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Abstract

The paper presents a general framework for inter-
val comparison for preference modelling purposes.
Two dimensions are considered in order to establish
such a framework: the type of preference structure
to be considered and the number of values associ-
ated to each interval. It turns out that is possible
to characterise well known preference structures as
special cases of this general framework.

1 Introduction
Preferences are usually considered as binary relations applied
on a set of objects, let’s say A. Preference modelling is con-
cerned by two basic problems (see [Vincke, 2001]).

The first can be summarised as follows. Consider a deci-
sion maker replying to a set of preference queries concerning
a the elements of the set A: “do you prefer a to b?”, “do you
prefer b to c?” etc.. Given such replies the problem is to check
whether exists (and under which conditions) one or more real
valued functions which, when applied to A, will return (faith-
fully) the preference statements of the decision maker. As an
example consider a decision maker claiming that, given three
candidates a, b and c, he is indifferent between a and b as
well as between b and c, although he clearly prefers a to c.
There are several different numerical representations which
could account for such preferences. For instance we could
associate to a the interval [5, 10], to b the interval [3, 6] and
to c the interval [1, 4]. Under the rule that x is preferred to y
iff the interval associated to x is completely to the right (in
the sense of the reals) of the one associated to y and indiffer-
ent otherwise, the above numerical representation faithfully
represents the decision makers preference statements.

The second problem goes the opposite way. We have a nu-
merical representation for all elements of the set A and we
would like to construct preference relations for a given deci-
sion maker. As an example consider three objects a, b and c
whose cost is 10, 12 and 20 respectively. For a certain deci-
sion maker we could establish that a is better than b which
is better than c. For another decision maker the model could
be that both a and b are better than c, but they are indifferent
among them since the difference is too small. In both cases
the adoption of a preference model implies the acceptation of

a number of properties the decision maker should be aware
of.

In this paper we focus our attention on both cases, but with
particular attention to the situations where the elements of
the set A can or are actually represented by intervals (of the
reals). In other terms we are interested on the one hand to the
necessary and sufficient conditions for which the preference
statements of a decision maker can be represented through
the comparison of intervals and on the other hand on general
models through which the comparison of intervals can lead to
the establishment of preference relations.

Comparing intervals is a problem relevant to several differ-
ent disciplines. We need intervals in order to take into account
intransitivity of indifference due to the presence of one or
more discrimination thresholds (an object 10cm long is “re-
ally” different from one 10.1cm long? When do they become
different?), in order to compare time intervals ([Allen, 1983]),
in order to represent imprecision or uncertainty (price of x
lies between A and B, quality of y lies between “medium” and
“good” ...). Indeed the paper’s subject is not that new. Since
the seminal work of Luce ([Luce, 1956]) there have been sev-
eral contributions in literature including the classics [Fish-
burn, 1985], [Trotter, 1992] and [Pirlot and Vincke, 1997], as
well as some key papers: [Barthélemy et al., 1982], [Cozzens
and Roberts, 1982], [Doignon et al., 1986], [Fishburn, 1997],
[Fishburn and Monjardet, 1992]. Our main contribution in
this paper is to suggest a general framework enabling to clar-
ify the different preference models that can be associated to
the comparison of intervals including situations where the de-
cision maker is allowed to hesitate (either using a finite set of
states or a continuous valuation).

The paper is organised as follows. In Section 2 we intro-
duce all basic notation and all hypotheses that hold in the pa-
per. In section 3 we introduce the structure of the general
framework we suggest, based on two dimensions: the type
of preference structure to be used and the structure of the in-
tervals. In section 4 we introduce some further conditions
enabling to characterise well known preference structures in
the literature. We conclude showing the future research di-
rections of this work.

2 Notation and Hypotheses
In the following we consider a countable set of objects which
we denote with A. Variables ranging within A will be denoted
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with x, y, z, w · · · , while specific objects will be denoted
a, b, c · · · . Letters P, Q, I, R, L · · · , possibly subscribed, will
denote preference relations on A, that is binary predicates on
the universe of discourse A × A (each binary relation being
a subset of A × A). Letters f, g, h, r, l · · · , possibly sub-
scribed, will denote real valued functions mapping A to the
reals. Since we work with intervals we will reserve the letters
r and l for the functions representing, respectively, the right
and left extreme of each interval. Letters α, β, γ · · · will rep-
resent constants. The usual logical notation applies including
its equivalent set notation. Therefore we will have:
- P ∩R equivalent to ∀x, y P (x, y)∧R(x, y);
- P ⊆ R equivalent to ∀x, y P (x, y)→R(x, y).
We will add the following definitions:
- P.R equivalent to ∀x, y∃z P (x, z)∧R(z, y);
- Io = {(x, x) ∈ A×A}, the set of all identities in A×A.

As far as the properties of binary relations are concerned
we will adopt the ones introduced in [Roubens and Vincke,
1985]. For specific types of preference structures such as total
orders, weak orders etc. we will equally adopt the definitions
within [Roubens and Vincke, 1985].

We introduce the following definition, useful since we are
going to use collections of binary relations in order to repre-
sent different ways to compare intervals:

Definition 2.1 A preference structure is a collection of bi-
nary relations Pj j = 1, · · ·n, partitioning the universe of
discourse A×A:
- ∀x, y, j Pj(x, y) → ¬Pi 6=j(x, y);
- ∀x, y∃j Pj(x, y) ∨ Pj(y, x)

Further on we will often use the following proposition:

Proposition 2.1 Any symmetric binary relation can be seen
as the union of two asymmetric relations, the one being the
inverse of the other, and Io.

Proof. Obvious, recalling the definition of
asymmetric relation: ∀x, y R(x, y)→¬R(y, x)
and symmetric relation: ∀x, y R(x, y)→R(y, x).

We finally make the following hypotheses:

H1 We consider only intervals of the reals. Therefore there
will be no incomparability in the preference structures
considered.

H2 If necessary we associate to each interval an uniform
uncertainty distribution. Each point in an interval may
equally be the “real value”.

H3 Without loss of generality we can consider only asym-
metric relations.

H4 We consider only countable sets of objects. Therefore
we can consider only strict inequalities.

Remark 2.1 Hypothesis 3 is based on proposition 2.1. The
reason for eliminating symmetric relations from our models
will become clear later on in the paper. However, we can an-
ticipate that the use of asymmetric relations allows to better
understand the underlying structure of intervals comparison.

Remark 2.2 Hypothesis 4 makes sense only when the pur-
pose is to establish a representation theorem for a certain
type of preference statements. The basis idea is that, since
numerical representations of preferences are not unique, A
being countable, is always possible to choose a numerical
representation for which it never occurs that any of the ex-
treme values of the intervals associated to two elements of A
are the same. However, in the case the numerical representa-
tion is given and the issue is to establish the preference struc-
ture holding, the possibility that two extreme values coincide
cannot be excluded.

3 General Framework
In order to analyse the different models used in the literature
in order to compare intervals for preference modeling pur-
poses we are going to consider two separate dimensions.

1. The type of preference structure. We basically consider
the following cases.

• Use of two asymmetric preference relations P1 and
P2. Such a preference structure is equivalent to the
classic preference structure (in absence of incom-
parability) considering only strict preference (P2 in
our notation) and indifference (P1 ∪ P−1

1 ∪ Io in
our notation). For more details see [Roubens and
Vincke, 1985].

• Use of three asymmetric preference relations P1,
P2 and P3. Such structures are known under the
name of PQI preference structures (see [Vincke,
1988]), allowing for a strict preference (P3 in our
notation), a “weak preference” (P2 in our notation),
representing an hesitation between strict preference
and indifference and an indifference (P1∪P−1

1 ∪Io

in our notation).
• Use of n asymmetric relations P1, · · ·Pn. Usually

Pn to P2 represent n−1 preference relations of de-
creasing “strength”, while P1 ∪ P−1

1 ∪ Io is some-
times considered as indifference. For more details
the reader can see [Doignon et al., 1986].

• Use of a continuous valuation of hesitation between
strict preference and indifference. In this case we
consider valued preference structures, that is pref-
erence relations are considered fuzzy subsets of
A × A. The reader cas see more in [Perny and
Roubens, 1998].

2. The structure of the numerical representation of the in-
terval. We consider the following cases:

• Use of two values. Such two values can be equiva-
lently seen as the left and the right extreme of each
interval associated to each element of A or as a
value associated to each element of A and a thresh-
old allowing to discriminate any two values.

• Use of three values. Again several different inter-
pretations can be considered. For instance the three
values can be seen as the two extremes of each in-
terval plus an intermediate value aiming to repre-
sent a particular feature of the interval. They can
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be seen as a value associated to each element of A
and two thresholds aiming to describe two different
states of discrimination. They can also be seen as
representing an extreme value of the interval, while
the other extreme is represented by an interval.

• Use of four or more values. The reader will realise
that we are extending the previous structures. The
four values can be seen as the two extremes and
two “special” intermediate values or as two impre-
cise extremes such that each of them is represented

by an interval. The use of n values can be seen as
a value associated to each element of A and n − 1
thresholds representing different intensities of pref-
erence. Possibly we can extend such a structure to
the whole length of any interval associated to each
element of A such that we may obtain a continuous
valuation of the preference intensity.

In table 1 we summarise the possible combinations of pref-
erence structures and interval structures.

2 values 3 values > 3 values
2 asymmetric Interval Orders Split Interval Orders Tolerance and
relations and Semi Orders and Semi Orders Bi-tolerance

orders
3 asymmetric PQI Interval Orders Pseudo orders
relations and Semi Orders and double -

threshold orders
n asymmetric Multiple
relations - - Interval Orders

and Semi Orders
valued Valued Preferences
relations Fuzzy Interval Orders and Semi Orders

Continuous PQI Interval Orders

Table 1: A general framework for interval comparison

The reader can see more details in the following references:
- Interval Orders and Semi Orders: [Fishburn, 1985], [Fish-
burn, 1997], [Luce, 1956], [Pirlot and Vincke, 1997];
- Split Interval Orders and Semi Orders: [Bogart and Isaak,
1998], [Fishburn and Trotter, 1999];
- Tolerance and Bi-tolerance orders: [Bogart et al., 2001],
[Bogart and Trenk, 1994], [Bogart and Trenk, 2000],
[Golumbic and Monma, 1982], [Golumbic et al., 1984];
- PQI Interval Orders and Semi Orders: [Ngo The and
Tsoukiàs, 2005], [Ngo The et al., 2000], [Tsoukiàs and
Vincke, 2003];
- Pseudo Orders and Double Threshold Orders: [Roy and
Vincke, 1984], [Roy and Vincke, 1987], [Tsoukiàs and
Vincke, 1998], [Vincke, 1988];
- Multiple Interval Orders and Semi Orders: [Cozzens and
Roberts, 1982], [Doignon, 1987], [Doignon et al., 1986];
- Valued Preference Structures: [De Baets and Van de Walle,
1996], [Oztürk and Tsoukiàs, 2004], [Perny and Roubens,
1998], [Perny and Roy, 1992], [Van De Walle et al., 1998].

4 Further Conditions
The general framework discussed in the previous section sug-
gests that there exist several different ways to compare inter-
vals in order to model preferences. Each of such preference
models could correspond to different interpretations associ-
ated to the values representing each interval. For instance
consider the case where only the two extreme values of each
interval are available and only two asymmetric relations are
used. We can establish:

- P2(x, y) ⇔ l(x) > r(y)
- P1(x, y) ⇔ r(y) > l(x) > l(y)
and we obtain a classic Interval Order preference structure
or we can establish:
- P2(x, y) ⇔ l(x) > l(y) ∧ r(x) > r(y)
- P1(x, y) ⇔ r(x) > r(y) > l(y) > l(x)
and we obtain a partial order of dimension 2 (P2).

A first general question is the following:
- given a set A, if it is possible to associate to each element x
of A n functions fi(x), i = 1, · · ·n, such that fn(x) > · · · >
f1(x), how many preference relations can be established?

In order to reply to this question we consider different con-
ditions which may apply to the values of each interval and
their differences. For notation purposes, given an interval
to which n values are associated, we denote the i-th sub-
interval of any element x ∈ A (from value fi(x) to value
fi+1(x)) as xi. When there is no risk of confusion xi will also
represent the “length” of the same sub-interval (the quantity
fi+1(x)−fi(x)). We are now ready to consider the following
cases:

1. No conditions. We consider that the functions describ-
ing the intervals are free to take any value.

2. Coherence conditions. We impose that ∀i f1(x) >
f1(y) → fi(x) > fi(y). This is equivalent to claim
that ∀i x1 > y1 → xi > yi.

3. Weak monotonicity conditions. We now impose that
∀i, j, i ≥ j; x1 > y1 → xi ≥ yj . In other terms
we demand that there are no sub-intervals of x included
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to any sub-interval of y. Such a condition implies coher-
ence (but not vice-versa).

4. Monotonicity conditions. We now impose that ∀i xi ≥
yi ≥ xi−1 ≥ yi−1 (sub-intervals of x or y are never in-
cluded and they increase as the index i increases). Such
a conditions implies weak monotonicity (but not vicev-
ersa). The reader can easily check that a representation

which satisfies such a condition is the one where all sub-
intervals have the same constant length.

In table 2 we summarise the situation for all the above
cases. The reader will note that the number of possible re-
lations follows a combinatorial structure. This is important
both for complexity issues and for establishing the possible
numerical representations of such preference structures.

free coherent weak monotone monotone
2 values: 3 2 2 2
3 values: 10 5 4 3
4 values: 35 14 8 4
n values: (2n)!

2(n!)2
1

n+1 (2n
n ) ?(2n−1)? n

Table 2: Number of possible relations comparing intervals

A second question concerns the existence of a general
structure among the possible relations that the comparison of
intervals allow. Consider for instance the ten possible rela-
tions allowed by the use of three values associated to each
interval. Is there any relation among them?

In order to reply to this question we consider any pref-
erence relation as a vector of 2n elements. Indeed, since
Pj(x, y) compares two vectors (x and y) of n elements each
(〈f1(x), · · · fn(x)〉 and 〈f1(y), · · · fn(y)〉), there is a unique
sequence of such 2n values which exactly describes each rela-
tion Pj . Consider the case of three values and the ten possible
relations. These can be described as follows:
P1(x, y) : 〈f1(y), f1(x), f2(x), f3(x), f2(y), f3(y)〉
P2(x, y) : 〈f1(y), f1(x), f2(x), f2(y), f3(x), f3(y)〉
P3(x, y) : 〈f1(y), f1(x), f2(y), f2(x), f3(x), f3(y)〉
P4(x, y) : 〈f1(y), f1(x), f2(x), f2(y), f3(y), f3(x)〉
P5(x, y) : 〈f1(y), f1(x), f2(y), f2(x), f3(y), f3(x)〉
P6(x, y) : 〈f1(y), f2(y), f1(x), f2(x), f3(x), f3(y)〉

P7(x, y) : 〈f1(y), f1(x), f2(y), f3(y), f2(x), f3(x)〉
P8(x, y) : 〈f1(y), f2(y), f1(x), f2(x), f3(y), f3(x)〉
P9(x, y) : 〈f1(y), f2(y), f1(x), f3(y), f2(x), f3(x)〉
P10(x, y) : 〈f1(y), f2(y), f3(y), f1(x), f2(x), f3(x)〉

We now introduce the following definition.

Definition 4.1 For any two relations Pl, Pk, l, k ∈ I we write
Pl ¤ Pk and we read “relation Pl is stronger than relation
Pk” iff relation Pk can be obtained from Pl by a single shift
of values of x and y or it exists a sequence of Pi such that
Pl ¤ · · ·Pi ¤ · · ·Pk.

The reader will easy verify the following proposition.

Proposition 4.1 Relation ¤ is a partial order defining a
complete lattice on the set of possible preference relations.

In figure 1 we show the lattice for the cases where n = 2
(3 relations) and n = 3 (10 relations).

The case n = 2

P1
¾ P2

¾ P3

The case n = 3

P1
¾ P2

¡
¡

¡ª

@
@

@I

P3

P4

¾

¾ P5

P6
¾

¾ P7

P8£
£

£
£

£
£

£
£

£
£°

¡
¡

¡ª

@
@

@I

P9
¾ P10

B
B

B
B

B
B

B
B

B
BM

Figure 1: Partial Order among Preference Relations
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How do well known in the literature preference structures
fit the above presentation? The reader can easily check the
following equivalences.

Interval orders:
P = P3, I = P1 ∪ P2 ∪ Io ∪ P−1

1 ∪ P−1
2

Partial Orders of dimension. 2:
P = P3 ∪ P2, I = P1 ∪ Io ∪ P−1

1
Semi Orders:
P = P3, I = P2 ∪ Io ∪ P−1

2 , P1 empty
PQI Interval orders:
P = P3, Q = P2, I = P1 ∪ Io ∪ P−1

1
PQI Semi orders:
P = P3, Q = P2, I = Io, P1 empty

Split Interval orders:
P = P10 ∪ P9, I the rest
Double Threshold orders:
P = P10 Q = P9 ∪ P8 ∪ P6, I the rest
Pseudo Orders:
P = P10 Q = P9 ∪ P8, I = P5 ∪ P7 ∪ Io ∪ P−1

7 ∪ P−1
5 ,

P1, P2, P3, P4, P6 empty
Constant thresholds:
P = P10 Q = P9, I = P5 ∪ Io ∪ P−1

5 ,
P1, P2, P3, P4, P6, P7, P8 empty

Remark 4.1 The reader should note that in representing an
Interval Order under the equivalence P = P3 and I = P2 ∪
P1 ∪ Io ∪ P−1

1 ∪ P−1
2 we did an implicit hypothesis that I is

separable in the relations P2, P1 and Io. However, this is not
always possible. The general representation of an Interval
Order within our framework requires the existence of only
two asymmetric relations P2 and P1 such that P = P2 and
I = P1 ∪ Io ∪ P−1

1 .

How well known preference structures are characterised
within our framework? We give here as an example the trans-
lation (within our frame) of two well known preference struc-
tures: interval orders and PQI interval orders.

Theorem 4.1 An interval order is a 〈P2, P1, Io〉 preference
structure such that:
- P2P2 ⊆ P2

- P2P1 ⊆ P2

- P−1
1 P2 ⊆ P2

Proof.
From P2P2 ⊆ P2 we get P2IoP2 ⊆ P2

From P2P1 ⊆ P2 we get P2P1P2 ⊆ P2

From P−1
1 P2 ⊆ P2 we get P2P1−1P2 ⊆ P2

Since P1 ∪ Io ∪ P1−1 = I and P2 = P we get PIP ⊆ P
this condition characterising interval orders (see [Fishburn,
1985]).

Theorem 4.2 An interval order is a 〈P3, P2, P1, Io〉 prefer-
ence structure such that:
- P3P3 ⊆ P3

- P2P3 ⊆ P3

- P3P2 ⊆ P3

- P3P1 ⊆ P3

- P−1
1 P3 ⊆ P3

- P2P2 ⊆ P2 ∪ P3

- P1P2 ⊆ P1 ∪ P2

- P2P
−1
1 ⊆ P−1 ∪ P2

Proof.
From P3P3 ⊆ P3, P3P2 ⊆ P3, P3P1 ⊆ P3 we get P3(P3 ∪
P2 ∪ P1) ⊆ P3

From P3P3 ⊆ P3, P2P3 ⊆ P3, P−1
1 P3 ⊆ P3 we get (P3 ∪

P2 ∪ P−1
1 )P3 ⊆ P3

From P2P3 ⊆ P3, P2P2 ⊆ P2 ∪ P3 P2P
−1
1 ⊆ P−1 ∪ P2 we

get P2(P3 ∪ P2 ∪ P−1
1 ) ⊆ P3 ∪ P2 ∪ P−1

1
From P3P2 ⊆ P3, P2P2 ⊆ P2 ∪ P3, P1P2 ⊆ P1 ∪ P2 we get
(P3 ∪ P2 ∪ P1)P2 ⊆ P3 ∪ P2 ∪ P1

the above four conditions characterising a PQI interval order
(see [Tsoukiàs and Vincke, 2003].

5 Conclusions
In this paper we introduce a general framework for the com-
parison of intervals under preference modeling purposes.
Two possible extensions of such a framework can be envis-
aged. The first concerns the comparison of intervals for other
purposes such as comparing time intervals. The second con-
cerns the possibility to derive a general structure for represen-
tation theorems concerning any preference structure which
can be conceived within the above framework.
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