04511 Abstracts Collection
Architecting Systems with Trustworthy
Components
— Dagstuhl Seminar —

Ralf Reussner!, Judith Stafford? and Clemens Szyperski®

! Univ. Oldenburg, DE
reussner@acm. org
? Tufts Univ., Medford MA, US
jas@cs.tufts.edu
3 Microsoft Research, Redmond, US

Abstract. From 12.12.04 to 17.12.04, the Dagstuhl Seminar 04511 “Ar-
chitecting Systems with Trustworthy Components” was held in the In-
ternational Conference and Research Center (IBFI), Schloss Dagstuhl.
During the seminar, several participants presented their current research,
and ongoing work and open problems were discussed. Abstracts of the
presentations given during the seminar as well as abstracts of seminar re-
sults and ideas are put together in this paper. The first section describes
the seminar topics and goals in general. Links to extended abstracts or
full papers are provided, if available.

Keywords. Component frameworks, quality prediction, performance
prediction, limits and assumptions of predicition methods, adaptation,
archtiectural mismatches, patterns, components errors blame analysis
assignment, protocols, interoperability, component specification

04511 Breakout Group — Component Frameworks

Terminology The breakout group attempted to frame the term "component
framework" by agreeing on definition fragments of the terms component and
framework, for the purposes of this discussion. Components: units characterized
by relatively late binding (i.e., not by a developer), retention of identity post
deployment, and explicit context dependencies.

Frameworks: starting from the observation that random components, even if
100% perfect, are not going to work with each other and that an adapter is a
symptom of something being wrong, there is a need to produce components that
fit certain standards, interfaces, abstractions, and ontology. These are, what a
component framework provides.

Dagstuhl Seminar Proceedings 04511
Architecting Systems with Trustworthy Components
http://drops.dagstuhl.de/opus/volltexte/2006/473



https://core.ac.uk/display/62911521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

R. Reussner, J. Stafford and C. Szyperski

Examples:
In the vague context of the terminology frame, a wide range of examples helps

make the component framework idea more concrete. Such examples include:

Extensible Editors like Emacs

Application Servers like JBoss with different component categories, like
beans and interceptors

Extensible IDEs, like Eclipse or Visual Studio, with plug-ins (or add-ins) as
components

Operating systems with applications, device drivers, kernel modules, etc. as
components

OS kernel architecture, with micro and nano kernels as the result of creating
minimal component frameworks

Layered stacks, such as networking stacks

Interception component frameworks, as found in both application servers
and networking stacks, to guard against propagation of errors Why Com-
ponent Frameworks

As a specific case of applying a separation of concerns discipline, component
frameworks can be used to factor services and aspects out of individual
components.

Assuming a component framework that itself is significantly more reliable
than any of the components, the component framework can help to assign
blame to failing components.

Component frameworks can impose common design decisions and thus en-
force constraints. "We have to make some things theoretically impossible,
to make (other!) things possible in practice".

The presence of a component framework helps establishing a higher basis
of guarantees under composition and varied components.

By factoring out the hardest / most guarding substrate of all solutions build
using a component, framework, higher levels of robustness can be achieved.

Trade offs

The traditional tradeoff of mechanisms versus policies applies and the end-
to-end argument suggests that component frameworks should not embody
policies that go beyond their scope.

The trade-off between the degree of framework completeness and constraint
enforcement on the one hand and flexibility and potential on the other
characterizes the nature of component frameworks.

Given the difficult tradeoffs, the expectations of a high quality bar, and the
likelihood to embody a critical point of failure - when comparing component
frameworks and components - highly specialized people are needed.

As usual with broad and deep abstractions, it is necessary to conduct at
least three different case studies to validate a framework before it should be
released to a broader audience. (Instead of three some other larger prime
number may be chosen. The patterns community finds seven an appealing
number.)



Architecting Systems with Trustworthy Components 3

- A component framework helps composing components designed with that
framework in mind. However, how are frameworks composed with each
other? One appealing approach is to think of component frameworks to-
gether with the components they carry as large components at the next
larger level of granularity. Then, a hierarchy of component frameworks can
be used, applying the component framework concept recursively.

Concerns

- While the scalability of fundamental component-framework concepts is de-
sirable, it is unlikely that any specific component framework can meaning-
fully scale across a very wide range.

- Assemblies build as compositions based on component frameworks may
themselves experience scalability or performance problems caused by the
component frameworks presence. ’

- Given the requirement to build a specific solution, a component framework
should not get in the way. However, this is in contrast to the need to restrict
composition on top of a component framework - just to enable the main
advantages of using a component framework in the first place.

Semantics

What? How? Articulation of domain Component framework Quality attributes
Design patterns, architectural styles

Future research

Domain-specific languages can be used both to capture and to exploit the
semantics of a particular domain. One perspective is that component frameworks
are domain-specific languages without surface syntax. It should be fruitful to
research the potential of cross-pollination of the two disciplines of domain-specific
languages and component frameworks.

Another area of future work would be investigations into programming-
language support for the use and, possibly, the construction of component frame-
works. (The latter task is presumably far less common, making language support
less compelling.)

Participants:Shriram Krishnamurthi, Stig Larsson, Judith Stafford, Alexan-
der Stuckenholz, Clemens Szyperski, Rob van Ommering, Wolfgang Weck

Keywords: Component Frameworks

04511 Breakout Group — Performance Prediction of
Component-Based Systems

Predicting the performance of component-based systems has been in the focus
of research for quite some time now. Consequently, a variety of methods that
use different mathematical models evolved until now.



4 R. Reussner, J. Stafford and C. Szyperski

Most of methods, however, make specific assumptions that increases or de-
creases their applicability in certain domains of systems. To classify, which of the
methods is appropriate in a specific context (i.e. for a certain class of systems),
we provide a comparison of methods for performance prediction with respect to
their (implicit) assumptions.

Therefore, we identified a variety of influences which have eventually to be
taken into consideration during the predicition of the performance of a particular
system. In addition, we classified the existing methods according to their under-
lying mathematical model. Building upon these two abstractions, we compared
the applicability of exisiting methods according to the identified influences and
deduced a variety of pratical recommendations.

Keywords:  Quality Prediction, Performance Prediction, Limits and Assump-
tions of Predicition Methods

Joint work of:  Becker, Steffen; Firus, Viktoria; Gorton, Ian; Grunske, Lars;
Mirandola, Raffaela; Overhage, Sven

04511 Breakout Group — Adaptation: Towards an
Engineering Approach for Component Adaptation

The adaptation of components is an inherent task of component-based software
engineering (cf. BG Adaptation I). Therefore, the formation of an engineering
approach to component adaptation is necessary to support the development
of trustworthy systems that reliably meet their requirements. The main goals
of such an engineering approach are to provide a theoretically substantiated
solution to adapt components and simultaneously support the reasoning about
any changes in the quality attributes that arise from the adaptation. Moreover,
the envisaged solution should allow the creation of adapters by hand as well as
the development of adapter generators that automate the adaptation task.

As a first step towards an engineering approach, a classification of interop-
erability problems that may cause a need for adaptation has been developed
and different classes of interoperability problems have been identified. For each
of the identified classes, a variety of patterns has been listed. These patterns
can be used to overcome a particular interoperability problem. In so doing, we
distinguished between basic building blocks of patterns, generic patterns, and
specific patterns (which often build upon generic pattern to provide solutions
for a particular problem domain).

In order to create an adapter, a certain interoperability problem first has
to be detected and then to be eliminated. Both of these tasks require specific
metadata which has to be provided by the respective component manufacturers
(e.g. in form of a component specification). In order to provide a recommendation
on the metadata that has to be provided, we plan to deliver a classification that
describes which kind of metadata is required to detect and eliminate a certain
class of interoperability problems. In addition, we plan to investigate the effects
that a certain kind of adaptation has on the quality attributes of the system.



Architecting Systems with Trustworthy Components 5

Keywords:  Adaptation, Archtiectural Mismatches, Patterns

Joint work of:  Becker, Steffen; Brogi, Antonio; Firus, Viktoria; Goos, Ger-
hard; Gorton, Ian; Mirandola, Raffaela; Overhage, Sven; Romanovsky, Alexan-
der; Tivoli, Massimo

04511 Breakout Group — Blame Assignment

Blame assignment is difficult enough in theory: sometimes blame cannot be as-
signed to any proper subset of components, yet it isn’t necessarily the fault of the
integrator either. It may sometimes be better to blame the wrong component —
just to initiate the investigation — than to cautiously blame none at all! Indeed,
the economics of the situation potentially even moves the problem out of the
technical arena: for instance, user perceptions may force major corporations to
shoulder blame, even when a fault clearly lies with a supplier.

We must move towards architect components to enable blame assignment.
This seems like a good role for a component framework, as the enforcer of such
architectures. As blame problems grow in significance, integrators and users may
come to expect components certified by independent bodies. In turn, developers
may come to view the possibility of being blamed as a risk against which they
can purchase insurance.

Keywords: Components errors blame analysis assignment

Joint work of: Brederecke, Jan; Larsson, Stig; Krishnamurthi, Shriram; Stuck-
enholz, Alexander; Sulzmann, Christian; van Ommering, Rob; Szyperski, Clemens;
Weck, Wolfgang

04511 Brakout Group — Classification of System
Engineering Approaches

In this breakout group, we discussed of different methods that can be used to
develop a system and to define its architecture. In order to be able to classify
them, we proposed framework to first introduce some classification criteria then
show on a diagram the studied method. We applied this framework introducing
five criteria classifying four methods.

Keywords: Developement methods, comparison criteria

Joint work of: Bunse, Christian; Freiling, Felix; Levy, Nicole



6 R. Reussner, J. Stafford and C. Szyperski

04511 Breakout Group — Adaptation - Coming to Terms
with Adaptation

The breakout group discussed the answers to the questions

- why adaptation is needed

- when adaptation is performed

- what kind of adaptations can be distinguished

- and finally how adaptation can be done on a systematical basis.

The first question was answered by pointing to the WebService and Service
oriented architectures where heterogenious services are quite common. Addi-
tionally, we came up with the integration of legacy systems, where it is often
impossible to change the interface of the old system so it has to be adapted to
fit into new contexts. Lastly we realized that even with standardized interfaces
and frameworks there is evolution in the system due to changing requirements
so that adapters have to be provided to not get into a maintainance problem.

To answer the question when adaptation is done we classified into the cate-
gories of design-time adaptation and run-time or behavioural adaptation. Design-
time adaptation is being done when a requires interface of a component is mis-
matching with the provides interface of a component which are suposed to work
together. Note that it is depending on the interface model what the actual mean-
ing is. Interface models capturing protocol or QoS information are able to detect
more mismatches than ones which only model signatures.

Run-time adaptation takes place when the system is actually running and is
often done by reconfiguring the component instances of the system. This might
be done on a contextual basis (i.e., moving a mobile device into a different
context) or on the basis of policies telling the system based on objectives, how
to reconfigure under certain conditions.

A classification of the different types of adaptations was discussed by the
participants. We came up with two basic classes: one for functional adaptation
problems and another one for non-functional interoperability problems. Some-
what orthogonal to that kind of classification is the second dimension we dis-
cussed. Along that dimension we distinguished syntactial problems, protocol and
semantical problems. Syntactical problems include technical issues of bridging
different plattforms and signature matching. Protocol problems deal with adding
or deleting messages in order to ensure a certain protocol flow and is most often
done with statefull adapters. Semantical problems arise from a different under-
standing of the underlying domain and are often hard to detect and hard to
bridge.

To come up with sugestions on the how a closer look on desing patterns
and architectural styles used in adapation was proposed for a second breakout
session. Additionally we planed to think about the actual metadata needed for
a respective generator tool to construct the adapter.

Keywords: Component Adaptation, Adaptation Times, Adaptation Techniques



Architecting Systems with Trustworthy Components 7

04511 Breakout Group — Unified Prediction Model

Under a unified prediction model we understand prediction models for two or
several quality attributes of software which base on the same abstraction of the
software. An example is a queuing model used to predict the timing and the
reliability of the software. The interest in such models is raised (a) by practical
concerns: as one has to analyse more than one quality attribute for software,
it is beneficial the build the prediction on one single model than to spend ef-
fort in defining several models. (b) as several quality attributes depend on each
other, one often cannot defined a metric for a quality attribute without con-
sidering other quality attributes (e.g., relaibility prediction models may need
assumptions on the timing behaviour of the software). A different form of inter-
dependencies arise due to antagonistic relations between quality attributes. For
many software designs, the optimisation of one quality attributes will result in
a loss of another quality attribute. Due to these dependencies, the consideration
of combined quality attributes is often inevitable for an evaluation of a software
architecture.

Keywords:  Quality prediction, compositional reasoning, abstract models for
software

Joint work of:  Becker, Steffen; Crnkovic, Ivica; Jezequel, Jean-Marc; Firus,
Viktoria; Gorton, Ian; Kiister-Filipe, Juliana; Mirandola, Raffaela; Overhage,
Sven; Reussner, Ralf; Romanovsky, Alexander; Salzmann, Chris

04511 — Semantics of Specification Languages for
Component-Based Systems

This session discussed the requirements for specification languages that are
specifically targeted to component-based systems. The summary is presented
as five key points. Also included are several pages of raw notes; these include
reference to some topics that were important and interesting, but for some reason
did not surface in the "top five."

Joint work of:  Brogi, Antonio; Fisler, Kathy; Goos, Gerhard; Jahnke, Jens;
Levy, Nicole; Schmidt, Heinz; Wallnau, Kurt

04511 — Final Report on Limits of Predictability

We summarize the results of our discussion as a collection of not-yet written
papers and their abstracts.

Joint work of:  Becker, Steffen; Fisler, Kathi; Hofmeister, Christine; Jahnke,
Jens-Holger; Kniesel, Giinter; Krishnamurthi, Shriram; Levy, Nicole; Reussner,
Ralf; Schneider, Jiirgen; Wallnau, Kurt



8 R. Reussner, J. Stafford and C. Szyperski

04511 — First day notes and report of breakout group on
limits of predictability

These are the notes taken on the first meeting of the breakout group on limits of
predictability on Wednesday together with the slides which presented the notes
on Thursday morning.

Joint work of:  Freiling, Felix

04511 Breakout Group Summary — Interaction Protocols

Interaction protocols represent the abstract behaviour of a software component
by abstractions of traces. In our community, the term "protocol" means a totoally
or partially ordered set of events/calls. A component’s behavour can be described
by several different of these sets: (a) the provides protocol (i.e., set of valid
sequences of calls to provided services), (b) the requires-protocol (i.e., the set
of possibly emmited sequences of calls to external services) and (c) a protocol
specifying the relationship between provided- and requires-protocol, i.e., for each
provided service one specifies the set of possibly emmitted sequences of calls to
external services.

Applications of interaction protocols include (a) eliciting abstract observa-
tional semantics of components, (b) exposing interaction inconsistencies / er-
rors early (interopability checks), and (c) exposing abstract observable 8216;safe
8217; states for atomic dynamic updates.

Keywords: Protocols, interoperability, component specification

Joint work of: Sunbiil, Asuman; Hofmeister, Christine; Kiister-Filipe, Juliana;
Glesner, Sabine; Kramer, Bernd; Goos, Gerhard; Plasil, Frantisek; Crnkovic,
Ivica; Reussner, Ralf; Schmidt, Heinz W.

Staged Architectures

Uwe Assmann (TU Dresden, D)

We present the concept of a staged architecture for software systems and active
documents. Such an architecture consists of several computation stages that
generate each other. Every stage employs a specific component model as well as
a software architecture. With a staged architecture, very complex systems can
be described very concisely. Also variant configuration is very simple. We give an
overview to the connection to model-driven architecture and web engineering.

Keywords:  Architecture, staged programming



Architecting Systems with Trustworthy Components 9

Enhancing the Trustworthiness of Component-Based
Systems through Built in Contract Testing

Colin Atkinson (Universitit Mannheim, D)

Assembling new software systems from prefabricated components is an attractive
alternative to traditional software engineering practices which promises to in-
crease reuse and reduce development costs. However, these benefits will only oc-
cur if separately developed components can be made to work effectively together
with reasonable effort. Lengthy and costly in-situ verification and acceptance
testing directly undermines the benefits of independent component fabrication
and late system integration. Building self testing capabilities into components
is techniques for reducing manual system verification effort by equipping com-
ponents with the ability to automatically check their execution environments at
runtime. When deployed in new systems, built-in test (BIT) components check
the contract-compliance of their server components, including the run-time sys-
tem, and thus automatically verify their ability to fulfill their own obligations.
Enhancing traditional component-based development methods with built-in con-
tract testing in this way reduces the costs associated with component assembly,
and thus makes the "plug-and-play" vision of component-based development
closer to practical reality.

Keywords: Built in Test Components

The Impact of Software Component Adaptation on Quality
of Service

Steffen Becker (Universitat Oldenburg, D)

Software component adaptation is important when it comes to bridging mis-
matching components that need to interoperate. The possible scenarios include
legacy integration and system evolvment where interfaces finally are declared
depricated for reasons of maintainability.

When bridging functional mismatches the Quality of Service characteristics
of the adapted component are changed by the adapter. This is likly to be un-
wanted if the component was selected to build a trustworthy system. Addi-
tionally changing the Quality of Service by the adapter might be on purpose
when extra-functional adaptation is considered. Examples include replication or
failure-retry mechanisms. Especially for the class of adapters that can be con-
structed automatically or semi-automatically by the support of an appropriate
suite of adapter generators it is worth investigating the impact on QoS in ad-
vance so that building predictable compositions with adapters becomes feasable.

Keywords: Adapter generation, component adaptation, component composition



10 R. Reussner, J. Stafford and C. Szyperski

Modular Requirements Against Feature Interaction
Problems

Jan Bredereke (Universitit Bremen, D)

Structuring requirements into information-hiding modules helps against feature
interaction problems. Feature-oriented descriptions are popular, for example, in
telephone switching. But composing many features often leads to undesired be-
haviour. Qur requirements modules group those properties together that are
likely to change together. This reduces dependencies among requirements mod-
ules.

Dependencies should be documented explicitly. This helps to detect remain-
ing interaction problems. For the formalism 7, we show how we can structure
requirements into modules and document dependencies.

We propose a small extension for Z that allows hierarchical grouping, and
interfaces. Interfaces restrict the access to changing parts of the requirements.

Keywords:  Feature orientation, feature interaction problems, maintenance,
information-hiding modules, formal requirements, Z

Adapting Components with Mismatching Behaviour
Antonio Brogi (Universita di Pisa, I)

I shall present a formal methodology that we have developed to adapt compo-
nents presenting mismatching interaction behaviour. The approach consists of
three main ingredients: (1) extend component interfaces with a description of
the component behaviour, (2) express (partial) adaptor specifications as simple
correspondences among actions of two components, (3) automatically generate
an adaptor component, given its partial specification and the interfaces of two
components. I shall also briefly mention other developments of the methodology
- such as forms of "soft" adaptation, adaptation trading, and the use of behav-
ioural types for software adaptation - and our recent activity oriented towards
(Web) service discovery and aggregation.

UML-based Development of Embedded Systems -
Improving Component Quality

Christian Bunse (FhG IESE - Kaiserslautern, D)

Model-driven development, using the UML, has become the most dominant de-
velopment paradigm, particularly in business and web application engineering,
due to their many advantages over traditional procedural approaches. However,



Architecting Systems with Trustworthy Components 11

Model-driven and UML-based development methods are still inferior to conven-
tional software development approaches when it comes to embedded and real-
time system development. Most such methods provide only weak systematic and
methodological support for system development in the embedded domain. The
most fundamental problems in this domain stem from the fact that individual
techniques for embedded system development only acknowledge and address the
particularities of object and component technologies insufficiently, and more im-
portantly, that individual technologies are mostly treated in isolation. Important
aspects are the heterogeneity of embedded systems, containing both, hardware
and software components, and missing methodological support concerning the
modeling and verification/validation of non-functional properties. This is the
goal of the MARMOT approach (www.marmot-project.de) currently under de-
velopment.

Keywords: UML, Embedded Systems, CBSD, Verification & Validation

Component-based Approach for Embedded Systems

Ivica Crnkovic (Mdlardalen University - Vasterds, S)

Although attractive for many reasons, such as reusability, time-to market, compo-
nent-based approach has not been widely adopted in domains of embedded sys-
tems. The experience has shown that existing technologies cannot be directly
used for development of embedded systems. The reason is inability of these
technologies to address the main concerns of embedded systems: real-time prop-
erties, resource consumption (power, memory, CPU, etc.), and dependability. On
the other hand an increasing understanding of principles of component-based
approach makes it possible to utilize these principles in implementation of dif-
ferent component-based models, more appropriate for embedded systems. There
are some proprietary component models that have been successfully used in de-
velopment of embedded systems. The aim of this presentation is to discuss the
question:

Which concerns related to the embedded systems should be "embedded"
into component models? Further, how can we achieve the basic principles of
component-based approach, such as substitutability, reusability, expandability
and composability for these concerns?

Verifying Compilers
Gerhard Goos (Universitit Karlsruhe, D)

This is a short report about the finished DFG project Verifix of the universities
Karlsruhe, Kiel and Ulm. We quote the meaning of "correctness" of a compiler
and hint to program checking as a technique for verifying the result of a compi-
lation rather than the compiler itself.



12 R. Reussner, J. Stafford and C. Szyperski

Performance Prediction for EJB Applications

Ian Gorton (National ICT Australia - Eveleigh, AU)

A challenging software engineering problem is the design and implementation
of component-based (CB) applications that can meet specified performance re-
quirements. Our PPCB approach has been developed to facilitate performance
prediction of CB applications built using black-box component infrastructures
such as J2EE. Such deployment scenarios are problematic for traditional per-
formance modeling approaches, which typically focus on modeling application
component performance and neglect the complex influence of the specific com-
ponent technology that hosts the application. In this paper, an overview of the
PPCB modeling approach is given. Example results from predicting the perfor-
mance of a J2EE application are presented. These results are then statistically
analyzed to quantify the uncertainty in the predicted results. The contribution of
the paper is the presentation of concrete measures of the confidence an architect
can have in the performance predictions produced by the PPCB.

Joint work of: Gorton, Ian; Liu, Jenny

Automatic Application of Behaviour-Preserving
Transformations to Improve Non-Functional Properties of
an Architecture Specification

Lars Grunske (The University of Queensland, AU)

For safety-critical systems it is necessary to make sure that the non-functional
properties imposed by a system architecture meet safety requirements as early as
possible in the system development lifecycle. The idea is to use quality-improving
architectural transformations in case the non-functional properties do not fulfil
their requirements. Selection and application of appropriate architectural trans-
formations is a time-consuming and error prone task, but many aspects of it
can be automated. In this talk, an approach is presented that uses hypergraph
grammars to formally specify such transformations.

Safety, Liveness, and Information Flow: A Framework for
Designing Dependable Distributed Systems

Feliz C. Freiling (RWTH Aachen, D)

The notion of dependability was introduced to cover a range of critical system
attributes, namely: availability, reliability, safety, and security. We present a
formal framework to precisely talk and reason about dependable systems. The
framework is based on three distinct classes of (system specification) properties



Architecting Systems with Trustworthy Components 13

we call "safety", "liveness" and "information flow". We discuss several examples
of dependable systems within this framework and argue that these classes are
sufficient to model the functional requirements of dependable systems satisfying
to high degrees both safety and security attributes.

Keywords: Fault-tolerance, security, non-interference, possibilistic information
flow, framework, dependability, abstraction, model, verification, design

Avoiding Interface Failure Between Stubborn Components
(a.k.a. Researchers)

Shriram Krishnamurthi (Brown Univ. - Providence, USA)

Components, composition, interfaces: these are the stuff of motherhood and ap-
ple pie. Yet each of these terms is fraught with ambiguous interpretations; we
can immediately imagine at least a dozen different meanings of the phrase "In-
terfaces for Component Composition". Failure to keep these meanings separate
leads to cross-talk, confusion and, eventually, wasted effort.

Joint work of: Krishnamurthi, Shriram; Fisler, Kathi

Imposing Synchronization Constraints on Interaction
Protocols of CORBA Objects

Bernd Krimer (FernUniversitat Hagen, D)

In earlier works we developed a declarative approach to specify synchroniza-
tion constraints for interaction protocol of distributed objects that may exhibit
concurrent behavior [Krdmer 98]. The approach is based on partially ordered
sets of events, called processes. These processes model the abstract behavior of
an object in terms of events denoting the beginning and ending of individual
operation executions. A counting function # allows us to compute how often
some operation has been executed in a given process. This function provides the
basis to define standard synchronization constraints, such as mutual exclusion,
self-exclusion (an operation can be executed by at most one thread at a time),
precedence, or synchronic distance (an operation must not occur more than n
times more often than another operation in a given process), in term of logic
predicates.

This specification mechanism has then been applied to CORBA applications
by including synchronization predicates as annotations invisible to standard IDL
compilers [Jacobsen and Kramer 00a]. The synchronization constraints were sep-
arately compiled into code implementing corresponding sanity checks. In a fur-
ther step we searched for design alternatives that exploit different features of
the CORBA standard to seamlessly integrate synthesized synchronization code
with manual implementations of the object’s functionality. These solutions were



14 R. Reussner, J. Stafford and C. Szyperski

developed into a suite of design patterns for implementing IDL extensions that
co-exist with standard IDL compilers. Prototype implementations of the pro-
posed design patterns served to empirically investigate their advantages and
disadvantages.

References
[Jacobsen and Kramer 00a] H.-A. Jacobsen and B.J. Kramer: Modeling
Interface Definition Language Extensions. In: 37th International Conference
on Technology of Object-Oriented Languages and Systems (TOOLS-37), 20-
23 November 2000, Sydney, Australia.
[Jacobsen and Kramer 00b] H.-A. Jacobsen and B.J. Krdmer: Design Pat-
terns for Synchronization Adapters of CORBA Objects, L’Objet, 6(1), pp-.
57-82, 2000
[Kramer 98] B.J. Kramer: Synchronization Constraints in Object Interfaces,
in B.J. Krdmer and M.P. Papazoglou and H.-W. Schmidt (Eds.) Information
Systems Interoperability, chapter 5. Research Studies Press (Wiley & Sons),
1998.

Keywords: Obejct synchronization, concurrency, interaction protocol

A modelling and reasoning framework for dependability
Juliana Kiister Filipe (University of Birmingham, GB)

For complex distributed critical systems properties like safety, reliability and
security aspects are clearly of great concern. Typical examples of such systems
include systems in healthcare environments, air traffic control, nuclear power
plants, and industrial automation. When developing critical systems it is impor-
tant to have techniques to analyse and verify dependability requirements as well
as reveal potential trade-offs. Formal methods can underpin these techniques,
but currently there is no combined powerful formal framework that allows this.

In practical terms, besides having theoretical foundations available to rea-
son about dependability, it is necessary to offer modelling notations to software
engineers which integrate with standard methodologies and tools.

I am particularly interested in:

1. Developing a uniform formal logic-based framework for reasoning about
dependability in distributed critical systems.

2. Extending existing modelling notation for capturing dependability require-
ments at different levels of detail.

3. Developing prototype tools which build an environment for dependability
evaluation and formal verification.



Architecting Systems with Trustworthy Components 15

Product integration with software components

Stig Larsson (ABB - Visterds, S)

So far research focus for component-based engineering has been on technical
issues. There is a clear need to further explore the processes for architecting sys-
tem based on components. Both top-down and bottom-up methods are needed.
The technologies that can support these methods must also take quality at-
tributes into account. It is also important to build the family of methods based
on the knowledge that there are different resons to architect with components;
e.g. re-use or simplifying the engineering of systems. Especially the process of
integrating products will benefit from a well-designed family of concepts for
components and methods for the engineering of systems.

Architecture development with patterns

Nicole Levy (University of Versailles, F)

The design of the software architecture of a system is a challenging task. Archi-
tectural patterns are recognized as useful to provide architectural solutions. But
their selection among a pattern library and their application remains difficult.
This is due on to the informal description of both the problem to be solved and
its nonfunctional requirements.

We propose a quality-based approach to architectural design focusing on the
problem to be solved. The problem is described in terms of its functional and
nonfunctional requirements. The architecture is refined by application of archi-
tectural patterns. An architectural pattern is defined as a problem-solution pair.
Both the problem and the solution parts contain a functional and a nonfunctional
description.

Keywords:  Software architecture, architectural patterns, functional and non-
functional requirements

Predicting the Quality of Service of Component-based
Systems

Raffaela Mirandola (Universita di Roma II, I)

Component Based Software Engineering (CBSE) is today the emerging para-
digm for the development of large complex systems. By maximizing the re-use
of separately developed generic components, it promises to yield cheaper and
higher quality assembled systems. The basic understood principle (or actually
aspiration) is that the individual components are released once and for all with
documented properties and that the properties then resulting for an assembled



16 R. Reussner, J. Stafford and C. Szyperski

system can be obtained from these in compositional way. While this princi-
ple/aspiration has been actively pursued for the system functional properties
since the advent of CBSE, it is only recently that equal emphasis is being de-
voted to the as important non-functional aspects or Quality of Service (QoS),
such as reliability, security and performance. To facilitate QoS analysis since the
design stage, automatic prediction tools should be devised, that predict some
overall quality attribute of the application, without requiring extensive knowl-
edge of analysis methodologies to the application designer In this talk we focus on
the evaluation of performance properties (like response time, throughput, etc.)
and we present a journey through different methodologies (and related tools) for
the specification and analysis of performance related properties of components
and assemblies of components.

Joint work of: Mirandola, Raffaela; Bertolino, Antonia; Grassi, Vincenzo

Unified Specification of Components: Towards a
Standardized Framework to Support Component
Development, Discovery, and Composition

Sven Querhage (Universitit Augsburg, D)

Many methods and tools that support component-based development require
information about components, e.g. to reason about system properties, perform
compatibility checks, or to achieve component adaptation. In order to support all
these methods, the UnSCom (Unified Specification of Components) framework
has been introduced as a single source of information. It focuses on providing the
information necessary to facilitate component development, discovery, and com-
position. To be applicable in all these 7elds, the UnSCom framework ties together
a mix of different speci?cation aspects and unifies the speci?cation of components
using a single, coherent approach. This approach is based on the notion of design
by contract which has been extended to component-based software engineering
by introducing service and composition contracts. The UnSCom framework sup-
ports the specification of composition contracts, which describe the required and
provided interfaces of components on various contract levels. They are themati-
cally grouped into colored pages: blue pages describe the required and provided
functionality, green pages comprise the architectural design of the required and
provided interfaces, and grey pages describe the required and provided quality
of components.

Keywords: Component specification, design by contract



Architecting Systems with Trustworthy Components 17

Session Notes: Semantics of Specification Languages for
Component-Based Systems

Ralf Reussner (Universitat Oldenburg, D)

Session notes covering top five results and also several pages of raw notes.

Joint work of:  Brogi, Antonio; Fisler, Kathy; Goos, Gerhard; Jahnke, Jens;
Levy, Nicole; Schmidt, Heinz; Wallnau, Kurt

Dependability-explicit Computing: applications in
e-Science and Virtual Organisations

Alezander Romanovsky (University of Newcastle, GB)

Providing a predictable level of dependability is a challenge for applications
which choreograph services from many different providers. Applications rou-
tinely fail because a component service fails, yet the designers of applications
have, at best, limited information about component service dependability. This
limits their ability to make informed decisions about when it is cost-effective
to use a service or to employ potentially expensive fault containment or tol-
erance techniques such as redundancy. We consider ways to improve support
for the publication and exploitation of dependability metadata for services by
developing publication methods and ontologies to support shared metadata de-
finitions. Two diverse examples of metadata are considered: service availability
information and descriptions of service failure modes. The availability work is
particularly relevant to bioinformatics, while work on failure modes is explored
in the context of virtual organisations with long-term interactions.

Joint work of: Romanovsky, Alexander; Fitzgerald, John

Reasoning about component architectures and their
extra-functional properties in real-time systems

Heinz W. Schmidt (Monash University, AU)

This talk will briefly summarise our recent work which falls squarely in the in-
tersection of component-based software architecture, component protocol speci-
fication and extra-functional property modeling. In our formalism for modeling
architecture definitions we capture dependency networks between components
and connectors and associate formal protocol types with components and con-
nectors. Our formalism, dependent finite state machines or DFSMs, has been
studied in connection with prediction of worst-case time in distributed control
systems and reliablity in distributed transaction systems - for instance web ser-
vices. DFSMs associate finite state automata with connectors and finite state



18 R. Reussner, J. Stafford and C. Szyperski

translators with components to enable reasoning *through components* from
provided to required interfaces and following connectors. Subtyping in DFSMs
leads to a flexible notion of conformance not only for component connection, but
also component replacement and architecture reconfiguration.

Reasoning across architectural dependency networks connecting components
is key to modeling adaptation, replacement and extra-functional properties of
component-based systems. For example, if we want to understand the reliability
of a service provided by a component C we have to factor in the reliability
of the external component services called by C via its required interfaces. The
reliability of the service provided may depend significantly on the reliability of
an called component in the deployment environment and, more importantly, it
may differ significantly depending on the expected call frequencies. For example,
if C calls a low-reliability component L frequently in its inner loops while only
calling another high-reliability external component H once during initialisation,
C’s reliability will tend towards the lower reliability of L.

As the basic formalism has been published (and in fact I gave a presentation
at another Dagstuhl seminar in 2002), I will mainly summarise more recent re-
sults. In particular, I plan (a) to provide an update on component-based time
prediction models in an industrial cooperation with ABB, (b) point to the results
of a recent research student project on connecting our model with resource cost
predictions using Markov chains, and (¢) mention work in progress, which ex-
tends DFSMs to so-called Depedent Context-Free Translators (DCFTs), which
lift several of the limiting architectural restrictions of DFSMs, without giving
up efficient prediction or the spirit of underpinning extra-functional property
models by architectural dependency networks.

Keywords: Component-based software engineering, software architecture, extra-
functional properties, real-time systems, reliability, soft real-time, worst-case ex-
ecution time

Manage High Availability with Concepts of Automated
Operations’ AO

Jiirgen Schneider (IBM - Béblingen, D)

This reflects some conceptual work within IBM to support business resilient
IT services. We are introducing into some automation concepts and take this
model further to support HA clusters and distributed heterogeneous distributed
applications.

Keywords:  Availability Automation Recovery Disaster



Architecting Systems with Trustworthy Components 19

Compatible component upgrades through smart
component swapping

Alexander Stuckenholz (FernUniversitit Hagen, D)

Emerging component-based software development architectures promise better
re-use of software components, greater flexibility, scalability and higher quality
of services. But like any other piece of software too, software components are
hardly perfect, when being created. Problems and bugs have to be fixed and new
features need to be added.

This paper will give an introduction to the problem of component evolution
and the syntactical incompatibilities which result during necessary multi compo-
nent upgrades. The authors present an approach for the detection of such incom-
patibilities between multiple generations of component versions and present a
solution for automated versioning of relevant component facets. The main con-
cern of the paper will be the automated reconfiguration of component based
software systems by intelligent swapping of component versions to find conflict
free system states.

Keywords: Component evolution, component upgrades, automated versioning,
automated reconfiguration

Joint work of:  Stuckenholz, Alexander; Zwintzscher, Olaf

A survey of composition techniques for Wireless sensor
Networks

Asuman Sinbil (SAP Research Labs - Palo Alto, USA)

When we look at the current technology, we will observe a strong divergence
away from traditional computing. While the emphasis of traditional computing
involves a certain kind of more or less “fixed” networks, its more future oriented
counterpart is a collection of mostly mobile, tiny devices which may be equipped
with sensors, actuators and radio. Typical examples are e.g. swarm type systems,
ubiquitous computing, biologically inspired or network embedded systems.

The application design for those environments is considerably different than
their traditional counterparts. There is no centralized processor to guide the
global strategy towards good solutions. The system has to be capable of accom-
plishing difficult tasks in dynamic and varied environments without any external
guidance or control and with no central coordination. Further, they vary in terms
of network connectivity, available power, available sensors and reliability of sen-
sor data.

This talk will give an insight of ongoing work within sensor networks and will
focus on constituting a natural model particularly suited for distributed problem
solving, which aims at transforming an abstract, problem-oriented model into
executable code.



20 R. Reussner, J. Stafford and C. Szyperski

Synthesis of "correct" adaptors for protocol enhancement
in component-based systems

Massimo Tivoli (Univ. degli Studi di L’Aquila, I)

Adaptation of software components is an important issue in Component Based
Software Engineering (CBSE). Building a system from reusable or Commercial-
Of-The-Shelf (COTS) components introduces a set of problems, mainly related
to compatibility and communication aspects. On one hand, components may
have incompatible interaction behavior.

This might require to restrict the systemgs behavior to a subset of safe be-
haviors. On the other hand, it might be necessary to enhance the current com-
munication protocol. This might require to augment the systemés behavior to
introduce more sophisticated interactions among components. We address these
problems by enhancing our architectural approach which allows for detection
and recovery of incompatible interactions by synthesizing a suitable coordina-
tor. Taking into account the specification of the system to be assembled and
the specification of the protocol enhancements, our tool (called SYNTHESIS)
automatically derives, in a compositional way, the glue code for the set of com-
ponents.

The synthesized glue code implements a software coordinator which avoids
incompatible interactions and provides a protocol-enhanced version of the com-
posed system. By using an assume-guarantee technique, we are able to check, in
a compositional way, if the protocol enhancement is consistent with respect to
the restrictions applied to assure the specified safe behaviors.

Keywords: Component Based Software Engineering, Component Adaptation,
Adaptors Synthesis, Component Assembly, Protocol Transformation, Protocol
Enhancement

Joint work of:  Autili, Marco; Inverardi, Paola; Tivoli, Massimo; Garlan, David

Predictable Performance of Control Systems Under 3rd
Party Extension

Kurt Wallnau (CMU - Pittsburgh, USA)

An open control system (OCS) has hard real-time and other safety requirements,
but will be extended with new software functions by value-added integrators. In
this talk I report on work the SEI has done in an industrial robotics OCS. The
problem is to ensure that 3rd-party extensions that have stochastic (aperiodic)
execution time do not interfere with hard real-time (periodic) OCS control tasks,
and to provide optimal, and predictable, processing resources to these extensions.
Our solution is to use a special kind of software (component) container called
a sporadic server. A sporadic server implements a priority-based coordination



Architecting Systems with Trustworthy Components 21

scheme that is guaranteed to have bounded invasiveness on periodic control tasks,
and to preserve the rate monotonic analysis predictability of OCS deadlines. In
this talk I describe the sporadic server coordination model, and outline a novel
application of queuing theory for predicting the average latency of stochastic
tasks executing within sporadic server containers. I then situate this work in
the broader context of predictable assembly from trusted (certifiable) software
components.

10 Minute Abstract

Kurt Wallnauw (CMU - Pittsburgh, USA)

What I wish to say in 10 minutes: My belief is that design specifications should
have precise semantics that are distinct from, but related to, the mathematically-
based semantics of programming language (e.g., structural operational and de-
notational semantics).

I say "distinct from" because the issues of concern for design specifications,
such as performance, are difficult to formalize and to provide automated analysis
for using traditional models of computation (e.g., transition systems and lambda
calculus). I say "related to" because system-behavior is of course emergent from
program-level behavior. As with programming languages, certain syntactic disci-
plines lead to cleaner semantics and, in some cases, stronger assertions that can
be made about well-formed programs; for example, type systems and assertions
about maintenance of representation invariants. Analogous syntactic disciplines
exist for design-level specifications. Previous work on "styles" pointed in this
direction, but was not strongly based in formal semantics; it is not clear whether
styles in general yield meaningful assertions about system behavior.

My interest in a particular idiomatic interpretation of component technol-
ogy which might be called "programmable containers." Containers can be used
to develop design-level abstractions that impose useful syntactic discipline. In
particular, the idiom of programmable containers provides a mechanism for sepa-
rating the coordinational aspects of a program from its functional aspects. This,
in turn, makes possible the use of non-standard computational models (that
reflect the ideal machines encoded in a restricted coordination scheme) to for-
malize the semantics of designs, i.e., behavioral semantics including timing, fault
tolerance, security, and so forth. At the same time, standard approaches can be
used to specify the semantics of the functional aspects of a container.

I am prepared to give a brief description of the "sporadic server" container,
the priority-based coordination scheme it uses to guarantee bounded invasive-
ness on periodic deadlines in real-time systems, and its associated queuing-based
computational model for analyzing the average execution time of programs ex-
ecuting within the sporadic server container.



22 R. Reussner, J. Stafford and C. Szyperski

Summary Session: Semantics of Specification Languages
for Component-Based Systems

Kurt Wallnau (CMU - Pittsburgh, USA)

The top five results from discussion, plus several pages of raw notes.

Joint work of:  Brogi, Antonio; Fisler, Kathy; Goos, Gerhard; Jahnke, Jens;
Levy, Nicole; Schmidt, Heinz; Wallnau, Kurt

Tales From Component Hell

Wolfgang Weck (Software Architecture Consultant - Ziirich, CH)

When integrating third-party components, even trusted components may turn
out to be not 100integrated system may fail. While improving trust into compo-
nents is well worthwhile, we should not expect a zero-error scenario as a result.
While raising probabilities is good, we should not expect them to become equal
to 1. In such a world it is important for a component integrator to quickly pro-
duce evidence about which component of which vendor can be hold responsible
for a specific problem. If you as an integrator cannot assign blame to a vendor,
you will find yourself in Component Hell. We report examples from an industrial
project.

Predicting Properties of Koala Assemblies

Rob van Ommering (Philips Research - Findhoven, NL)

This presentation explains how we annotate software components with infor-
mation on threading aspects of interfaces, and how we use this information to
assess whether systems are composed out of components correctly with respect
to thread synchronization.

Keywords: Software Components, Product Populations, Multi-threading analy-
sis



	04511 Abstracts Collection  Architecting Systems with Trustworthy Components  --- Dagstuhl Seminar --- 
	 Ralf Reussner, Judith Stafford and Clemens Szyperski 

