies
for distinct transitions are to be considered as disjoined (as will be seen in
the case of state w of Figure 6, where we consider concurrency).

We can share common structures in the graph, giving the reduced ver-
sion of Figure 5.

x

y

&

t g

a

Figure 5: Reduced dependence graph for the statechart in Figure 1

3.3 Concurrency

It turns out that dependencies between concurrent processes will appear
in the dependence graph without any additional effort. The dependence
graph for the concurrent statechart of Figure 3 is given in Figure 6.
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Figure 6: Dependence graph for the statechart given in Figure 3
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Of course, without care, all actions may appear to be triggers for transi-
tions with the same label appearing as their trigger, regardless of whether
those transitions are syntactically (or operationally) concurrent with action
in question. For this reason, it is necessary to augment the vertex labels
with an indication of where the relevant action and trigger arises in the
statechart, for example by prefixing with labels representing the composite
states in which they occur. With appropriate rules for the chosen labelling
regime, it is then possible to identify potential/syntactic dependency be-
tween concurrent actions and triggers. We have omitted this detail here for
presentational reasons.

Start nodes present a related problem, in that there is no instrinisic dis-
tinction between different occurrences of such nodes. However, as there
should only be one start node at a given level within a composite or con-
current process, we can once again distinguish between them by way of the
position in which the occur in the statechart. As before, we omit this detail
for clarity of exposition.

3.4 Other Dependencies

The dependence graph can be extended to include variable dependencies
in a natural way, following the data-dependence rules given by Wang et al.
(2002), or a refinement of them. Dependencies between method calls would
require additional information about the details of the methods’ behaviours.

4 Slicing statecharts using the dependence graph

The dependence criteria for program slicing is usually a collection of pairs
of program variables and program points.

After we represent statecharts in the form of the dependence graph,
and determining the initial transitions and states of interest from the slicing
criteria, we can apply slicing algorithm using graph-reachability from the
point of interest in the dependence graph. Ottenstein and Ottenstein (1984)
proposed slicing algorithm by define slicing as a graph reachability problem
over the dependence graph. Our approach simply adapts this method to
And-Or dependency graphs.

As an example, if we slice with respect to action a, then from Figure 6
we can see that the part of the original state chart that is relevant involves
g, t, x, h, b, v and any mention of a itself. The sliced statechart will the be as
given in Figure 7. We also need to keep any relevant start nodes.

4.1 Infeasible dependencies

Simple syntactic slicing of statecharts can be augmented with additional
analysis. For example, using model checking and interference analysis
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x t[g]/a

v
b[h]/t

Figure 7: Slice of the statechart given in Figure 3 with respect to a

Ranganath and Hatcliff (2003, 2004) we can determine whether a specific
action that arises within a specification can actually act as a trigger for a
transition in a concurrent process.

We may also use various forms of conditioning, for example by imposing
constraints on external events (perhaps as specified by some transition
system, or even another statechart), and on global variables (following
the idea of program conditioning Canfora et al. (1998); Fox et al. (2000)
and infeasible transitions Jiang and Brayton (2003)) which may constrain
potential dependencies in the slice.

We believe that in these cases, the use of And-Or dependency graphs will
offer a significant opportunity for refining the slice; in the event that static
analysis, or model checking reveals that one dependency in a conjunction
of dependencies can never be realised (either in general, or in the context of
interest), then all of the other dependencies with which it is conjoined can
be ignored.

As an example, assume we slice the statechart of Figure 3 on criteria w,
then this would include the entire statechart except for a′, t′, g′, the action
label c, and the state labels z, y, as in Figure 8. However, if we know that
the guard f can never be satisfied where it occurs, then a close examination
of the And-Or dependency tree shows that we can also prune t, x, a, f , and
g itself from the slice, giving the slice of Figure 9.

In the event that there is no other way of reaching the nodes in ques-
tion, this “pruning” of the transition dependencies can be propagated up-
ward through both states and actions, and downward through states. Note
that in general we cannot propagate the pruning downward through ac-
tions/triggers, as there may be external actions that match the trigger in
question. For this reason, if an action is pointed at in relevant part of the
dependence graph, then it must remain present in the slice wherever it
appear as a trigger.
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x t[g]/a

v wa[f]

b[h]/t

Figure 8: Process of Figure 3 sliced on w

v wb[h]/t

Figure 9: Process of Figure 3 sliced on w when f can never be true at the
relevant position
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5 Related Work

Wang et al. (2002) present an algorithm for slicing extended hierarchical
automata for model checking UML statecharts. The slicing criterion is
based on states and transitions. The algorithm can remove hierarchies and
concurrent states which are not relevant to the property. They argue that
the state space for model checking UML statecharts is reduced efficiently
by their slicing algorithm.

Heimdahl et al. (1998) describe slicing of Requirements State Machine
Language (RSML) to aid comprehension and static analysis. There is also
work that can be considered to amount to a form of conditioned slicing
(Canfora et al., 1998; Fox et al., 2000) applied to statecharts (Jiang and
Brayton, 2003).

As described in their paper, Wang et al. (2002) produced slices by direct
computation of the data and control flow via a collection of dependence
rules. Heimdahl and Whalen (1997) adopts an approach based on that of
Sloane and Holdsworth (1996). As described, data and control flow slicing
are computed separately on the basis of a marked up abstract syntax tree.
Although the description of data control slicing does mention a data depen-
dence graph, neither the explicit production of a general dependence graph
nor is the possibility of recording conjoined dependencies is mentioned.

There has been work on the use of interference analysis for slicing con-
current programs (Ranganath and Hatcliff, 2003, 2004), but not in the context
of statecharts, or And-Or dependence graphs.

6 Conclusions and Future Work

This paper sketches the construction of And-Or dependence graphs for stat-
echarts, and their use in creating slices of statecharts. The paper illustrates
how the additional And-Or information can be used to help produce more
precise slices when additional information is available, from other forms
of static analysis, model checking, perhaps in combination with constraints
on the external environment and global state. This is possible because the
And-Or information helps to identify additional irrelevant transitions and
states.

Some details are omitted to simplify the presentation. These will be
fleshed out in future presentations, where a more detailed comparison of
the slicing performed by this approach and that of other accounts will
be made. Future work includes incorporating static analysis and model
checking methods into an implemented system, with the objective of al-
lowing different kinds of constraints on the global environment to be taken
into account when slicing. This will correspond to a generalised form of
conditioned-slicing for statecharts.
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