
Argument Structure in TimeML

James Pustejovsky, Jessica Littman, Roser Saurı́

Computer Science Department, Brandeis University
415 South St., Waltham, MA 02454 USA

{jamesp,jlittman,roser }@cs.brandeis.edu

Abstract. TimeML is a specification language for the annotation of events
and temporal expressions in natural language text. In addition, the lan-
guage introduces three relational tags linking temporal objects and events
to one another. These links impose both aspectual and temporal ordering
over time objects, as well as mark up subordination contexts introduced
by modality, evidentiality, and factivity. Given the richness of this specifi-
cation, the TimeML working group decided not to include the arguments
of events within the language specification itself. Full reasoning and in-
ference over natural language texts clearly requires knowledge of events
along with their participants. In this paper, we define the appropriate role
of argumenthood within event markup and propose that TimeML should
make a basic distinction between arguments that are events and those
that are entities. We first review how TimeML treats event arguments in
subordinating and aspectual contexts, creating event-event relations be-
tween predicate and argument. As it turns out, these constructions cover
a large number of the argument types selected for by event predicates.
We suggest that TimeML be enriched slightly to include causal predi-
cates, such as lead to, since these also involve event-event relations. We
propose that all other verbal arguments be ignored by the specification,
and any predicate-argument binding of participants to an event should be
performed by independent means. In fact, except for the event-denoting
arguments handled by the extension to TimeML proposed here, almost
full temporal ordering of the events in a text can be computed without
argument identification.

Keywords. Temporal annotation, event expressions, argument structure.

1 Introduction

The question to be addressed in this paper is not whether arguments should be
included in the specification language of TimeML, but which arguments should
be and how they should best be represented. We review the treatment of com-
plex complementation in TimeML, whereby a proposition-denoting or event-
denoting expression is linked to the predicate (event) introducing it by an ex-
plicit relational tag, the SLINK. This effectively binds these complements as
arguments to their governing events. In fact, currently, any event-denoting ex-
pression appearing as an argument to a predicate, broadly speaking, is anno-
tated explicitly in a link relation. In this paper, we wish to make the strategy

Dagstuhl Seminar Proceedings 05151
Annotating, Extracting and Reasoning about Time and Events
http://drops.dagstuhl.de/opus/volltexte/2006/449

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 James Pustejovsky, Jessica Littman, Roser Saurı́

explicit by which an argument to an event is annotated. We suggest that pred-
icates selecting for situation, proposition, or event types should be part of the
explicit annotation of an event. As a result, this requires expanding the specifi-
cation to include causal predicates such as lead to and induce. Finally, we suggest
the simplest way to incorporate entity-denoting arguments in the specification.
While the specification language allows for bindings to entities, it does not re-
quire annotation of the entities for well-formed markup.

2 Overview of Current TimeML Specification

The TimeML specification language provides a standard for capturing all tem-
poral information in a natural language text. This includes temporal expres-
sions, events, and the relationships they share. To achieve such an annotation,
TimeML uses four main tag types that fall into two categories, those that con-
sume text and those that do not. TIMEX3, SIGNAL, and EVENTfall into the
former group. The non-consuming tags are primarily of the LINK type with the
exception of MAKEINSTANCE, a tag which completes the annotation of events.
In the subsections that follow, we briefly describe each of these tags.

2.1 Temporal Expressions

TimeML expands on earlier attempts to annotate temporal expressions ([1], [2]),
with the introduction of the TIMEX3 tag. Specifically, TIMEX3 adds functional-
ity to the TIMEX2 standard [3].

Temporal expressions in TimeML fall into four categories: DATEs, TIMEs,
DURATIONs, and SETs. A DATE is any calendar expression such as July 3 or
February, 2005. The annotation of such examples includes a value attribute
that specifies the contents of the expression using the ISO 8601 standard. The
example in (1) shows the annotation of a fully specified DATE TIMEX3.

(1) a. April 7, 1980
b. <TIMEX3 tid="t1" type="DATE" value="1980-04-07"

temporalFunction="false">

April 7, 1980

</TIMEX3>

April 7, 1980 is a fully specified temporal expression because it includes all
of the information needed to give its value. Many temporal expressions are
not fully specified and require additional information from other temporal ex-
pressions to provide their full value . We will say more about the annotation of
these expressions shortly, but, for now, notice that the annotation in (1) includes
an attribute called temporalFunction and that it is set to “false”. When a
temporal expression requires more information to complete its annotation, this
attribute is set to “true” to indicate that a temporal function will be used. For
more on this process, refer to the section below on temporal functions.

Argument Structure in TimeML 3

While the DATE type is used to annotate most calendar expressions, the
TIME type is used to capture expressions whose granularity is smaller than
one day. Examples of this include 4:20 and this morning. Example (2) shows the
annotation of a fully specified TIME TIMEX3. Notice that for a TIME to be fully
specified, it must include date information as well.

(2) a. 10:30am April 7, 1980
b. <TIMEX3 tid="t1" type="TIME" value="1980-04-07T10:30"

temporalFunction="false">

10:30am April 7, 1980

</TIMEX3>

Expressions such as for three months include a DURATION TIMEX3. The
value attribute of a DURATION again follows the ISO 8601 standard. For ex-
ample, three months receives a value of “P3M”. Occasionally, a DURATION
will appear anchored to another temporal expression. Since TimeML strives to
annotate as much temporal information as possible, this information is also in-
cluded in the annotation of a DURATION with the beginPoint and endPoint
attributes as shown in (3).

(3) a. two weeks from December 17, 2005
b. <TIMEX3 tid="t1" type="DURATION" value="P2W"

beginPoint="t2" endPoint="t3">two weeks</TIMEX3>
c. <TIMEX3 tid="t2" type="DATE" value="2005-12-17">

December 17, 2005</TIMEX3>
d. <TIMEX3="t3" type="DATE" value="2005-12-31"

temporalFunction="TRUE" anchorTimeID="t1"/>

The example in (3a) contains to temporal expressions separated by a signal (see
subsection 2.3). The first, two weeks, is annotated as a DURATION. The second,
December 17, 2005, is a fully specified DATE. Every TIMEX3 annotation includes
an identification number. This number is used to relate the temporal expression
to other TimeML objects. In this case, the identification value in (3c), “t2”, is in-
cluded in the annotation of two weeks as the beginPoint of the duration. With
this information, the endPoint of the duration can be calculated. An addi-
tional TIMEX3 is created to hold its value. This is the TIMEX3 given in (3d).
Since the value of the new TIMEX3 must be calculated, temporalFunction
is set to “true” and a temporal anchor is suppled. This new attribute will be
explained below.

The final type of TIMEX3 is used to capture regularly recurring temporal
expressions such as every three days. This type, SET, uses the attributes quant
and freq to annotated quantifiers in an expression and the frequency of the
expression, respectively. An example is given in (4).

(4) a. two days every week
b. <TIMEX3 tid="t1" type="SET" value="P2D" quant="EVERY"

freq="1W">two days every week</TIMEX3>

4 James Pustejovsky, Jessica Littman, Roser Saurı́

Temporal Functions When a temporal expression is not fully specified, it re-
quires the use of a temporal function to calculate its value. In a manual anno-
tation, the user provides a particular anchor time ID that supplies the missing
information. The user then gives the correctly calculated value for the TIMEX3.
In automatic annotation, a library of temporal functions is used to perform the
calculation.

The example in (3d) shows an annotation that uses a temporal function. In
this case, the end point of a duration was calculated using the beginPoint
and value of the duration given in (3b). For the new temporal expression in
(3d), the temporalFunction attribute is set to “TRUE” and the tid for the
duration is given as the anchorTimeID . Finally, the correct value is supplied.
This same process is used for temporal expressions that are missing information
such as April 7, which is missing the year, and for relative temporal expressions
such as today.

2.2 Events

Events that can be anchored or ordered in time are captured with TimeML. Such
events are predominantly verbs, but nouns, adjectives, and even some prepo-
sitions can also be eventive. The annotation of TimeML events is a two part
process. First, they are tagged with the EVENTtag. This tag has two attributes:
an ID number and an event class. The classification of an event can help deter-
mine what relationships that event may participate in. For example, an event
classified as REPORTING will be the first element of an evidential SLINK (see
the subsection on Subordinating Links in section 2.4). There are seven event
classes:

– REPORTING: say, report, tell
– PERCEPTION: see, watch, hear
– ASPECTUAL: initiate, terminate, continue
– I ACTION: try, investigate, promise
– I STATE: believe, want, worry
– STATE: on board, live, seek
– OCCURRENCE: land, eruption, arrive

Several of these classes introduce an event argument and are of particular
interest to the work in this paper. The TimeML Annotation Guidelines [4] detail
exactly which events fall into which classes.

Instances of Events Besides the classification of an event, natural language
documents supply much more information about events that we need to rep-
resent in an accurate annotation. In addition to the head of the event that is
captured in the text, an event may include further tense and aspect indicators
or modifiers that affect its modality or polarity. This information is captured
with MAKEINSTANCE, a non-consuming timeML tag. Every event in TimeML
has at least one instance annotated with this tag. A separate tag is used because

Argument Structure in TimeML 5

one mention of an event in text can actually refer to multiple instances, as in
example (5).

(5) John swims on Monday and Tuesday.

Here, there is one mention of swim that is tagged as an OCCURRENCE
EVENT. TimeML will try to link this event to the temporal expressions also
present in the sentence. However, it is clear that the swim event that takes place
on Monday is not the same one that takes place on Tuesday. Instead, it is an in-
stance of the event that is anchored to each temporal expression.

Instances of events can also have different tense, aspect, polarity, or modal-
ity properties. Again, this information is captured with the MAKEINSTANCEtag.
Once an event has an instance annotated, that instance is elligible to take part in
a LINK tag to show what relationship it has with other temporal objects (refer
to section 2.4).

2.3 Signals

When temporal objects are related to each other, there is often an additional
word present whose function is to specify the nature of that relationship. These
words are captured with the SIGNAL tag, which has one attribute that provides
an identification number. Example (6) shows a typical use of preposition at as
SIGNAL, and a complete annotation of all the temporal objects present.

(6) a. The bus departs at 3:10 pm.
b. The bus

<EVENT eid="e1" class="OCCURRENCE">

departs

</EVENT>

<MAKEINSTANCE eiid="ei1" eventID="e1" pos="VERB"

tense="PRESENT" aspect="NONE" polarity="POS"/>

<SIGNAL sid="s1">

at

</SIGNAL>

<TIMEX3 tid="t1" type="TIME" value="XXXX-XX-XXT15:10">

3:10pm

</TIMEX3>

2.4 Links

TimeML uses three varieties of LINK tag to represent relationships among tem-
poral objects. In all cases, the LINK tag is non-consuming as there may not be
any explicit text to capture or the relationship could be between objects whose
locations vary greatly. Each link tag comes with a set of relation types to specify
the nature of the relationship. In the following paragraphs, we briefly describe
each of these tags: TLINK , ALINK , and SLINK .

6 James Pustejovsky, Jessica Littman, Roser Saurı́

Temporal Relationships All temporal relationships are represented with the
TLINK tag. TLINK can be used to annotate relationships between times, be-
tween events, or between times and events. In this way, TimeML can both an-
chor and order temporal objects. A signalID can also be used in a TLINK
if it helps to define the relationship. The TLINK in example (7) completes the
annotation of The bus departs at 3:10pm.

(7) <TLINK lid="l1" eventInstanceID="ei1" relatedToTime="t1"
signalID="s1" relType="IS INCLUDED"/>

The possible relType values for a TLINK are based on Allen’s thirteen rela-
tions [5]. TLINK is also used to assert that two event instances refer to the same
event using the IDENTITY relType .

Aspectual Links Events classified as ASPECTUAL introduce an ALINK . The
ALINK represents the relationship between an aspectual event and its argument
event. This is an example of one way that TimeML already deals with event
arguments.

Subordinating Links As mentioned in section 2.2, certain event classes intro-
duce a subordinated event argument. Some examples are verbs like claim, sug-
gest, promise, offer, avoid, try, delay, think; nouns like promise, hope, love, request;
and adjectives such as ready, eager, able, afraid. In the following sentences, the
events selecting for an argument of situation or proposition type appear in bold
face, whereas the corresponding argument is underlined:

(8) a. The Human Rights Committee regretted that discrimination against
women persisted in practice.

b. Uri Lubrani also suggested Israel was willing to withdraw from south-
ern Lebanon.

c. Kidnappers kept their promise to kill a store owner they took hostage.

In TimeML, subordination relations between two events are represented by
means of a Subordinating Links (or SLINKs). The SLINK tag is perhaps the best
example of the current treatment of arguments in TimeML. Reference to each
event is expressed by a pointer to them (through the attributes eventInstan-
ceID and subordinatedEventInstance), and the relation type is conveyed
by means of the attribute relType , which captures the type of modality pro-
jected in each case onto the event denoted by the subordinated clause. relType
can be any of the following types:

1. FACTIVE: When the argument event is entailed or presupposed. Here is an
annotated example:1

1 For the sake of simplicity, in this and the following examples we obviate the annota-
tion of MAKEINSTANCEtags.

Argument Structure in TimeML 7

(9) a. The Human Rights Commitee regretted that discrimination against
women persisted in practice.

b. The Human Rights Committee
<EVENT eID="e1" class="I ACTION">
regretted
</EVENT>
that discrimination against women
<EVENT eID="e2" class="ASPECTUAL">
persisted
</EVENT>
in practice.
<SLINK eventInstanceID="e1" subordinatedEventInstance="e2"
relType="FACTIVE"/>

2. COUNTERFACTIVE: When the main predicate presupposes the non-veracity
of its argument:

(10) a. A Time magazine reporter avoided jail at the last minute...
b. A Time magazine reporter

<EVENT eID="e1" class="I ACTION">
avoided
</EVENT>
<EVENT eID="e2" class="STATE">
jail
</EVENT> at the last minute...
<SLINK eventInstanceID="e1" subordinatedEventInstance="e2"
relType="COUNTERFACTIVE"/>

3. EVIDENTIAL: Typically introduced by REPORTINGor PERCEPTIONevents,
such as tell, say, report and see, hear, respectively.

4. NEGATIVEEVIDENTIAL: Introduced by REPORTINGand PERCEPTIONevents
conveying negative polarity; e.g., deny.

5. MODAL:For annotating events introducing a reference to possible world.
(11) a. Uri Lubrani also suggested Israel was willing to withdraw from

southern Lebanon.
b. Uri Lubrani also

<EVENT eID="e1" class="I ACTION">
suggested
</EVENT>
Israel was
<EVENT eID="e2" class="I STATE">
willing
</EVENT>
to
<EVENT eID="e3" class="OCCURRENCE">
withdraw
</EVENT>
from southern Lebanon.
<SLINK eventInstanceID="e1" subordinatedEventInstance="e2"

8 James Pustejovsky, Jessica Littman, Roser Saurı́

relType="MODAL"/>
<SLINK eventInstanceID="e2" subordinatedEventInstance="e3"
relType="MODAL"/>

The following section goes into the detail of how SLINKs account for some
arguments.

3 Events and their Participants

We will assume for our discussion that events can be represented as first order
individuals, existentially quantified in a neo-Davidsonian manner where par-
ticipants to the event are conjoined relations between individuals and the event
([6], [7]). For each event, e, we will identify the participants to this event with a
three-place relation, Arg:

(12) λk: intλx: indλe: event[Arg(k, e, x)]

Rather than labeling arguments with specific named semantic functions, such
as agent, patient, and instrument, we identify the argument by an index, k. The
idea is that a post-parsing procedure will identify the appropriate semantic role
played by an argument.

Both named entity arguments and event arguments are expressible in this
fashion. For example, for the sentence in (13a), the participants are directly
identified by their indices 1 and 2, respectively, but not functionally, as Agent
and Patient.

(13) a. John kissed Mary.
b. ∃e[kiss(e) ∧Arg(1, e, j) ∧Arg(2, e,m)]

Notice that the current TimeML representation of (13a) identifies the event
predicate but not its arguments.

(14) John

<EVENT eid="e1" class="OCCURRENCE">

kissed

</EVENT>

<MAKEINSTANCE eiid="ei1" eventID="e1" pos="VERB"

tense="PAST" aspect="NONE" polarity="POS"/>

Mary.

With the addition into TimeML of an Arg-relation, we would be able to identify
the entity participants as represented in (13b) above. This should be done cau-
tiously, however, without complicating the specification language or making
the annotation task more difficult than it already is. We will take up this issue
in Section 5 below.

By design, TimeML treats predicates that select for event arguments dif-
ferently from those taking named entities. For example, the event-embedding

Argument Structure in TimeML 9

predicate see, in most cases, allows the same simple conjunctive representation
over arguments that we saw in (13b), assuming the argument is extensional.2

(15) a. John saw Mary fall.
b. ∃e1∃e2[see(e1)∧Arg(1, e1, j)∧Arg(2, e1, e2)∧fall(e2)∧Arg(1, e2,m)]

In the next section, we turn to the question of how to generalize the encoding
of an event argument as expressed in TimeML through SLINKs.

3.1 SLINK Encodes Partial Argument Structure

According to the TimeML specification, predicates in natural language that are
encoded as introducing SLINKs in fact already identify the embedded comple-
ment as an argument to the verb.

For example, the TimeML markup of (16a) explicitly identifies the embed-
ded complement (verb) as a subordinated argument to the event regret.

(16) a. John regretted that Sue marrried Bill.
b. John

<EVENT eID="e1" class="I ACTION">

regretted

</EVENT>

that Sue

<EVENT eID="e2" class="OCCURRENCE">

married

</EVENT>

Bill.

<SLINK eventID="e1" subEventID="e2" relType="FACTIVE"/>

As it happens, with a factive predicate such as regret we can existentially quan-
tify the event representing the embedded complement of the SLINK predicate.
A first-order neo-Davidsonian representation of this sentence would, therefore,
look like the following:

(17) ∃e1∃e2[regret(e1)∧Arg(1, e1, j)∧Arg(2, e1, e2)∧marry(e2)∧Arg(1, e2, s)∧
Arg(2, e2, b)]

The current TimeML representation of this sentence, however, expressed as a
first-order expression, is closer to that shown in (18), since no entity arguments
are represented in TimeML.

(18) ∃e1∃e2[regret(e1) ∧Arg(2, e1, e2) ∧marry(e2)]

For all other modality-introducing predicates, TimeML is generally descrip-
tively adequate in differentiating the modal force of the complement expres-
sion. For example, the SLINK predicate believe is annotated as (19b) below.

2 We assume that the typing on the Arg relation can be generalized to allow events as
arguments.

10 James Pustejovsky, Jessica Littman, Roser Saurı́

(19) a. John believes that Bill went to Japan.
b. Mary

<EVENT eID="e1" class="I ACTION">

believes

</EVENT>

that Bill

<EVENT eID="e2" class="OCCURRENCE">

went

</EVENT>

to Japan.

<SLINK eventID="e1" subEventID="e2" relType="MODAL"/>

The modal subordination introduced by the propositional attitude predicate be-
lieve is represented by an SLINK with a relType value of MODAL. To model
this, we will introduce a special first order variable, ê, effectively encoding the
modality of the event and the domain of its subordination. On this strategy,
a first order expression representing the partial argument structure of (19b)
would be that shown in (20).3

(20) ∃e∃ê[believe(e) ∧Arg(2, e, ê) ∧ go(ê)]

4 Encoding Causation in TimeML

We move now to the class of predicates introducing causal relations between
events explicitly in their lexical semantics. We believe that there should be an
explicit representation of this relation in an event ordering markup language
such as TimeML, and we provide such a relation here.

The representation of causation between event denoting expressions within
the same sentence is common in natural languages. For example, the following
sentences express causal (and hence temporal) relations between events, which
are largely ignored in TimeML.

(21) a. [The rain]e1 caused [the flooding]e2.
b. [The rioting]e1 led to [curfews]e2.
c. [Fifty years of peace]e1 brought about [great prosperity]e2.

To capture this relation, we introduce a new link type we call CLINK, to express
the causal relation between two events.

<CLINK>
attributes ::= [lid] [origin] [eventInstanceID] signalID

subordinatedEventInstance relType
lid ::= ID
{lid ::= LinkID

3 This is somewhat similar to the first order representations in DAML for modal subor-
dination; cf. http://www.daml.org/ontologies/.

Argument Structure in TimeML 11

LinkID ::= l<integer>}
origin ::= CDATA
eventInstanceID ::= IDREF
{eventInstanceID ::= EventInstanceID}
subordinatedEventInstance ::= IDREF
{subordinatedEventInstance ::= EventInstanceID}
signalID ::= IDREF
{signalID ::= SignalID}
relType ::= ’CAUSES’

This solution can be adopted for the following verbs, in their causative senses:
cause, stem from, lead to, breed, engender, hatch, induce, occasion, produce, bring about,
produce, secure.

Now, a sentence such as (22a) can be explicitly annotated as involving a
causal relation, as follows:

(22) a. The rioting led to curfews on November 22, 2004.
b. The

<EVENT eid="e1" class="OCCURRENCE">

rioting

</EVENT>

<MAKEINSTANCE eiid="ei1" eventID="e2" tense="NONE"

aspect="NONE"/>

<EVENT eid="e2" class="CAUSE">

led

</EVENT>

<MAKEINSTANCE eiid="ei2" eventID="e2" tense="PAST"

aspect="NONE"/>

to

<EVENT eid="e3" class="OCCURRENCE">

curfews

</EVENT>

<MAKEINSTANCE eiid="ei3" eventID="e2" tense="NONE"

aspect="NONE"/>

on

<TIMEX3 tid="t1" type="DATE value="2004-11-22">

November 22, 2004

</TIMEX3>.

<CLINK eventInstanceID="ei1" relatedToEvent="ei3"

relType="CAUSES" signalID="ei2"/>

<TLINK eventInstanceID="ei3" relatedToTime="t1"

reltype="IS INCLUDED"/>

Note that both the subject and object event expressions are syntactically argu-
ments to the causal predicate. In this case, the Arg relation is not operative since
the matrix predicate is itself a realization of a Cause relation directly:

12 James Pustejovsky, Jessica Littman, Roser Saurı́

(23) a. The rioting led to curfews.
b. ∃e1∃e2[rioting(e1) ∧ Cause(e1, e2) ∧ curfews(e2)]

It is important to note that there are many cases where causation, expressed
through explicit causative predicates such as those mentioned above, is not syn-
tactically a relation between two events, but a relation between an individual
and an event. Consider the sentences below:

(24) a. [John]x caused [a fire]e2.
b. [The drug]x induced [a seizure]e2.

In such cases of event metonymy ([8], [9]), we will introduce a skolemized event
instance, ei1, to act as the proxy in the causation relation. Hence, the TimeML
for (24a) would be as follows:

(25) John

<MAKEINSTANCE eiid="ei1" eventID="NONE" tense="NONE"

aspect="NONE"/>

<EVENT eid="e2" class="CAUSE">

caused

</EVENT>

<MAKEINSTANCE eiid="ei2" eventID="e2" tense="PAST"

aspect="NONE"/>

a

<EVENT eid="e3" class="OCCURRENCE">

fire

</EVENT>

<MAKEINSTANCE eiid="ei3" eventID="e3" tense="NONE"

aspect="NONE"/>

<CLINK eventInstanceID="ei1" relatedToEvent="ei3"

relType="CAUSES" signalID="ei2"/>

The interpretation of John as the agent of an event involved in the causation
is out of the scope of TimeML; it would be the responsibility of subsequent
semantic interpretation to bind the entity John to the causing event.

5 Binding Entity Arguments in TimeML

In this section, we propose an extension to the current specification of TimeML
to accommodate the treatment of entity arguments. Our goal is to avoid any ex-
plicit mention of entities within the TimeML markup. There are two reasons for
this move: first, entity arguments are not temporally sensitive text extents, un-
like event-denoting predicates and temporal expressions; secondly, we wish to
avoid complicating the specification and subsequent annotation task for human
or machine tagging. Therefore, our strategy will be to accomplish the argument
binding independent of the event tag itself. Currently, the EVENT tag is defined
as follows:

Argument Structure in TimeML 13

<Event>
attributes ::= eid class
eid ::= ID
{eid ::= EventID
EventID ::= e<integer>}
class ::= ’OCCURRENCE’ | ’PERCEPTION’ | ’REPORTING’

’ASPECTUAL’ | ’STATE’ | ’I_STATE’ | ’I_ACTION’

On our approach, this need not change. Rather than add an argument list to the
event —similar to the SUBCAT list in HPSG [10]— we will treat the binding of
particpants to events in a parallel fashion to the treatment of event ordering;
by introducing a new linking relation, called ARGLINK. This will encode, in
TimeML, the binding accomplished by the Arg relation defined in (12) above.

<ARGLINK>
attributes ::= alid [origin] eventInstanceID ArgID
alid ::= ID
{alid ::= ArgLinkID
ArgLinkID ::= al<integer>}
origin ::= CDATA
eventInstanceID ::= IDREF
{eventInstanceID ::= EventInstanceID}
ArgID ::= IDREF
{ArgID ::= EntityID}

Now let us see how the two participants in sentence (26),

(26) John kissed Mary.

can be represented, using the ARGLINK tag. Recall that the desired logical form
for this sentence is:

(27) ∃e[kiss(e) ∧Arg(1, e, j) ∧Arg(2, e,m)]

Assuming that the named entities in (26) have been identified and indexed, we
can express the bindings shown in (27) as the two ARGLINKs below:

(28) John (ai1)

<EVENT eid="e1" class="OCCURRENCE">

kissed

</EVENT>

<MAKEINSTANCE eiid="ei1" eventID="e1" pos="VERB"

tense="PAST" aspect="NONE" polarity="POS"/>

Mary (ai2).

<ARGLINK alid="al1" eventInstanceID="ei1" ArgID ="ai1"/>

<ARGLINK alid="al2" eventInstanceID="ei1" ArgID ="ai2"/>

This allows us to take advantage of entity tagging information from other re-
sources, while binding these values to the events identified and marked up
within TimeML

14 James Pustejovsky, Jessica Littman, Roser Saurı́

6 Conclusions

In this paper, we discussed the role of arguments in an event annotation spec-
ification language. We first described how TimeML handles event arguments
in subordinating and aspectual contexts, where SLINKs and ALINKs create
event-event relations between a predicate and an event-denoting argument. We
proposed that TimeML be enriched slightly to include causal predicates, such
as lead to, since these also involve event-event relations. Finally, we introduced
a linking mechanism that allows entities to be identified with the event they
participate in, while not including named entity tagging as part of TimeML.

Acknowledgements

The authors would like to thank the participants of the 2005 Dagstuhl work-
shop. We would also like to thank the members of the TERQAS and TANGO
Working Groups on TimeML for their contribution to the specification language
presented here. This work was performed in support of the Northeast Regional
Reseach Center (NRRC) which is sponsored by the Advanced Research and
Development Activity in Information Technology (ARDA), a U.S. Government
entity which sponsors and promotes research of import to the Intelligence Com-
munity which includes but is not limited to the CIA, DIA, NSA, NIMA, and
NRO. It was also funded in part by the Defense Advanced Research Projects
Agency as part of the DAML program under Air Force Research Laboratory
contract F30602-00-C-0168.

References

1. Mani, I., Wilson, G.: Robust temporal processing of news. In: Proceedings of the
38th Annual Meeting of the Association for Computational Linguistics (ACL2000),
New Brunswick, New Jersey (2000) 69–76

2. Schilder, F., Habel, C.: From Temporal Expressions To Temporal Information: Se-
mantic Tagging Of News Messages. In: ACL-EACL-2001, Toulose, France (2001)
65–72

3. Ferro, L., Mani, I., Sundheim, B., Wilson, G.: Tides temporal annotation guidelines.
Technical Report Version 1.0.2, MITRE Technical Report (2001) MTR 01W0000041.

4. Saurı́, R., Littman, J., Knippen, R., Gaizauskas, R., Setzer, A., Pustejovsky, J.: TimeML
Annotation Guidelines, http://www.timeml.org. (2005)

5. Allen, J.: Towards a general theory of action and time. Artificial Intelligence 23
(1984) 123–154

6. Davidson, D.: The logical form of action sentences. In: The Logic of Decision and
Action. (1967)

7. Parsons, T.: Events in the Semantics of English. MIT Press, Cambridge, MA (1990)
8. Pustejovsky, J.: Current issues in computational lexical semantics. In: ACL89. (1989)

xvii–xxv
9. Pustejovsky, J.: The Generative Lexicon. MIT Press, Cambridge (1995)

10. Pollard, C., Sag, I.: Head-Driven Phrase Structure Grammar. CSLI, Stanford, CA
(1994)

