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1 Introduction

In [6], the second author proved general metatheorems for the extraction of
effective uniform bounds from ineffective existence proofs in functional analy-
sis, more precisely from proofs in classical analysis Aω(:= weakly extensional1

Peano arithmetic WE-PA in all finite types + quantitifer-free choice + the axiom
schema of dependent choice DC) extended with (variants of) abstract bounded
metric spaces (X, d), and bounded hyperbolic spaces (X, d, W ) ([6,9,4]) as well
as abstract normed linear spaces (X, ‖·‖) with a bounded convex subset C ⊆ X .

The theories Aω[X, d], Aω [X, d, W ], Aω[X, ‖ · ‖, C] and further variants –
based on CAT(0)-spaces, uniformly convex spaces and inner product spaces –
result from extending Aω to the set TX of all finite types over the two ground
types 0 and X and adding the necessary constants such as dX and ‖ · ‖X , and
(purely universal) axioms for metric, resp. normed linear spaces. In particular,
the theories contain an axiom expressing the boundedness of (X, d), resp. the
boundedness of the convex subset C.

Extending Kohlenbach’s monotone variant of Gödel’s[3] and Spector’s[8] func-
tional (’Dialectica’) interpretation for Aω to these theories one can extract effec-
tive bounds from given ineffective existence proofs, where, using a majorization
argument, the extracted bounds are shown to be independent of parameters
ranging over the bounded metric space, resp. over the bounded convex subset of
the normed linear space. The significance of this rests on the fact that this yields

1 The restriction in the availability of extensionality for types other than 0 by including
only Spector’s [8] quantifier-free rule of extensionality is of crucial importance for
the results outlined below to hold. For the applicability of these results in e.g. metric
fixed point theory this does not cause as serious limitation as here usually all the
functions involved are provably extensional. See [6] for a thorough discussion of this
issue.
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independence from parameters without imposing any compactness conditions on
(X, d) or C. For details, see [6].

Two different approaches to extending the Howard-Bezem[5,1] strong ma-
jorization relation to the new type X were employed for metric spaces and
normed linear spaces. For metric spaces, whose metric is bounded by some b ∈ IN,
the majorization relation was defined to be always true for the type X and the
metric constant dX will be majorized by the constant-b function. The extraction
of uniform bounds then consist of two main steps: (1) extraction of effective
bounds using functional interpretation and (2) majorization in the types TX to
eliminate the dependency from the new constants of Aω[X, d] and achieve the
independence from parameters in X (among other things).

This approach does not work for (non-trivial) normed linear spaces as normed
linear spaces always are unbounded. Therefore in [6] for normed linear spaces the
majorization relation for the type X was defined via the norm, i.e. x∗ s-majX x :≡
‖x∗‖ ≥ ‖x‖. The independence of extracted bounds from a (norm-)bounded
convex subset C can then be achieved similarly to the bounded metric case. For
normed linear spaces, one constructs uniform bounds from the terms extracted
by functional interpretation in three steps: (1) majorization of the extracted
terms in the types TX , (2) elimination of the dependency from the new con-
stants of Aω[X, ‖ · ‖, C] using an ineffective operator ()◦ and a relation ∼ρ, and
finally (3) majorization in the types T to eliminate ineffective instances of the
()◦-operator.

Of particular importance is the relation ∼ρ. The relation ∼ρ relates func-
tionals of type ρ ∈TX to functionals of type ρ̂, where the mapping ·̂ is defined
as:

(∗) 0̂ := 0, X̂ := 0, ρ̂ → τ := ρ̂ → τ̂ ,

for metric spaces and with X̂ := 1 for normed linear spaces. Defining the relation
∼ρ for the constants of Aω[X, d], resp. Aω[X, ‖ ·‖, C] one may inductively trans-
late extracted terms in Aω[X, d], resp. Aω[X, ‖ · ‖, C] into terms of independent
of the new constants such as dX , ‖ · ‖ etc. For details on the operator ()◦ and its
role in this translation, see [6].

2 Main results

In order to treat unbounded metric spaces and unbounded convex subsets of
metric spaces, we adapt the approach to majorization for normed linear spaces
and combine the three steps into one. The main idea is to define a new so-called
a-majorization relation &a, which is parametrized by an element a ∈ X and
combines Howard-Bezem’s strong majorization relation with the relation ∼ρ as
it is defined for metric spaces:
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Definition 1. We define a ternary relation &a
ρ between objects x, y and a of

type ρ̂, ρ (ρ̂ defined as in (∗) above) and X respectively as follows:2

– x0 &a
0 y0 :≡ x ≥0 y,

– x0 &a
X yX :≡ (x)IR ≥IR dX (y, a),

– x &a
ρ→τ y :≡ ∀z′, z(z′ &a

ρ z → xz′ &a
τ yz) ∧ ∀z′, z(z′ &a

bρ z → xz′ &a
bτ xz).

Restricted to the types T, the relation &a coincides with Bezem’s strong ma-
jorization relation. Using our new majorization relation we can extend Bezem’s
type structure Mω of strongly majorizable functionals of types in T to all types
is TX where for the new ground type X we take our metric (hyperbolic, resp.
normed) space as the domain. Whereas for the new type the relation &a depends
on a, the type structure of all &a-majorizable functionals is in fact independent
of the choice of a ∈ X . For metric spaces, the chosen element a ∈ X serves as a
reference point, similar to the element 0X for normed linear spaces, but with the
crucial difference that the element a ∈ X is a variable and not a fixed element of
the space like the constant 0X . For normed linear spaces we consider the metric
d(x, y) ≡ ‖x−y‖ and always choose a = 0X so that IN 3 n &a

X x iff (n)IR ≥ ‖x‖.
Defining majorants for the constants of Aω [X, d]−b, A

ω[X, ‖ · ‖, C]−b (where
the −b signifies that the axiom expressing the boundedness of (X, d), resp. the
convex subset C, is dropped) may again involve the generally ineffective ()◦-
operator. However, by letting majorants for elements of type X be natural
numbers instead of elements of type X , we avoid ineffective instances of the
()◦-operator. Here, the ()◦-operator is only applied to natural numbers, where it
is effectively computable.

The a-majorization relation &a provides a natural extension of Bezem’s
strong majorization relation to metric and normed linear spaces. To a-majorize
an element x ∈ X means to provide a bound on its distance to the reference
point a ∈ X , which in the case of normed linear spaces means a bound on the
norm of x. To a-majorize a sequence z0→X of elements means to provide for
each n an upper bound of the largest distance to a among the first n elements
of the sequence. To a-majorize a function f : X → X means to provide a bound
on the “displacement” of f , i.e. that is given a bound on n ≥ d(x, a) a bound
(in n) on d(f(x), a).

From generalized metatheorems for Aω [X, d]−b, A
ω[X, ‖ ·‖, C]−b and further

variants of these theories one may e.g. derive the following theorem for hyperbolic
spaces (X, d, W ):

Definition 2. A function f : X → X on a metric space (X, d) is called

– nonexpansive (‘f n.e.’) if d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ X,
– Lipschitz continuous if d(f(x), f(y)) ≤ K · d(x, y) for some K > 0 and for

all x, y ∈ X,

2 Here we refer to the representation of real numbers by number theoretic functions
from [6], i.e. objects of type 1. (x0)IR represents the canonical embedding of IN into
IR under this representation.



4 P. Gerhardy, U. Kohlenbach

– Hölder-Lipschitz continuous if d(f(x), f(y)) ≤ K · d(x, y)α for some K > 0,
0 < α ≤ 1 and for all x, y ∈ X.

Theorem 1 ([2]).

1. Let P (resp. K) be a Aω-definable Polish space (resp. compact Polish space)3.
Assume we prove, in Aω [X, d, W ]−b:

∀x ∈ P∀y ∈ K∀zX∀fX→X(f n.e.∧∀u0B∀(x, y, z, f, u) → ∃v0C∃(x, y, z, f, u))

where 0X does not occur in B∀ and C∃
4.

Then there is a computable functional Φ : ININ×IN → IN s.t. for all gx ∈ ININ

representing an element x ∈ P and all y ∈ K

∀zX∀fX→X(f n.e.∧d(z, f(z)) ≤ b∧∀u0 ≤ Φ(gx, b) B∀ → ∃v0 ≤ Φ(gx, b) C∃)

holds in all (non-empty) hyperbolic spaces (X, d, W ).

2. The Corollary also holds for an additional parameter ∀z ′X and the additional
premise d(z, z′) ≤ b.

3. Furthermore, the Corollary holds for an additional parameter ∀a0→X and the
additional premise ∀n(d(z, a(n)) ≤ b) or even ∀n(d(z, a(n)) ≤ g(n)), where
the extracted bound then additionally depends on g.

4. 1., 2. and 3. also hold if we replace ‘f n.e.’ with f satisfying

d(x, y) ≤ n → d(f(x), f(y)) ≤ Ω(n) (∗∗)

for all x, y ∈ X, where Ω is a function Ω : IN → IN. The extracted bound
will then additionally depend on Ω. This condition covers Lipschitz con-
tinuous and Hölder-Lipschitz continuous functions (with constants K, resp.
K, α : Q∗

+, where α ≤ 1), as well as uniformly continuous functions (with a
modulus of uniform continuity ω). Thus, for Lipschitz and Lipschitz-Hölder
continuous functions the bound depends on the given constants, for uniformly
continuous functions the bound depends on the given modulus of uniform
continuity.5

In contrast to the results from [6], the theorem above does not require the
whole space X to be bounded but only a bound b on d(z, f(z)). Nevertheless
the bound Φ is independent not only from y ∈ K but even from z ∈ X and
f : X → X. This fact allows one to extend the applications to metric fixed point

3 We assume the Polish, resp. compact Polish space are given in so-called standard
representation, see [6].

4 A ∀-formula, resp. an ∃-formula is a purely universal, resp. existential formula, where
moreover the types of the quantified variables are of suitable restricted type. For
details see [6].

5 In contrast to the assumptions on f such as being nonexpansive, Lipschitzean or uni-
formly continuous (which imply the extensionality of f) the condition (∗∗) does not
imply extensionality. So in the context of (∗∗) our restriction to weak extensionality
is significant.
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theory given in [6] considerably and explains a number of results obtained in
case studies where bounds Φ of the kind predicted by the theorem had been
explicitly extracted (e.g. [7]).

Similar results can be obtained for the case of normed spaces (X, ‖ · ‖) and
convex subsets C ⊆ X (then, in addition to b ≥ ‖z − f(z)‖, one needs that
b ≥ ‖z‖), uniformly convex spaces as well as inner product spaces.

Finally, we note that instead of a single space X we can also add finitely
many abstract (metric, hyperbolic or normed) spaces X1, . . . , Xn simultaneously
to Aω. All this will be carried out in detail in [2].

References

1. M. Bezem. Strongly majorizable functionals of finite type: a model of bar recursion
containing discontinous functionals. J. of Symbolic Logic, 50:652–660, 1985.

2. P. Gerhardy and U. Kohlenbach. General logical metatheorems for functional anal-
ysis, 2005. Draft, 32pp.
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