
Distributed Implementation of a Self-Organizing
Decentralized Multimedia Appliance Middleware

Michael Hellenschmidt

Fraunhofer-Institute for Computer Graphics,
Fraunhoferstr. 5, 64283 Darmstadt, Germany

michael.hellenschmidt@igd.fraunhofer.de

Abstract. A middleware for real ad-hoc cooperation of distributed device en-
sembles must support self-organization of its components. Self-organization means
that the independence of the ensembles’ components is ensured, that the ensem-
ble is dynamically extensible by new components and that real distributed im-
plementation is possible. Furthermore the data-flow of messages within the en-
semble may not be statically determined. This article presents the application of
the SodaPopmodel for distributed device ensembles to physical heterogeneous
devices as well as the distributed implementation of conflict resolution strategies
that guarantee the data-flow even if there are competing components. The pro-
posed approach relies on the principle of device representatives.

1 Introduction

Rather popular scenarios for Ambient Intelligence [1, 4] illustrate the visions ofsmart
conference roomsor smart living rooms. Well-established examples are theEasy Liv-
ing project from Microsoft [2], theInteractive Workspaces Project[17] from Stanford
University or theIntelligent Classroom[8] from Northwestern University. But those
smart environments from the various research labs are usually assembled from devices
and components whose functionality is known to the developers. Furthermore, in sys-
tems with distributed devices, the data flow from device to device is determined for
every use case. Consequently the intelligence of Ambient Intelligence prototypes and
demonstrators is carefully handcrafted.

This is obviously out of the question for real world applications, where people come
together in a meeting room, each of the participants bringing with her own personal
devices, or where people are buying new devices for extending their existing entertain-
ment device ensembles. A scenario that outlines the vision of intelligent environments
that were built up ad-hoc by cooperating devices is the example of an ad-hoc meeting
where People meet at a perfectly average room. All of the participants bring their own
notebook computers, at least one brings a projector and the room has some light con-
trols (see figure 1). So it would be possible for this spontaneous ensemble to provide
the same assistance as a fixed conference room. This kind of Ambient Intelligence re-
quires more than setting up a control application in advance. It requires the ability of
the devices to autonomously configure themselves into a coherently acting ensemble.
Johanson from Stanford University also points out [17] that ”users should only have to

Dagstuhl Seminar Proceedings 05181
Mobile Computing and Ambient Intelligence: The Challenge of Multimedia
http://drops.dagstuhl.de/opus/volltexte/2005/378

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Fig. 1. Devices form a cooperative ad-hoc ensemble while a spontaneous meeting in an ”empty”
room.

plug in a device or bring it into a physical space for it to become part of the correspond-
ing software infrastructure. User configuration should be simple and prompted by the
space. . . . The logical extension of this is to allow ad hoc interactive workspaces to form
wherever a group of devices are gathered.”

Obviously software infrastructures are needed that allow a true self-organization of
ad-hoc device ensembles. In order to take a step ahead to this vision the projectDynA-
MITE [5] develops a decentralized middleware for self-organizing device ensembles on
basis of the middleware modelSodaPop[12, 14]. This article describes the concept and
underlying methods of this middleware. The next chapter reviews the requirements for
self-organizing ensembles that come up while looking at the underlying scenarios. In
Section 3 the core concepts ofSodaPopare specified.SodaPopintroduced a solution
proposal for a software infrastructure that supports such heterogeneous ad-hoc device
ensembles. Section 4 then outlines the distributed implementation of our approach and
explains conflict resolution mechanisms among distributed devices with the principle of
device representatives. After some explanations about the underlying communication
infrastructure and the reflection of the related work this article ends with a discussion
and an outline of our next steps.

2 Requirements

The challenge of self-organization as indicated in the introduction of this article distin-
guishes two different aspects:

– Architectonic Integration: this refers to the integration of a (new) device into the
communication patters of an existing device ensemble. This refers also to the ad-
hoc assembly of a device ensemble from heterogeneous stand-alone devices.

– Operational Integration: this describes the aspect of making new functionalities that
are provided by a (new) device available to the user.

Obviously operational integration means a form of service discovery transparent
to all devices. It can be realized based on an explicit modelling of the semantics of
device operations asprecondition / effectrules that have to be defined over a suitable
environment ontology (see [13] for a detailed reflection on this topic). One has to bear

3

in mind that operational integration means more than to make a graphical user interface
available for the user like the approaches in Jini [16] or HAVi [11].

This article concentrates on the aspect ofarchitectonic integration. While looking at
typical scenarios in the domain of home entertainment and the domain of ad-hoc meet-
ings the following objectives for a self-organizing architecture for Ambient Intelligence
can be identified (see [12, 14] for more details):

– devices should able to act stand-alone
– devices should be independent
– there may not be any kind of central component (because a central controler is a

contradiction itself to the demand of ad-hoc self-organization)
– distributed implementation should be supported
– devices should be exchangeable
– and transparent service arbitration should be provided

Only if all requirements are met intuitive scenarios like the ”Plug and Play” of new
devices into an existing device ensemble, and the build-up of a device ensemble in an
ad-hoc fashion (with no discussion where a central router should be started) is possible.
The requirement that devices should be able to work stand-alone corresponds to the
user’s experiences and expectations of the every day usage of conventional devices.

3 Principles of theSodaPopmiddleware model

This section should outline the core ideas of theSodaPopmodel (for details we refer
to [12, 14]).SodaPopis the abbreviation of Self-Organizing Data-flow Architectures
suPporting Ontology-based problem decomPosition). Each device that is able to inter-
act with users (like TV sets by buttons or remote controls) and that is able to change
the user’s environment (by rendering a medium for instance) possesses a kind of event
processing. Figure 2 outlines possible processing stages and a specific event processing
pipeline. Usually devices have anUser interfacethat translates physical user interac-
tions to events. AnInterpretercomponent then is responsible for determining the ap-
propriate goals, which are translated into function calls by aControl Application. The
Actuatorsthen are physically executing this function calls.

If some devices are plugged together (see figure 3) the interface between the individ-
ual processing stages can be extended across multiple devices. That means, after turning
the private interfaces between the processing stages in a device into public channels, In-
terpreter components from one device are able to ”see” events from other devices. Or
the Control Application of one device is able to interpret goals that are made by other
devices.

Obviously if all components are able to ”see” the messages of the other components
that are subscribed to a channel, some conflicts will come up. Those conflicts of com-
peting components have to be solved by conflict resolution strategies, which are part of
the channels message handling capabilities. The procedure of conflict handling within
a channel is illustrated by figure 4.

In a nutshell,SodaPopdiffers between two types of components:

4

Fig. 2.The internal data-flow of a standard device.

Fig. 3.The devices share the interfaces after they are extended across them.

Channels that read single messages and map it to (multiple) messages. Therefore con-
flict resolution strategies are used that are evaluating the channel subscribers’ util-
ity value functions, decomposing the messages and delegating them to the receiver
components (see figure 4). How a channel determines the effective message de-
composition and how it chooses the set of receiving consumers is defined by the
individual channel’s decomposition strategy (that is eventually based on the chan-
nel’s ontology).

Transducers represents the components in figure 2 and figure 3. Transducers are able
to read one or more messages and are able to map them into appropriate output
messages (e.g. events are mapped into goals). When subscribing to a channel, a
transducer declares: the set of messages it is able to process and how well it is
suited for processing certain messages. For this reason the transducer makes its
utility value function available to the channel(s) it is connected to.

After a common set of channels as well as appropriate conflict resolution mecha-
nisms are identified an architectonic integration of devices and components could be
achieved by means of theSodaPopprinciples. In [15] aGeneric Topology for Ambi-
ent Intelligenceis identified. It consists of four levels of components (Interaction, In-
terpretation, Strategy Assistants, and Actors). Also some possible conflict resolution

5

Ch
an

ne
l

Subscribing
Transducer

(e.g., Actuator
Component)

Ut
ilit

y
Fu

nc
tio

n

Subscribing
Transducer

Subscribing
Transducer

Publishing
Transducer

Ch
an

ne
l

Subscribing
Transducer

Subscribing
Transducer

Subscribing
Transducer

Publishing
Transducer

? ? ?

Receiving message . . . Evaluating utility . . .

Ch
an

ne
l

Subscribing
Transducer

Subscribing
Transducer

Subscribing
Transducer

Publishing
Transducer

? ? ?

ba

Ch
an

ne
l

Subscribing
Transducer

Ut
ilit

y
Fu

nc
tio

n
Subscribing
Transducer

Subscribing
Transducer

Publishing
Transducer

? ? ?

ba

a' b'

Decomposing . . . Delegating.

Fig. 4. The basic mechanism of conflict resolutions strategies evaluates the consumer utility val-
ues, decomposes the message and delegates it to the receiver components.

strategies within the domain of home entertainment and the domain of lecture rooms
are described (see also [7] for a strategy that decomposes single messages into multiple
messages in dependence of the abilities of the connected consumer components).

4 Distributed Implementation

In order to make the distributed implementation of the self-organizing middleware
modelSodaPoppossible, it might again be helpful to look inside the physical devices
that should be supported. For devices like the one that is illustrated in figure 2 the im-
plementation seems to be trivial. The User Interface sends its events directly to the
Interpreter. After that the Interpreter forwards its goals to the following Control Appli-
cation. And finally the Control Applications sends the functions calls to the Actuator.

But what will happen if a vendor wants to sell two stand-alone devices in one phys-
ical unit? Or in other words: How can aphysicaldevice be internally managed if it
consists of twological devices?

Now the Interpreter components of both logical devices (figure 5 illustrates an ex-
ample of a combined TV set-DVD device) see all events that come from the different
User Interfaces. Of course it would be reasonable if only one Interpreter component
infers the user’s goals. And of course if later on only one Control Application schedules

6

Fig. 5. Two stand-alone devices (left) are combined to one physical device that then consists of
two logical devices (right).

the appropriate functions. In order to provide this the channel has to apply the necessary
conflict resolution strategies. Obviously the channel is created by its connected trans-
ducers and thus the participating transducers have to carry out the conflict resolution
strategy among them.

To provide this functionality, some principal questions have to be answered:

– is it possible to apply conflict resolution strategies cooperatively (among the partic-
ipating transducers)?

– or is there a way to choose one transducer that should apply the conflict resolution
strategy alone?

And furthermore, if it is possible to find solutions at least for one of these questions:

– If the execution of conflict resolution strategies is possible in a cooperative way -
Will it also be possible to apply the found approach across real distributed physical
devices? That means: Is it possible to find applicable methods for parallel process-
ing not only among distributed applications but also among distributed processors?

– If one transducer can be chosen to apply exclusively the appropriate conflict res-
olution strategy, will it also be able to choose one transducer among distributed
physical devices?

The scenarios (section 1) and the resulting requirements (section 2) demand the
independence of eachphysicaldevice, not of each component that runs on these devices.
That means it is reasonable to increase the granularity from logical components (e.g.
a User Interface or an Interpreter component) to real physical devices (e.g. a TV set
that is the host for its different components). This is obviously according to the user’s
expectations. The user wants to combine physical devices and not logical components.

Because the physical device is the smallest entity within a device ensemble it can
run one instance of a so-calledSodaPop-Demon (without any limitations to the require-
ments in section 2). Consequently theSodaPop-Demon hosts all different transducers
of its physical entity (see figure 6). Once a transducer runs:

7

Fig. 6. Each physical device runs oneSodaPop-Demon instance where all logical components,
the transducers, are connected to (note: not all connections are displayed here to keep the figure
as concise as possible). TheSodaPop-D(emon) is also the host for the channels that are defined
by the multiple transducers.

– it connects to the device’s ownSodaPop-Demon by declaring the descriptions of
the channels it wants to participate

– it indicates for each channel, whether it wants to listen to channel messages or it
wants to write to the channel

– and it declares the set of messages, it is able to process

If now an User Interface component wants to send an event to the channel it is
connected to, it will send a message to itsSodaPop-Demon. The message contains the
event itself together with some information about the receiver channel and the sender
itself. After that theSodaPop-Demon contacts all transducers that are subscribed as
listeners to the corresponding channel to evaluate their utility value function according
to the initial message. After theSodaPop-Demon had collected all utility value function
results it starts to execute the channel’s conflict resolution strategy. Finally theSodaPop-
Demon delegates the decomposed message(s) to the receiver transducer(s). In order to
avoid traffic between the transducers and theSodaPop-Demon we differ between static
and non-static utility value functions. In case a utility value function is static, its values
are handed over to theSodaPop-Demon when the transducer starts and connects. Thus,
theSodaPop-Demon can use its own look-up table instead of causing message traffic.
In general utility value functions are non-static. They are dependent on the current state
the transducer belongs to when its utility value function is evaluated. An example is a
rendering component for media that already renders a movie. Of course at this moment
it will raise lower utility values than another rendering component whose resources are
all available.

Some consequences of this approach should be mentioned:

– the channels now turned intovirtual entities. Consequently a channel descriptor
defines the name of a logical group to which transducers correspond to according

8

to the ontology that is semantically used for the communication. Also the channel
descriptor defines the effective conflict resolution strategy that has to be used in
case of competing components.

– messages between transducers and channels are sent via a (central)SodaPop-Demon.
A SodaPop-Demon is the container for the device’s channels as well as the con-
tainer for its different components and their utility value functions.

– all strategies that have to be executed to guarantee the information flow inside a
physical device are applied by theSodaPop-Demon of the device.

The consequence that aSodaPop-Demon is a central component for each physical de-
vice does not limit the scenarios and the requirements, because we want to achieve plug
and play of devices and that device ensembles are able to interoperate in an ad-hoc
fashion. The fact that each entity of a device ensemble (that means each device) runs its
own service isn’t any limitation at all.

4.1 The Principle of Device Representatives

After the introduction of the principles and the functions of theSodaPop-Demons that
correspond to single devices this section explains how theSodaPop-Demons can be
used as representatives of their device, their channels and their logical components in
heterogeneous device ensembles.

Fig. 7. The SodaPop-Demons of the different devices build up three different groups that cor-
respond to the three defined channels. The differentSodaPop-Demons are symbolised by their
device icons. Note that a device does not have to own a transducer on every stage of the process-
ing pipeline. A remote control could have obviously only an interaction and an interpreter part.

9

Figure 7 illustrates the principles of the distributed implementation. TheSodaPop-
Demons as the representatives of their devices’ channels and transducers build up groups
where peer-to-peer communication is possible (see 4.3). Each of the group represents
a certain channel. Consequently aSodaPop-Demon enters a group when an own trans-
ducer connects to the corresponding channel, and aSodaPop-Demon leaves a channel,
when the last own transducer disconnects from the corresponding channel. If a group
that corresponds to a channel does not exist the responsibleSodaPop-Demon will open
up an appropriate group. Amongst a group the direct addressing fromSodaPop-Demon
toSodaPop-Demon is possible (unicast) as well as multicasts from oneSodaPop-Demon
to all members of a group. Therefore only one restriction exists: EachSodaPop-Demon
owns a one-to-one identification number to guarantee reliable point-to-point commu-
nication (this can be done by using individual manufacturer numbers or rather MAC
numbers).

4.2 Decentralized Conflict Handling

Now the delivering of messages from component to component reduces to the challenge
to find an appropriateSodaPop-Demon that hosts a qualified transducer. Conflict res-
olution mechanisms must be applied by theSodaPop-Demons that build up the group
that corresponds to the channel where the message is received. And furthermore the
SodaPop-Demons as representatives of their transducers take part in the competition
for messages at the same time. But decentralized conflict handling without any central
or salient group member needs some conventions:

– every group member needs the same information:SodaPop-Demons announce the
number of listener- and writer-transducers they represent in the group as well as
their individual identification number

– eachSodaPop-Demon that hosts a listener transducer (that means a transducer that
wants to consume messages) must be able to execute the conflict resolution strategy
that corresponds to the represented channel. The reason for this restriction is intu-
itively understandable: If the calculating capacity of aSodaPop-Demon is sufficient
to host a transducer that can interpret messages and infer user goals for instance, it
will have also the capacity to run substantial strategies. Consequently simple sensor
devices like RFID marker or motion detectors must not provide too much calculat-
ing capacity because they are only the sources of events and not the consumers.

The communication mechanisms inside a group ofSodaPop-Demons takes place in
the following way:

1. if a transducer sends a message to a channel (e.g. the User Interface of the remote
control in figure 7) the correspondingSodaPop-Demon broadcasts this message to
the other members of this (channel) group.

2. after receiving the message eachSodaPop-Demon will evaluate the utility value
functions of its (listener-)transducers that are connected to the corresponding chan-
nel and will collect all utility values.

3. then eachSodaPop-Demon broadcasts the following information to its group par-
ticipants:

10

– the collection of all utility values of its transducers
– its own identification number
– a numbern between 0 and 1 to declare how well it is suited to provide the con-

flict resolution mechanism (Note: if theSodaPop-Demon owns listener trans-
ducers it has to provide the necessary ”intelligence” to execute the correspond-
ing conflict resolution strategy).

– and a timeT that indicates the length in time when the result of the conflict
resolution strategy at the latest will be broadcasted to the other group members.

4. eachSodaPop-Demon receives the broadcasted information of the otherSodaPop-
Demons of its group and thus all group members own all utility values of all con-
nected (listener-)transducers.

5. theSodaPop-Demon that offered the highest numbern starts to execute the chan-
nel’s conflict resolution strategy and broadcasts the results to the other group mem-
ber. The results are the decomposed message and the identification number(s) of
the receiver transducer(s).

6. eachSodaPop-Demon receives the broadcasted results and - in case it hosts one
or more of the receiver transducers - forwards the decomposed message(s) to its
transducers.

The process will restart at point 3, if allSodaPop-Demons offer the number 0 forn; if
two or moreSodaPop-Demons offer the same numbern - andn is the highest number
that is offered; or if the timeT is elapsed without any results of theSodaPop-Demon
that should execute the conflict resolution strategy (because that could indicate that
the correspondingSodaPop-Demon has left the group or something other unseen had
happened).

The task to choose oneSodaPop-Demon to execute the conflict resolution strategy
is well known as theLeader Election Problem. Already in [10] an algorithm was spec-
ified, in which a set of equitable nodes that form a group choose a leader. In the time
thereafter the algorithms for leader selection were expanded on the fields of broadcast
networks [3] or even anonymous rings [23]. Especially [6] analyizes the probabilities
of leader election protocols to find appropriate leaders among a few good players. But
it does not lie in the main field of this work to propose new and innovative Leader
Election Protocols. We found that the method we describe in 3-6 accomplishs our main
requirements: finding a temporal leader to execute the corresponding conflict resolu-
tion strategy without the loss of information. Furthermore the procedure is repeatable
in case the device that hosts theSodaPop-Demon that is the temporal leader within its
group left the device ensemble.

4.3 Underlying Communication Infrastructure

The underlying communication infrastructure for the described decentralized middle-
ware has to fulfil the following requirements:

– ensure peer-to-peer communication without any central components (except for
applications that could run autonomously on each physical device)

– ensure the dynamical build-up of groups

11

– ensure unicast and broadcast amongst group members.

Within the projectDynAMITEwe chose to apply the JXTA-technology [18, 22] as well
as the UPnP-(Universal Plug and Play)-technology [20]. Both can provide the necessary
peer-to-peer communication mechanisms whereas JXTA supplies the software engineer
with comfortable Java (and C) application programming interfaces. In contrast UPnP
has a fast increasing community and it is expected that UPnP services will be provided
in many devices in the future.

5 Related Work

A middleware for the visions of Ambient Intelligence must provide complete decentral-
ized communication among its components. Furthermore to provide extensibility and
exchangeability the middleware must be able to execute conflict resolution strategies
to guarantee reasonable data-flow even if there are competing components. Different
technologies and approaches face single aspects of the mentioned requirements. Jini
[16], HAVi [11], JXTA [18, 22] and UPnP [20] makes the communication between de-
vices from different vendors possible. Unfortunately no conflict resolution mechanisms
- apart from graphical user interfaces - are provided. This would not have been tech-
nical a problem, but it was not intended expressly. But note: to provide the user with
graphical user interfaces shifts the responsibility for the data-flow to the user. That is
not what is meant by self-organization. Some agent technologies are known like SRI’s
Open Agent Architecture (OAA) [19], the Galaxy Communicator Architecture [9] or
INCA [21]. Galaxy uses a centralized hub-component that owns certain routing rules
that determine the data-flow among the different components whereas the OAA uses
prolog-based strategy mechanisms that are located in special meta-agents that are as-
sociated with the heavyweight routing components. Also INCA uses a central compo-
nent for registering components and for delivering messages. Consequently the world
of agent communication seems to be split in two halves. On the one side the peer-to-
peer communication world, where all components broadcast messages or communicate
directly by using fixed addresses. And on the other side the world with central com-
ponents where hand-crafted routing rules are applied to the communication process. In
both worlds dynamic extensibility and self-organization of device ensembles seems to
be difficult.

6 Current State and next Steps

The presented distributed implementation of theSodaPopmodel on top of JXTA and
UPnP bears down the disadvantages of the peer-to-peer world as well as of the world
with central (routing) components. Of course theSodaPopmodel is also capable of
being implemented on basis of HAVi or Jini. We stated some reasons why we choose
JXTA and UPnP as the underlying communication infrastructures. With the approach to
define representatives for the multiplicity of components of each physical device as one
peer and the application of conflict resolution mechanisms among each communication
group (we name it channel) we reached the required self-organizational abilities. With

12

this approach we vanquished the lack of definitions of other approaches. We are using
a strict definition of devices, of components and of channels and thus are able to define
on which level of granularity which communication mechanisms and communication
strategies are needed.

Nevertheless the dynamic in data flow needs more communication traffic than in
other solutions (e.g. evaluating the transducers’ non-static utility value functions or the
broadcasting of information among the channel group members), but we think that this
is absolutely tolerable in the scenarios (home entertainment and meeting rooms) we are
interested in. In this article we presented the decision process of one message to one
or more receiver transducers (see section 4.2) within aSodaPop-Demon group. This
corresponds to a1:1 respectively a1:n mapping of messages. That means one message
is forwarded to one or more receiver transducers. Our next steps are the implementation
of a n:1 and an:m mapping (consequently that means, that a sequence of n messages
is forwarded to the same transducer respectively to m transducers). That is often the
case if sequences of user interactions should result in only one user goal. Also some
experiments concerning the amount of supported devices are still pending. But in our
opinion the traffic of messages and also the need to execute complex conflict resolution
mechanisms in every-day scenarios meet reasonable real time requirements.

7 Acknowledgement

The work underlying the projectDynAMITEhas been funded by the German Ministry
of Education and Research under the grant signature BMB-F No. FKZ 01 ISC 27A. The
author wants to express his gratitude to Mrs. Yun Ding of the European Media Labora-
tory GmbH and to Jens Neumann of Loewe Opta GmbH for their valuable contributions
in respect of the JXTA and UPnP parts of this work and for the important (and often
controversial) discussions during someDynAMITEproject meetings.

13

References

1. Aarts E.,Ambient Intelligence: A Multimedia Perspective, in: IEEE Multimedia, 2004, p. 12-
19.

2. Brumitt B., Meyers B., Krumm J., Kern A., and Shafer S.Easy Living: Technologies for
Intelligent Environments, in: Handheld and Ubiquitous Computing, Sep. 2000

3. Brunekreef J., Katoen J.-P., Koymans R., Mauw S.,Design and analysis of dynamic leader
election pro- tocols in broadcast networks, in: Distributed Comput- ing, Vol. 9, No. 4, Mar
1997, pp. 157-171

4. Ducatel K., Bogdanowicz M., Scapolo F., Leijten J., Burgelman J.-C.,Scenarios for Ambi-
ent Intelligence 2010, ISTAG Report, European Commission, Institute for Prospective Techno-
logical Studies, Seville, available from: ftp://ftp.cordis.lu/pub/ist/docs/istagscenarios2010.pdf,
(Nov 2001).

5. DynAMITE - Dynamic Adaptive Multimodal IT-Ensembles, available from:
http://www.dynamite-project.org

6. Feige U.,Noncryptographic selection protocols, in: Proceedings of 40th FOCS, p. 142-152,
1999

7. Elting Ch., Hellenschmidt M.,Strategies for Self-Organization and Multimodal Output Coor-
dination in Distributed Device Environments, in: Baus, Joerg (Ed.) et al.: Proc. of the Workshop
on Artificial Intelligence in Mobile Systems 2004 (AIMS), Saarbruecken, 2004, p. 20-27

8. Flachsbart J., Franklin D., and Hammond K.Improving Human-Computer Interaction in a
Classroom Environment using Computer Vision, in: Proceedings of the Conference on Intelli-
gent User Interfaces, 2000.

9. Galaxy Communicator Infrastructure, The Spoken Language Sys-
tems Group, MIT Laboratory for Computer Science, available from:
http://groups.csail.mit.edu/sls/technologies/galaxy.shtml, 2001.

10. Garcia-Molina H.,Elections in a distributed computing system, in: IEEE Transactions on
Computers, C-31(1):47-59, January 1982.

11. HAVi, Inc., The HAVi Specification - Specification of the Home Audio / Video Interoper-
ability (HAVi) Architecture - Version 1.1, http://www.havi.org, 2001

12. Heider T., Kirste T.,Architecture consideration for interoperable multi-modal assistant sys-
tems, in: Proc. 9th Intern. Workshop on Design, Specification, and Verification of Interactive
Systems (DSV-IS 2002), Rostock, Germany,2002

13. Heider T., Kirste T.,Supporting goal-based interaction with dynamic intelligent environ-
ments, in: Proc. 15th European Conference on Artificial Intelligence (ECAI 2002), Lyon,
France, 2002

14. Hellenschmidt M., Kirste T.,SodaPop: A Software Infrastructure Supporting Self-
Organization in Intelligent Environments, in: Proc. of the 2nd IEEE Conference on Industrial
Informatics, INDIN 04, Berlin, Germany, 24 - 26. June, 2004.

15. Hellenschmidt M., Kirste T.,A Generic Topology for Ambient Intelligence, in: Proc. of the
Second European Symposium on Ambient Intelligence (EUSAI) 2004, Eindhoven, the Neder-
lands, November 8 - 10, 2004

16. Jini, Sun Microsystems, available from: http://wwws.sun.com/software/jini/, 2003.
17. Johanson B., Fox A., Winograd, T.,The Interactive Workspaces Project: Experiences with

Ubiquitous Computing Rooms, in: IEEE Pervasive Computing Magazine1(2), April-June 2002.
18. The JXTA Project, Sun Microsystems, available from: http://www.jxta.org, 2003.
19. Martin D.L., Cheyer A.L., and Moran D.B.The Open Agent Architecture: A Framework for

Building Distributed Software Systems, in: Applied Artificial Intelligence, Vol. 13, No. 1-2, pp.
91-128, Jan-Mar 1999.

14

20. The Universal Plug and Play Forum, Contributing Members of the UPnP(TM) Forum, avail-
able from: http://www.upnp.org, Mar 2005.

21. Truong K.N., Abowd G.D.,INCA: A Software Infrastructure to Facilitate the Construction
and Evolution of Ubiquitous Capture and Access Applications, in: Proc. of the 2nd Intern. Conf.
on Pervasive Computing (Pervasive 2004), Linz/Vienna, Austria, 2004, pp.140-157

22. Verbeke J., Nadgir N., Ruetsch G., and Sharapov I.,Framework for Peer-to-Peer Distributed
Computing in a Heterogeneous, Decentralized Environment, Sun Microsystems, Inc. Palo Alto,
CA 94303, USA, 2002.

23. Yamashita M., Kameda T.,Computing on anony- mous networks. 1. Characterizing the solv-
able cases, in: IEEE Trans. Parallel and Distributed Sys- tems, Vol. 7, No. 1, Jan. 1996, pp.
69-89.

