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1 Introduction

This paper presents applications of another case study in the project of proof
mining, by which we mean the logical analysis of mathematical proofs with the
aim of extracting new numerically relevant information hidden in the proofs.

More specifically, we are concerned with the general theme of what is known
about the existence of approximate fixed points for nonexpansive mappings in
product spaces.

Let (X, ρ) be a metric space, and C ⊆ X a non-empty subset. A mapping
T : C → C is called nonexpansive if for all x, y ∈ C,

ρ(T (x), T (y)) ≤ ρ(x, y).

The metric space (X, ρ) is said to have the approximate fixed point property
(AFPP) for nonexpansive mappings if any nonexpansive mapping T : X → X
has an approximate fixed point sequence; that is, a sequence (un)n∈N in X for
which limn d(un, T (un)) = 0. It is easy to see that this is equivalent with

rX(T ) := inf{d(x, T (x)) | x ∈ X} = 0.

If (X, ρ) and (Y, d) are metric spaces, then the metric d∞ on X×Y is defined
in the usual way:

d∞((x, u), (y, v)) = max{ρ(x, y), d(u, v)}

for (x, u), (y, v) ∈ X×Y . We denote by (X×Y )∞ the metric space thus obtained.
A basic question now becomes:
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If (X, ρ), (Y, d) have the AFPP for nonexpansive mappings, then when does
(X × Y )∞ have the AFPP for nonexpansive mappings?

The following theorem was proved first by Esṕınola and Kirk [2] for normed
spaces and then extended by Kirk to the more general class of hyperbolic spaces.

Theorem 1. [6] Assume that X is a hyperbolic space, C ⊆ X is a non-empty,
convex, closed and bounded subset of X. If (M,d) is a metric space with AFPP
for nonexpansive mappings, then

H := (C ×M)∞

has the AFPP for nonexpansive mappings.

In this paper, we present generalizations of this result to the case of unbounded
convex subsets of hyperbolic spaces. We recall first some definitions and previous
results.

A hyperbolic space1 is a triple (X, ρ,W ) where (X, ρ) is metric space and
W : X ×X × [0, 1] → X such that

(W1) ρ(z,W (x, y, λ)) ≤ (1− λ)ρ(z, x) + λρ(z, y),
(W2) ρ(W (x, y, λ),W (x, y, λ̃)) = |λ− λ̃| · ρ(x, y),
(W3) W (x, y, λ) = W (y, x, 1− λ),
(W4) ρ(W (x, z, λ),W (y, w, λ)) ≤ (1− λ)ρ(x, y) + λρ(z, w).

If x, y ∈ X, and λ ∈ [0, 1] then we use the notation (1− λ)x⊕ λy for W (x, y, λ).
The class of hyperbolic spaces contains all normed linear spaces and convex

subsets thereof, but also the open unit ball in complex Hilbert spaces with the
hyperbolic metric as well as Hadamard manifolds and CAT(0)-spaces in the sense
of Gromov.

If C ⊆ X is a non-empty convex subset of a hyperbolic space (X, ρ,W ), and
T : C → C is nonexpansive, then for any sequence (λn)n∈N in [0, 1], we can
define the Krasnoselski-Mann iteration starting from x ∈ C by

x0 := x, xn+1 := (1− λn)xn ⊕ λnT (xn).

An important result in the fixed point theory for nonexpansive mappings is
the following theorem, due to Borwein, Reich, and Shafrir (generalizing earlier
results of Ishikawa [5] and Goebel/Kirk [4]).

Theorem 2. [1] If (λn)n∈N is a sequence in [0, 1] which is divergent in sum and
bounded away from 1 then for all x ∈ C,

lim
n

ρ(xn, T (xn)) = rC(T ).

1 If only axiom (W1) is assumed this structure is a convex metric space in the sense of
Takahashi [11]. If (W1)-(W3) are assumed, the notion is equivalent to Kirk’s spaces
of hyperbolic type ([4]). Axiom (W4) is used e.g. in [10]. See [7] for discussion of this
and related notions.
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In [8], we obtained the following quantitative version of theorem 2 (which sub-
sequently turned out to be an instance of a general logical metatheorem, see
[3]):

Theorem 3. [8] Let (X, ρ,W ) be a hyperbolic space, C ⊆ X a non-empty convex
subset and T : C → C a nonexpansive mapping. Let (λn)n∈N be a sequence in

[0, 1), and K ∈ N, α : N → N be such that λn ≤ 1 − 1
K and n ≤

α(n)∑
i=0

λi. Let

x, x∗ ∈ C and b > 0 be such that

ρ(x, T (x)) ≤ b ∧ ρ(x, x∗) ≤ b.

Then the following holds

∀ε > 0∀n ≥ h(ε, b,K, α)
(
ρ(xn, T (xn)) < ρ(x∗, T (x∗)) + ε

)
,

where the bound h(ε, b,K, α) can be explicitly computed.

Using theorem 3 the following quantitative version of a theorem due to Ishikawa
[5] (for the normed case) and Goebel and Kirk [4] (for the hyperbolic case) can
be obtained:

Theorem 4. [8] Let (X, ρ,W ), C, K, α, (λn) be as in the previous theorem and
assume that (xn) is bounded by b ∈ IN. Then the following holds

∀ε > 0∀n ≥ h̃(ε, b,K, α)
(
ρ(xn, T (xn)) < ε

)
,

where the bound h̃(ε, b,K, α) can be explicitly computed.

The main significance of the bounds in the previous theorems is that they depend
on x, x∗, T, C, X only via b. In particular, if in theorem 4, C is assumed to have
a bounded diameter, then the convergence ρ(xn, T (xn)) → 0 is uniform in x and
T. This result was first obtained (ineffectively) in [4] and used in [6] to prove
theorem 1 discussed above. In the next section we indicate how our stronger
uniformity results can be used to generalize theorem 1.

2 Main results

In the sequel, (X, ρ,W ) is a hyperbolic space and C ⊆ X a non-empty convex
subset. We assume that (M,d) is a metric space which has AFPP for nonexpan-
sive mappings. Let H := (C ×M)∞ and T : H → H nonexpansive.

For each u ∈ M , let us define

Tu : C → C, Tu(x) = (P1 ◦ T )(x, u),

where P1 : C×M → C is the projection. Then Tu is nonexpansive for all u ∈ M ,
so we can associate with Tu the Krasnoselski-Mann iteration xu

n starting with
x ∈ C.

Applying theorem 3 to the family (Tu)u∈M of nonexpansive mappings, we
can prove the following theorem.
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Theorem 5. Assume that

sup
u∈M

rC(Tu) < ∞,

and that there are x ∈ C and ϕ : R+ → N such that

∀ε > 0∀v ∈ M∃x∗ ∈ C
(
ρ(x, x∗) ≤ ϕ(ε) ∧ ρ(x∗, Tv(x∗)) ≤ sup

u∈M
rC(Tu) + ε

)
.

Then
rH(T ) ≤ sup

u∈M
rC(Tu).

Since each bounded C satisfies the hypotheses of the above theorem, we get as
an immediate consequence theorem 1.
We also get

Corollary 1. H has AFPP for all nonexpansive functions T : H → H satisfy-
ing:

(∗)
{

there are x ∈ C and ϕ : R+ → N such that
∀ε > 0∀u ∈ M∃x∗ ∈ C

(
ρ(x, x∗) ≤ ϕ(ε) ∧ ρ(x∗, Tu(x∗)) ≤ ε

)
.

The next theorem is obtained using theorem 4 above:

Theorem 6. Let x ∈ C. Assume that there is a d > 0 such that

∀u ∈ M∀n, m ∈ N(ρ(xu
n, xu

m) ≤ d). (1)

Then T has an approximate fixed point sequence.

We finish by pointing out that all the above results can be generalized to fam-
ilies (Cu)u∈M of non-empty unbounded convex subsets of the hyperbolic space
(X, ρ,W ).

All this will be carried out in detail together with many further generaliza-
tions in a forthcoming paper [9].
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2. Esṕınola, R., Kirk, W.A.: Fixed points and approximate fixed points in product
spaces. Taiwanese J. Math. 5 (2001) 405–416

3. Gerhardy, P., Kohlenbach, U.: General logical metatheorems for functional analysis.
(in preparation)

4. Goebel, K., Kirk, W.A.: Iteration processes for nonexpansive mappings. In: Singh,
S.P., Thomeier, S., Watson, B., eds., Topological Methods in Nonlinear Functional
Analysis. Contemporary Mathematics 21 (1983), AMS, 115–123.



Approximate fixed points of nonexpansive mappings in product spaces 5

5. Ishikawa, S.: Fixed points and iterations of a nonexpansive mapping in a Banach
space. Proc. Amer. Math. Soc. 59 (1976) 65–71

6. Kirk, W.A.: Geodesic geometry and fixed point theory II. In: Garćıa Falset, J.,
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