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Abstract. Program slicing is a well known family of techniques used to identify code frag-
ments which depend on or are depended upon specific program entities. They are particularly
useful in the areas of reverse engineering, program understanding, testing and software main-
tenance. Most slicing methods, usually targeting either the imperative or the object oriented
paradigms, are based on some sort of graph structure representing program dependencies.
Slicing techniques amount, therefore, to (sophisticated) graph transversal algorithms.
This paper proposes a completely different approach to the slicing problem for functional
programs. Instead of extracting program information to build an underlying dependencies’
structure, we resort to standard program calculation strategies, based on the so-called Bird-
Meertens formalism. The slicing criterion is specified either as a projection or a hiding
function which, once composed with the original program, leads to the identification of the
intended slice. Going through a number of examples, the paper suggests this approach may
be an interesting, even if not completely general alternative to slicing functional programs.

1 Introduction

By the end of the century program understanding emerged as a key concern in software engineering.
In a situation in which the only quality certificate of the running software artifact still is life-cycle
endurance, customers and software producers are little prepared to modify or improve running
code. However, faced with so risky a dependence on legacy software, managers are more and more
prepared to spend resources to increase confidence on — i.e., the level of understanding of —
their (otherwise untouchable) code. In fact the technological and economical relevance of legacy
software as well as the complexity of their re-engineering entails the need for rigour. So it is likely
that formal techniques developed for the production of fresh, high quality software will see the
light of indutrial success in their reverse application to the analysis of running pre-existing code.

This paper focus on a particular program understanding technique — called code slicing [21,
19, 20] — which is reframed as a calculational problem in the algebra of programming [4]. More
specifically, the process of computing program slices, i.e., isolating parts of a program which
depend on or are depended upon a specific computational entity, is reduced to the problem of
solving an equation on the program denotational domain.

Program slicing, originally introduced in Wieser’s thesis [19], is a family of techniques for
restricting the behaviour of a program to some fragment of interest which, e.g., contributes to
the computation of a particular output or state variable. Slices are usually regarded as executable
sub-programs extracted from source code by data and control flow analysis. Their computation is
driven by what is referred to as a slicing criterion, which is, in most approaches, a pair containing
a line number and a variable identifier. From the user point of view, this represents a point in the
code whose impact she/he wants to inspect in the overall program. From the program slicer view,
the slicing criterion is regarded as the seed from which a program slice is computed. According
to Weiser original definition a slice consists of an executable sub-program including all statements
with some direct or indirect consequence on the result of the value of the entity selected as the
slicing criterion. The concern is to find only the pieces of code that affect a particular entity in
the program. A basic distinction is drawn between backwards slicing which collects all data and
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code fragments on which the slicing criterion depends, and forward slicing [9] which seeks for what
depends on or is affected by it. A classical reference [6] show how the slices of a program ordered
by set inclusion form a lattice where intersection corresponds to code sharing.

Slicing techniques are typically based on some form of abstract, graph-based representation of
the program under scrutiny, from which dependence relations between the entities it manipulates
can be identified and extracted. Therefore, in general, the slicing problem reduces to sub-graph
identification with respect to a particular node. What kinds of computational entities can be
represented in a node and what code dependencies does the underlying graph support are therefore
the typical concerns.

As mentioned above, the approach sketched in this paper takes a completely different path.
Instead of extracting program information to build an underlying dependencies’ structure, we
resort to standard program calculation strategies, based on the so-called Bird-Meertens formalism.
The slicing criterion is specified either as a projection or a hiding function which, once composed
with the original program, leads to the identification of the intended slice.

Slicing by calculation is, therefore, driven by the denotational semantics of the target program,
as opposed to more classical syntax-oriented approaches documented in the literature (see e.g., []
for an extended survey). To make calculation effective and concise we adopt the the pointfree style
of expression [4] popularized among the functional programming community.

Finally, in order to keep presentation simple and avoid to distract the reader with denotational
semantics technicalities, our approach is introduced in the context of the functional programming
paradigm, in which program denotations are directly given in terms of functions between (partially
ordered) sets [3]. The approach scales up, however, to imperative or object-oriented programs once
the corresponding functional denotations have been computed.

The paper is organised as follows. Section 2 reviews some background concepts and results
in program calculation within the Bird-Meertens formalism. Section 3 introduces the central in-
tuitions of the proposed approach to slicing by calculation, distinguishing between backward and
forward slicing. The next two sections illustrate both methods through examples. Finally section
6 concludes and points some directions for future work.

2 Algebra of Programming

In his Turing Award lecture J. Backus [1] was among the first to advocate the need for programming
languages which exhibit an algebra for reasoning about the objects it purport leading to the
development of program calculi directly based on, actually driven by, type specifications. Since
then this line of research has witnessed significant advances based on the functorial approach to
datatypes [12] and reached the status of a program calculus in [4], building on top of a discipline of
algorithm derivation and transformation which can be traced back to the so-called Bird-Meertens
formalism [5, 11, 13] and the foundational work of T. Hagino [8].

In this paper we intend to build on this collection of programming laws to solve what will be
referred in next section as slicing equations. Pointwise notation, as used in classical mathematics,
involving operators as well as variable symbols, logical connectives, quantifiers, etc, is however
inadequate to reason about programs in a concise and precise way. This justifies the introduction
of a pointfree program denotation in which elements and function application are systematically
replaced by functions and functional composition. The translation of the target program into
an equivalent pointfree formulation is well studied in the program calculi community and shown
to be made automatic to a large extent. In [14, 18] its role is compared to one played by the
Laplace transform to solve differential equations in a linear space. This section provides a quick
introduction to the pointfree algebra of programs.

Functional Glue. Recall that we have restricted our attention to functional programs, i.e., pieces of
code whose semantics can be expressed by functions f , g, h, ... Some functions have a particular role
in the calculus: for example identities denoted by idA : A ←− A or the so-called final functions
!A : 1 ←− A whose codomain is the singleton set denoted by 1 and consequently map every
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element of A into the (unique) element of 1. Elements x ∈ X are represented as points, i.e.,
functions x : X ←− 1, and therefore function application f x can be expressed by composition
f · x.

Functions can be glued in a number of ways which bare a direct correspondence with the ways
programs may be assembled together. The most obvious one is pipelining which corresponds to
standard functional composition denoted by f · g for f : B ←− C and g : B ←− A. Functions with
a common domain can be glued through a split 〈f, g〉 as shown in the following diagram:

Z
f

||xxxxxxxxx
g

##FFFFFFFFF

〈f,g〉
��

A A×Bπ1
oo

π2
// B

which defines the product of two sets. Actually, the product of two sets A and B can be charac-
terised either concretely (as the set of all pairs that can be formed by elements of A and B) or
in terms of an abstract specification. In this case, we say set A × B is defined as the source of
two functions π1 : A ←− A × B and π2 : B ←− A × B, called the projections, which satisfy the
following property: for any other set Z and arrows f : A←− Z and g : B ←− Z, there is a unique
arrow 〈f, g〉 : A× B ←− Z, usually called the split of f and g, that makes the diagram above to
commute. This can be said in a more concise way through the following equivalence which entails
both an existence (⇒) and a uniqueness (⇐) assertion:

k = 〈f, g〉 ≡ π1 · k = f ∧ π2 · k = g (1)

Such an abstract characterization turns out to be more generic and suitable for conducting cal-
culations. Let us illustrate this claim with a very simple example. Suppose we want to show that
pairing projections of a cartesian product has no effect, i.e., 〈π1, π2〉 = id. If we proceed in a
concrete way we first attempt to convince ourselves that the unique possible definition for split is
as a pairing function, i.e., 〈f, g〉 z = 〈f z, g z〉. Then, instantiating the definition for the case at
hands, conclude

〈π1, π2〉 〈x, y〉 = 〈π1 〈x, y〉, π2 〈x, y〉〉 = 〈x, y〉

Using the universal property (1) instead, the result follows immediately and in a pointfree way:

id = 〈π1, π2〉 ≡ π1 · id = π1 ∧ π2 · id = π2

Equation
〈π1, π2〉 = idA×B (2)

is called the reflection law for products. Similarly the following laws (known respectively as ×
cancelation, fusion and absorption) are derivable from (1):

π1 · 〈f, g〉 = f , π2 · 〈f, g〉 = g (3)
〈g, h〉 · f = 〈g · f, h · f〉 (4)

(i× j) · 〈g, h〉 = 〈i · g, j · h〉 (5)

The same applies to structural equality :

〈f, g〉 = 〈k, h〉 ≡ f = k ∧ g = h (6)

Finally note that the product construction applies not only to sets but also to functions, yielding,
for f : B ←− A and g : B′ ←− A′, function f × g : B × B′ ←− A × A′ defined as the split
〈f · π1, g · π2〉. This equivales to the following pointwise definition: f × g = λ 〈a, b〉 . 〈f a, g b〉.
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Notation BA is used to denote function space, i.e., the set of (total) functions from A to B.
It is also characterised by an universal property: for all function f : B ←− A × C, there exists a
unique f : BC ←− A, called the curry of f , such that f = ev · (f × C). Diagrammatically,

A

f

��

A× C

f×idC

��

f

##GGGGGGGGG

BC BC × C ev
// B

i.e.,

k = f ≡ f = ev · (k × id) (7)

Dually, functions sharing the same codomain may be glued together through an either combi-
nator, expressing alternative behaviours, and introduced as the universal arrow in a datatype sum
construction.

The sum A+B (or coproduct) of A and B corresponds to their disjoint union. The construction
is dual to the product one. From a programming point of view it corresponds to the aggregation
of two entities in time (as in a union construction in C), whereas product entails an aggregation
in space (as a record). It also arises by universality: A + B is defined as the target of two arrows
ι1 : A + B ←− A and ι2 : A + B ←− B, called the injections, which satisfy the following universal
property: for any other set Z and functions f : Z ←− A and g : Z ←− B, there is a unique arrow
[f, g] : Z ←− A + B, usually called the either (or case) of f and g, that makes the following
diagram to commute:

A
ι1 //

f
##FFFFFFFFF A + B

[f,g]

��

B
ι2oo

g
{{xxxxxxxxx

Z

Again this universal property can be written as

k = [f, g] ≡ k · ι1 = f ∧ k · ι2 = g (8)

from which one infers correspondent cancelation, reflection and fusion results:

[f, g] · ι1 = f , [f, g] · ι2 = g (9)
[ι1, ι2] = idX+Y (10)

f · [g, h] = [f · g, f · h] (11)

Products and sums interact through the following exchange law

[〈f, g〉, 〈f ′, g′〉] = 〈[f, f ′], [g, g′]〉 (12)

provable by either product (1) or sum (8) universality. The sum combinator also applies to func-
tions yielding f + g : A′ + B′ ←− A + B defined as [ι1 · f, ι2 · g].

Conditional expressions are modelled by coproducts. In this paper we adopt the McCarthy
conditional constructor written as (p → f, g), where p : 2 ←− A is a predicate. Intuitively,
(p → f, g) reduces to f if p evaluates to true and to g otherwise. The conditional construct is
defined as

(p → f, g) = 〈f, g〉 · p?

where p? : A + A←− A is determined by predicate p as follows

p? = A
[id,p] // A× (1 + 1) dl // A× 1 + A× 1

π1+π1 // A + A
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where dl is the distributivity isomorphism. The following laws are usefull to calculate with condi-
tionals [7].

h · (p → f, g) = (p → h · f, h · g) (13)
(p → f, g) · h = (p · h → f · h, g · h) (14)

(p → f, g) = (p → (p → f, g), (p → f, g)) (15)

Recursion. Recursive functions over inductive datatypes (such as finite sequences or binary trees)
are given by their genetic information, i.e., the specification of what is to be done in an instance of a
recursive call. Consider, for example, the pointfree specification of the function which computes the
length of a list len : N←− A∗. A∗ is an example of an inductive type: its elements are built by one
of the following constructors: nil : A∗ ←− 1, which builds the empty list, and cons : A∗ ←− A×A∗,
which appends an element to the head of the list. The two constructors are glued by an either
in = [nil, cons] whose codomain is an instance of polynomial functor F X = 1 + A × X. The
algorithm contents of function len is exposed in the following diagram:

1 + A× N
[0,succ·π2] // N

1 + A×A∗ in=[nil,cons] //

id+id×len

OO

A∗

len

OO

where the ’genetic’ information is given by [0, succ · π2]: either return 0 or the successor of the
value computed so far. Function len, being entirely determined by its ’gene’ is said its inductive
extension or catamorphism and represented by ([[0, succ · π2]]).

Catamorphisms extend to any polynomial F and possess a number of remarkable properties,
e.g.,

([in]) = id (16)
([g]) · in = g · F ([g]) (17)
f · ([g]) = ([h]) ⇐ f · g = h · F f (18)
([g]) · T f = ([g · F (f, id)]) (19)

where T is the functor that assigns to a set X the corresponding inductive type for F (in our
example, TX = X∗). Laws above are called, respectively, cata-reflection, -cancelation, -fusion and
-absorption.

3 Slicing by Calculation

As mentioned in section 1, mainstream research on program slicing targets imperative languages
and, therefore, is oriented towards particular, well characterised notions of computational variable,
program statement and control flow behaviour. Slicing algorithms exploit graph representations
of the target program reflecting dependencies between instances of such notions.

Slicing functional programs requires a different perspective. Functions, rather than program
statements, are the basic computational units and functional composition replaces statement se-
quencing. Moreover there is no notion of assignable variable or global state whatsoever.

This section introduces the basic strategy of our approach to slicing by calculation. The idea
is to resort to special functions (called either projections or hiding functions in the sequel) to
slice other functions. Let f be the target functional program. Typically f receives a number of
arguments and returns a number of results packed together in a multiplicative context which may,
eventually, be embedded in contexts represented by functors R and T respectively. Formally,

f : T(Πj∈J Bj)←− R(Πi∈I Ai) (20)
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A projection function π : T(Bk) ←− T(Πj∈J Bj) selects a particular factor in the output of
f . The effect of its composition with f is to find out the trace of such a factor on the body of
f . As it proceeds backwards, we call its computation a backward slicing process, in a way which
is consistent with the corresponding designation in conventional slicing. Formally the backward
slicing problem is stated in terms of solving for unknown f ′ the following equation:

π · f = f ′ (21)

Note that this approach is not based in any intermediate program representation (like Control
Flow Graphs or Data Dependence Graphs), the projection function itself acting as the slicing
criterion. The slicing problem reads: find a new function f ′ corresponding to the restriction of f
with respect to π. At first it might seem complex to come up with a suitable projection function
to encode a particular restriction (and compute the corresponding slice). In most cases, however,
as illustrated in the examples discussed in the following section, a simple product projection, like
a selector in a pair or a datatype destructor, is enough.

The dual process corresponds to what is traditionally called forward slicing. In this case a
function σ : R(Πi∈I Aj) ←− R(Πi∈I Aj) is used to hide from the input of f the arguments one
does not want to consider as a slicing criteria. Hiding a particular factor Ak in a product Πi∈I Ai

amounts to apply to that factor function ⊥ : Ak ←− Ak which maps any value of type Ak to the
bottom element ⊥Ak

of the corresponding data domain1. Formally,

⊥ = Ak
! // 1

⊥Ak // Ak (22)

Therefore, hiding function σ takes the form of a product of ⊥ functions and identities embedded
in context R. The forward slicing problem is then stated in terms of solving for unknown f ′ the
following equation:

f · σ = f ′ (23)

The following two sections illustrate the application of this method to a few small examples.

4 Functional Backward Slicing

This section introduces two examples of backward slicing by calculation. In the first case, the
well-known word count wc example, the output of the target program is a product of two naturals
corresponding to the number of lines and characters in an input string. The projection function
is therefore a single product projection. The second example is a toy bank account management
system whose output is a user defined datatype.

In both cases we start with a translation of the original program f into a pointfree notation.
Once chosen a suitable slicing criterion π, the slicing process proceeds by calculation of π · f
resorting to the Bird-Mertens formalism and calculus. Then the computed slice can be used directly
(if the programming language allows the direct codification of pointfree expressions, which is the
case of e.g., Haskell) or first translated back to a more conventional pointwise notation.

4.1 Slicing With Tuples

Consider the problem of identifying a slice in the following functional version of the Unix word-
count utility (wc), with the -lc flag.

wc = wcAux (1,0)

wcAux :: (Int, Int) -> String -> (Int, Int)

1 Recall that in the semantics of functional programs data domains are modelled by flat partial orders
with a bottom element representing undefinedness.
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wcAux p [] = p

wcAux (lc, cc) (h:t) =

if h == ’\n’ then wcAux (lc+1, cc+1) t

else wcAux (lc, cc+1) t

which is translated into the Bird-Merteens formalism as

([[〈1, 0〉, [(succ× succ) · π2, (id× succ) · π2] · p?]])F

where p = ((′\n′ ==) · π1)?.

The original function counts the number of lines and characters for a given text input. Our goal
is to identify a slice of wc which just computes the number of lines. This is given by the first
component of the pair returned by the original wc program. Thus, it is expectable that a function
that selects the first element of a pair constitutes a good candidate for a slicing criterion. Indeed
we shall use π1 = fst :: (a, b) -> a, the Haskell first projection of a pair. Thus the slicing
problem reduces to solving the following equation:

f ′ = π1 · ([[〈1, 0〉, [(succ× succ) · π2, (id× succ) · π2] · p?]])F

which leads to the following calculation

f ′ = {f ′ definition }
π1 · ([[〈1, 0〉, [(succ× succ) · π2, (id× succ) · π2] · p?]])F

= {composing with id }
π1 · ([[〈1, 0〉, [((succ× succ) · id) · π2, ((id× succ) · id) · π2] · p?]])F

= {reflection-× (twice)}
π1 · ([[〈1, 0〉, [((succ× succ) · 〈π1, π2〉) · π2, ((id× succ) · 〈π1, π2〉) · π2] · p?]])F

= {absorption-× (twice)}
π1 · ([[〈1, 0〉, [〈succ · π1, succ · π2〉 · π2, 〈id · π1, succ · π2〉 · π2] · p?]])F

= {fusion-× (twice)}
π1 · ([[〈1, 0〉, [〈(succ · π1) · π2, (succ · π2) · π2〉, 〈(id · π1) · π2, (succ · π2) · π2〉] · p?]])F

= {exchange law, identities }
π1 · ([[〈1, 0〉, 〈[(succ · π1) · π2, π1 · π2], [(succ · π2) · π2, (succ · π2) · π2]〉 · p?]])F

= {fusion-×}
π1 · ([[〈1, 0〉, 〈[(succ · π1) · π2, π1 · π2] · p?, [(succ · π2) · π2, (succ · π2) · π2] · p?〉]])F

= {[f, f ] · p? = f}
π1 · ([[〈1, 0〉, 〈[(succ · π1) · π2, π1 · π2] · p?, (succ · π2) · π2〉]])F

= {exchange law}
π1 · ([〈[1, [(succ · π1) · π2, π1 · π2] · p?], [0, (succ · π2) · π2]〉])F

= {absorption-× (twice), cancelation-× (twice)}
π1 · ([〈[1, [(succ · π2) · (id× π1) · 〈π1, π2〉, π2 · (id× π1) · 〈π1, π2〉] · p?], [0, (succ · π2) · π2]〉])F

= {reflexion-× (twice), fusion-+, definition of p}
π1 · ([〈[1, [succ · π2, π2] · (id× π1) + (id× π1) · ((′\n′ ==) · π1)?], [0, (succ · π2) · π2]〉])F

= {absorption-×, cancelation-×, reflexion-×}
π1 · ([〈[1, [succ · π2, π2] · (id× π1) + (id× π1) · ((′\n′ ==) · π1 · (id× π1))?], [0, (succ · π2) · π2]〉])F

= {McCarthy conditional fusion law}
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π1 · ([〈[1, [succ · π2, π2] · p? · (id× π1)], [0, (succ · π2) · π2]〉])F
= {natural-id, absorption-+, absorption-×, cancelation-×, reflexion-×}

π1 · ([〈[1, [succ · π2, π2] · p?] · id + (id× π1), [0, (succ · π2)] · id + (id× π2)〉])F
= {definition of Functor F}

π1 · ([〈[1, [succ · π2, π2] · p?] · F π1, [0, (succ · π2)] · F π2〉])F
= {corollary of the Fokkinga law [4]}

π1 · 〈([[1, [succ · π2, π2] · p?]])F, ([[0, succ · π2]])F〉
= {cancelation-×}

([[1, [succ · π2, π2] · p?]])F

Finally the result can be translated back to concrete Haskell syntax, yielding the following
program:

wc = foldr

(\c -> if c == ’\n’ then succ else id)

1

or, going pointwise,

wc = wcAux 1

wcAux :: Int -> String -> Int

wcAux p [] = p

wcAux lc (h:t) =

if h == ’\n’ then wcAux lc+1 t

else wcAux lc t

A similar approach could be taken, using π2 as a slicing criterion, to isolate the character count
computation inside wc.

4.2 Slicing With User Defined Data Types

Our second example is a migration function which feeds a new model of a (toy) bank account
system with data coming form an hypothetic legacy system. The new model records information
on account balances and holders in structured according to the following Haskell datatype
declaration:

data System = Sys { clients :: [Client],

accounts :: [Account] }

data Client = Clt { cltid :: CltId,

name :: CltName }

data Account = Acc { accid :: AccId,

holder :: CltId,

amount :: Amount }

Note that datatype System has Sys :: [Client] -> [Account] -> System as its construc-
tor, and clients :: System -> [Client] and accounts :: System -> [Account] as destruc-
tors, retrieving the list of clients and accounts, respectively. Also notice that in Haskell type
constructors like System are curried — a detail one has to keep in mind along the slice calculation.
Datatypes Client and Account are defined similarly.

The target program is now function migrate which accepts a sequence of tuples, containing
information about bank clients and their respective balances and populates datatype System. The
function procedes recursively on the input sequence and is therefore given as a catamorphism for
a particular ’gene’. Consider the following Haskell definition of migrate where the underlying
catamorphism is encoded in the standard foldr primitive function.
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migrate :: [((CltId, CltName), (AccId, Amount))] -> System

migrate =

foldr (curry $ (uncurry Sys) . split f1 f2)

(Sys [] [])

where f1 = uncurry (:) . split (uncurry Clt . p1 . p1)

(clients . p2)

f2 = uncurry (:) . split ((uncurry . uncurry $ Acc) . split (split (p1 . p2 . p1)

(p1 . p1 . p1))

(p2 . p2 . p1))

(accounts . p2)

A direct translation of this program to the Bird-Meertens formalism leads to

migrate = ([[Sys nil nil, Sys · 〈f1, f2〉]])F
f1 = cons · 〈Clt · π1 · π1, clients · π2〉

f2 = cons · 〈Acc · 〈〈π1 · π2 · π1, π1 · π1 · π1〉, π2 · π2 · π1〉, accounts · π2〉

The problem now is to compute the two slices of migrate which correspond to the information
on clients and accounts so that client and account migration can be done by two independent
processes. To identify the clients slice we take the original clients selector as the slicing criteria.
The slice itself will be again a recursive function and therefore it is written as catamorphism ([g])
over sequences. The equation we are left to solve is

([g]) = clients · ([[Sys nil nil, Sys · 〈f1, f2〉]]) (24)

Following by calculation over the f value, one as

([g]) = clients · ([[Sys nil nil, Sys · 〈f1, f2〉]])
⇐ {cata-fusion }

g · (F clients) = clients · [Sys nil nil, Sys · 〈f1, f2〉]
⇔ { constant function and uncurry }

g · (F clients) = clients · [Sys · 〈nil, nil〉, Sys · 〈f1, f2〉]
⇔ {absorption-+}

g · (F clients) = [clients · (Sys · 〈nil, nil〉), clients · Sys · 〈f1, f2〉]
⇔ {definition of clients, · is associative}

g · (F clients) = [π1 · 〈nil, nil〉, π1 · 〈f1, f2〉]
⇔ {cancelation-× (twice)}

g · (F clients) = [nil, f1]
⇔ {definition of f1}

g · (F clients) = [nil, cons · 〈Clt · π1 · π1, clients · π2〉]
⇔ {cancelation-× (twice)}

g · (F clients) = [nil, cons · 〈Clt · π1 · π1 · 〈π1, clients · π2〉, π2 · 〈π1, clients · π2〉〉]
⇔ {absorption-× (twice)}

g · (F clients) = [nil, cons · 〈Clt · π1 · π1 · (id× clients) · 〈π1, π2〉, π2 · (id× clients) · 〈π1, π2〉〉]
⇔ {natural-id (twice), reflection-× (twice)}

g · (F clients) = [nil, cons · 〈Clt · π1 · π1 · (id× clients), 〉]
⇔ {fusion-×, def. of functor F}
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g · (id + id× clients) = [nil, cons · 〈Clt · π1 · π1, π2〉] · (id× clients)
⇐ {function equality }

g = [nil, cons · 〈Clt · π1 · π1, π2〉]

The computed slice is then

([[nil, cons · 〈Clt · π1 · π1, π2〉]])

which can be translated to Haskell in a straghtforward way as

clientMigration :: [((CltId, CltName), (AccId, Amount))] -> [Client]

clientMigration = foldr (curry $ (uncurry (:) . split (uncurry Clt . p1 . p1) p2)) []

A similar calculation isolates the account information migration process. Note that a reverse
calculation starting with the two slices would lead again to the original function, providing evi-
dence of the semantic soundness of this approach. Such is difficult to prove in conventional slicing
techniques giving their essentially syntactic nature.

5 Functional Forward Slicing

To illustrate forward slicing calculation we resort again to the toy bank system and function
migration defined in the previous section. The idea is to hide client information from the input
in order to compute the forward slice relative to account information. By type inspection it comes
clear that the relevant hiding function in this case is

σ = (⊥× id)∗ (25)

Then,

f ′ = ([[Sys nil nil, Sys · 〈f1, f2〉]]) · (⊥ ×id)∗

⇔ {cata-absorption}
f ′ = ([[Sys nil nil, Sys · 〈f1, f2〉] · (id + (⊥ ×id)× id)])

⇔ {absorption-+, identities}
f ′ = ([[Sys nil nil, Sys · 〈f1, f2〉 · (⊥ ×id)× id]])

⇔ {fusion-× (twice)}
f ′ = ([[Sys nil nil, Sys · 〈f1 · (⊥ ×id)× id, f2 · (⊥ ×id)× id〉]])

Let us now compute separately expressions f1 · ((⊥ ×id)× id) and f2 · ((⊥ ×id)× id):

f1 · ((⊥ ×id)× id)
⇔ {definition of f1}

cons · 〈Clt · π1 · π1, clients · π2〉 · ((⊥ ×id)× id)
⇔ {fusion-×}

cons · 〈Clt · π1 · π1 · ((⊥ ×id)× id), clients · π2 · ((⊥ ×id)× id)〉
⇔ {corolary of the cancelation law for ×}

cons · 〈Clt · π1 · (⊥ ×id) · π1, clients · id · π2〉
⇔ {corolary of the cancelation law for ×, identity and ! }

cons · 〈Clt· ⊥, clients · π2〉
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and

f2 · ((⊥ ×id)× id)
⇔ {definition of f2}

cons · 〈Acc · 〈〈π1 · π2 · π1, π1 · π1 · π1〉, π2 · π2 · π1〉, accounts · π2〉 · ((⊥ ×id)× id)
⇔ {fusion-×}

cons · 〈Acc · 〈〈π1 · π2 · π1, π1 · π1 · π1〉, π2 · π2 · π1〉 · ((⊥ ×id)× id), accounts · π2 · ((⊥ ×id)× id)〉
⇔ {corolary of the cancelation law for ×, fusion-×}

cons · 〈Acc · 〈〈π1 · π2 · π1, π1 · π1 · π1〉 · ((⊥ ×id)× id), π2 · π2 · π1 · ((⊥ ×id)× id)〉, accounts · id · π2〉
⇔ {corolary of the cancelation law for ×, fusion-×, identity }

cons · 〈Acc · 〈〈π1 · π2 · π1 · ((⊥ ×id)× id), π1 · π1 · π1 · ((⊥ ×id)× id)〉, π2 · π2 · (⊥ ×id) · π1〉, accounts · π2〉
⇔ {corolary of the cancelation law for ×, fusion-×, identity }

cons · 〈Acc · 〈〈π1 · π2 · (⊥ ×id) · π1, π1 · π1 · (⊥ ×id) · π1〉, π2 · π2 · π1〉, accounts · π2〉
⇔ {corolary of the cancelation law for ×, identity and ! }

cons · 〈Acc · 〈〈π1 · π2 · π1, π1· ⊥〉, π2 · π2 · π1〉, accounts · π2〉

Finally, one gets f ′

f ′ = ([[Sys nil nil, Sys · 〈f ′1, f ′2〉]])
f ′1 = cons · 〈Clt· ⊥, clients · π2〉

f ′2 = cons · 〈Acc · 〈〈π1 · π2 · π1, π1· ⊥〉, π2 · π2 · π1〉, accounts · π2〉

Slice f ′ is then encoded in Haskell removing subexpressions marked by ⊥. This corresponds
to removing from the original migration code the fragments marked in red. Notice they are exactly
the ones processing the client information component in the input sequence.

initSystem :: [((CltId, CltName), (AccId, Amount))] -> System

initSystem =

foldr (curry $ (uncurry Sys) . split f1 f2)

(Sys [] [])

where f1 = uncurry (:) . split (uncurry Clt . p1 . p1)

(clients . p2)

f2 = uncurry (:) . split ((uncurry . uncurry $ Acc) . split (split (p1 . p2 . p1)

(p1 . p1 . p1))

(p2 . p2 . p1))

(accounts . p2)

6 Conclusions and Future Work

This paper presented an approach to slicing of functional programs in which slice identification
is regarded as a calculation carried on within the algebra of programming known as the Bird-
Meertens calculus. The approach is semantically sound in the sense that the original program
may be formally recovered from the collection of its slices, a fact that can only be conjectured in
classical, graph-based, syntax-oriented slicing techniques [14, 18]. Moreover it seems to have some
potential for practical application as a subsidiary method to such slicing techniques [16]. In a
sense, projection and hiding functions encode slicing criteria strongly oriented towards datatypes
programs consume or produce. It should be remarked that the idea of using functions to slice other
functions can be traced back to [15] where it was used in the context of regular tree grammars.
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The approach sketched here is, however, in its infancy. Future work includes its generalization
to programs whose input and/or output is framed in an alternative (sum) context. Whether it
scales up to real, heavy examples is currently being assessed by conducting a major case study in
foreign open-source Haskell code.

Another line of research is the application of similar principles to the dual picture of coinductive
types [10] which enjoy similar calculational properties [17]. This will hopefully lead to a method
of process slicing to deal with information processes encoded as coalgebraic datatypes [2] with
applications to the area of reverse engineering of software architectures (in the sense of e.g., [22]).
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