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Abstract: Various issues of the design and application of multiobjective evolutionary 
algorithms to real-life optimization problems are discussed. In particular, questions on 
problem-specific data structures and evolutionary operators and the determination of 
method parameters are treated. Three application examples in the areas of 
constrained global optimization (electronic circuit design), semi-infinite programming 
(design centering problems), and discrete optimization (project scheduling) are 
discussed. 
 
Keywords: multiobjective optimization, Pareto set, evolutionary algorithm, discrete 
optimization, continuous optimization, electronic circuit design, semi-infinite 
programming, scheduling 
 
 
1.Introduction 
 
Let us start with introducing some basic terminology. Usually, we consider an 
optimization problem defined by 

 
where the objective function f is defined by  

 
In the case q > 2, we talk about multiobjective optimization while q=1 corresponds to 
a usual (scalar) optimization problem. 
We assume that the set of feasible solutions A is defined by restrictions as follows: 

 
Each restriction function g is defined as 

 
In Evolutionary Algorithms (EAs) we are dealing with populations of “entities” which 
correspond to solutions. Let us assume for simplicity that parent and offspring 
solutions are given as follows: 
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Mt is the parent population in generation t which is assumed to consist of � entities. 

Nt is the offspring population in generation t which is assumed to consist of � entities. 
 
In actual implementations of EAs, entities are representations of solutions but 
possibly include other data additionally. With respect to the actual usage in 
computers, Genetic Algorithms (GA), for instance, use fixed-size bit strings for 
encoding the entities (see, e.g., Holland (1975)). In Evolution Strategies (ES) fixed 
numbers of floating-point variables are used (see, e.g., Schwefel (1981), Schwefel 
(1995)). In Genetic Programming (GP) the entities are programs of variable size 
(typically in LISP). The term Evolutionary Algorithm (EA) is used as a general 
expression for describing any kind of algorithm simulating natural evolution and using 
arbitrary (problem-specific) data structures (see also Heitkötter and Beasley (2000), 
Michalewicz (1998), Bäck, Fogel, and Michalewicz (1997)). 
 
The general algorithmic framework of EAs is usually similar to the following pseudo 
code: 
 

1: Initialize starting population M0 . 
2: Initialize control parameters; t:=0.   
3: Copy & mutate Nt from Mt. 
4: Recombine Nt. 
5: Evaluate fitness of Nt and Mt . 
6: Select Mt+1 from Nt U Mt . 
7: If stopping criterion fulfilled then stop.  
8: t:=t+1; goto 3. 
 

Thus, an EA basically consists of a generational loop producing offspring solutions 
from parent solutions using some variation principles and selecting new parent 
solutions according to their fitness. 
 
 
2. What’s Special in Evolutionary Multiobjective Optimization? 
 
From the viewpoint of traditional evolutionary algorithms, the vector-valued nature of 
the objective function requires some special attention. Since the objective function is 
usually evaluated only for the fitness calculation in the selection step of an EA, only 
this step requires some adaptation when several objectives are to be considered. We 
will come back to these modifications below. 
 
From the viewpoint of traditional Multiple Criteria Decision Making (MCDM), the 
particularities of evolutionary multiobjective optimization require a more 
comprehensive discussion (see, e.g., Hanne (2001a) for further references). The 
main question here is not, how the algorithm works in details but what the result of 
the algorithm should be. In the huge research field of MCDM, most of the considered 
methods aim at selecting a “compromise solution” from the set of feasible ones. 
Usually, this solution should be efficient (Pareto-optimal or nondominated) or fulfill 
some other axioms of rationality. 
 
Multiobjective Evolutionary Algorithms (MOEAs) on the other hand try to calculate a 
good approximation and representation of the efficient set, typically for hard-to-solve 
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combinatorial or nonlinear optimization problems. For some multiobjective 
optimization problems such as multiobjective linear optimization or some kinds of 
discrete optimization problems, effective algorithms for calculation the complete and 
accurate efficient set are well-known in the MCDM community. 
 
Since usually decision makers do not care much about an approximation of the 
efficient set (or other complex solution sets) but want to select a single solution at the 
end, a typical scenario for applying MOEAs together with traditional approaches 
would be as follows: A traditional MCDM method such as a reference point approach, 
a utility function-based method, an outranking approach, etc. is applied after using 
the MOEA (aposteriori approach). For a comprehensive survey on MOEAs, we refer 
to the recent monographs by Coello Coello et al. (2003) and Deb (2001). 
 
 
2.1 Multiobjective Selection 

 
There are various possibilities for considering multiple objectives in the selection 
step: A straightforward idea, intuitively used long before MCDM was invented, is to 
aggregate the several objective values to a single one. This proceeding is also 
known as scalarization and the simplest way of doing so is by building a (possibly 
weighted) sum.  
Frequently, the scalarization leads to problems with representing nonconvex efficient 
sets (see, e.g., Fonseca, and Fleming, 1995). Therefore, the idea came up that the 
Pareto order only should be used for selection. 
For instance, in the dominance level or rank approach, all solutions from a population 
set, which are nondominated within that set, are assigned the value 0 (and treated 
equally for the selection). For the remaining solutions, the nondominated ones are 
assigned the value 1 and so on. The dominance grade approach works similar. In 
that approach each alternative is assigned for fitness evaluation the number of 
solutions, which dominate it. Thus, also here all solution being efficient with respect 
to the current population are assigned the value 0.  

 
Fig. 1: Dominance grades of some solutions in the biobjective case. 
 
Both approaches show a low discrimination among alternatives (i.e. many 
alternatives are efficient with respect to a particular population) when the MOEA 
reaches a mature state (see, e.g., Hanne (2001c)). This is, however, a problem, 
which can hardly be avoided since usually in continuous multiobjective optimization 
problems and also in many discrete ones, the set of Pareto-optimal solutions is large 
(or even infinite). 
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3. Why Evolutionary Algorithms? 
 
A first question before implementing or using evolutionary algorithms for a given 
multiobjective optimization problem is to ask why this class of methods should be 
applied and not one of the many other available or proposed methods. As mentioned 
above, for some classes of problems there are efficient algorithms available which 
calculate the exact solution (i.e. not just some approximation) within a usually 
acceptable amount of time. On the other hand, there are many other methods 
available today which may be used for calculating approximate solutions, for instance 
methods from the field called metaheuristics. In general, it is not possible to say 
which method may be best for given unstudied optimization problem, especially for 
“non-standard” optimization problems, which are frequent in real-life applications. 
Considering the fact that in daily life, there is not enough time to comprehensively 
analyze the effectiveness (time consumption, exactness of solutions, etc.) of a 
method, the question of method choice remains ad-hoc up to a certain degree (see 
Hanne (2001a) for a deeper treatment of this issue). 
 
Therefore let us just discuss a few characteristics of evolutionary algorithms, which 
let them appear to be attractive for being used for multiobjective optimization 
problems. Of course, these features may not be valid for any kind of optimization 
problem while, on the other hand, also other methods remain competitive. 
 
 
3.1 Robustness 
 
Robustness is usually considered as the most important reason for using 
evolutionary algorithms. There are two interpretations of robustness: On the one 
hand, it means that for a large class of problems rather good solutions are calculated. 
On the other hand, it is assumed that the obtained solutions are rather stable with 
respect to minor modifications (or perturbations) of the problem. This aspect 
concerns also the sensitivity of the problem, i.e. the question which kind of 
perturbations of the problem lead to what changes of the solution set. 
 
One of the reference studies with respect to the robustness of evolutionary 
algorithms (evolution strategies in that case) is the computational comparison by 
Schwefel (1981), which showed that Evolution Strategies performed best from a set 
of nonlinear optimization methods using a diverse sample of test problems. 
 
 
3.2 Speed 
 
Usually, evolutionary algorithms are not considered to be particularly fast. For some 
classes of problems with established specific optimization procedures, this is 
certainly true. On the other hand, evolution strategies showed an average 
performance with respect to quadratic optimization problems (see Schwefel (1981)) 
in a comparison with more specialized methods, in particular nonlinear optimization 
methods which take advantage of using first and/or second derivatives of the 
objective function. This result should put into perspective the opinion that 
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evolutionary algorithms should only be used where information on derivatives etc. is 
not available. 
 
3.3. Ease of use 
 
Compared with many other optimization methods, EAs are rather easy to implement 
and to use. There is not much knowledge required about the handling of derivative 
information, optimality conditions, or numerical issues. It is possible to start 
implementation with a rough prototype (see below) that does not apply sophisticated 
mutation, recombination, or selection routines. On the other hand, refinement of the 
algorithm may be challenging and time consuming. The degree of re-use may be 
smaller than in the case of some traditional optimization methods. 
 
 
4. How to Start? 
 
4.1. The Application-Specific Development Process for EAs 
 
The implementation and application of evolutionary algorithms to a given optimization 
problem can be considered as a regular software development process. This type of 
process can be described by the so-called waterfall model. This model assumes 
various stages of the process through which the product, the algorithm, streams 
towards its application. Usually these stages are as follows: requirements analysis, 
design, implementation, validation & verification, operation & maintenance (see Fig. 
2).  
 

 
 
 
Fig. 2: Waterfall model of a software development process. 
 
Applied to evolutionary algorithms, the development process is typically similar to the 
following: 
 
Phase I (Prototype) 

•  Find an appropriate representation (data structures) of solutions 
•  Implement objective function(s) and deal with infeasibility (see below) 
•  Implement the handling of a population 
•  Implement simple variation operator(s) 
•  Implement selection 
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Phase II (Refinement) 

•  Refine evolutionary operators 
•  Implement problem-specific adaptations 
•  Experiment with parameter(s) 
•  Use specialized subroutines 

 
In the following, three specific questions on the application-specific development and 
operation of EAs are discussed, the choice of parameter values, the refinement of 
evolutionary operators, and the handling of infeasible solutions. 
 
 
4.2. How to Set the Parameters? 
 
One of the most prominent questions in using EAs for a specific problem is the 
following one: How should the parameter values of the algorithm as, for instance, the 
population size, the mutation rates, or the recombination probability be set? If nothing 
is known about good parameter values (i.e. values leading better solutions or 
reaching them in less time), one may start using typical values for parameters. 
Suggestions for parameter values can be found in the literature, for instance: 
 

• Mutation probability (GA): 0.001 - 0.01 
• Mutation step sizes initialized with step sizes (sigma values) being 10% of the            

starting point  
• Mutation step sizes vary by 10% on average per generation (see, e.g., Hanne  

(2001b))   
• Probability of recombination: 0.25 - 0.9 
• Number of parents: 10-200 
• Number of offspring: 10-200 

 
Frequently, such default parameters do not lead to the desired success: Either the 
obtained solutions are not good enough or the algorithms take too much time. In that 
case, experimenting with the parameter values in a trial and error fashion might be a 
simple but effective way for improving the performance. Systematic experiments may 
be another way for finding better parameter values. Last but not least let us mention 
that the problem of determining parameter values may be defined as an optimization 
problem itself (meta optimization problem) that may be solved, for instance, by 
another evolutionary algorithm (meta EA). This idea is explained in more details in 
Hanne (2001a). 
 
 

4.3. Advanced Evolutionary Operators 
 
There are various reasons why more advanced evolutionary operators should be 
used. On the one hand, such operators may make the evolution process more 
realistic, more similar to the natural evolution. On the other hand, and this aspect is 
more relevant for optimization application, the solution process may be improved. 
In particular, the process may be sped up and/or the quality of solutions (e.g. 
diversity) may be improved. A frequent goal is to allow for a better adaptation to 
particularities of a problem. In the next subsection, we discuss a specific reason for 
problem-specific adaptations of evolutionary operators. Further below, in Section 5, 
some examples of adaptations are discussed. 
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4.4 The Problem of Infeasibility 
 
During the “data variation steps”, mutation and recombination, it may occur that 
generated offspring solutions are not feasible, i.e. either the data does not 
correspond to variable values with respect to a given encoding or the variable values 
do not belong to the feasible set A.  
 
In that case, there are various possibilities to react. A very simple one is to redo the 
variation step, i.e. to generate new solutions until enough feasible ones are obtained. 
Since the probability of obtaining infeasible solutions may be high, in particular when 
A is defined by many restrictions, this strategy may be costly with respect to time 
consumption. 
 
Another frequent approach is that of using a repair operator. Here, the idea is to 
continue with the generated infeasible solution and to map it to a feasible one. 
Sometimes, there is no canonical way for doing so. In such cases, one may think 
about using a punishment function. That function punishes the generation of 
infeasible (or almost infeasible) solutions by deteriorating their fitness values. The 
stronger the restrictions are violated by a solution, the more the objective values are 
to be deteriorated. In that case, it may be possible to force subsequently generated 
offspring (offspring of the infeasible offspring) back to the feasible domain. 
  
However, the best general advice with respect to infeasibility might be, that one 
should avoid it by using an appropriate encoding. Occasionally, more intelligent data 
structures may avoid the infeasibility of solutions at all. 
 
 
5.Three Examples from Recent Projects 
 
In the following, we would like to discuss concisely three real-life application 
examples of multiobjective evolutionary algorithms. These application examples are 
conducted in the context of real-life problems studied during the past two years. Each 
example shows different particularities of the MOEA design, implementation, and 
usage. 
 
 
5.1 Design of Electronic Circuits 
 
During a recent project we studied the problem of determining parameters for an 
electronic circuit model (as given by a circuit simulation software such as Cadence) 
for approximating the behavior of a real-life circuit. Depending on the frequency of 
input, a real-life circuit deviated more or less from its idealistic model described by a 
small number of elements. The behavior of the circuit can be described by a 
complex-valued matrix y. For analyzed problems the dimension of y was 2x2. For 
comparing the result values for the real circuit (given as data file) and the circuit 
model the deviations of the y-values were considered separately for the real and the 
imaginary part of the matrix coefficients. The deviations were summed up over a 
range of frequency values. In this way, 8 or 6 (using some symmetry in y) objective 
values were calculated for a given setting of parameters. 
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For the considered problem it was assumed that there were feasible intervals for 
each of the parameters while no other restrictions were to be observed. This made 
the feasibility check for new solutions (obtained by mutations) rather simple. For each 
new component, a comparison with the lower and upper bounds had to be 
performed. In case of violation, using the bounds as truncation values repaired the 
values. Recombination among the offspring entities could not lead to infeasible 
solutions. 
 
Another main advantage of knowing the bounds was that they could be used for 
scaling parameter-specific mutation rates. If not knowing such intervals it would be 
hard to find mutation rates, which for instance work for intervals between 10-3 and  
10-2 on the one hand, and 10-11 and 10-12 on the other hand. 
 
Another major advantage of the bounds was that they could be used for scaling the 
parameter components. Random starting solutions could easily be generated by 
using parameter values uniformly distributed between the lower and upper bounds. 
The knowledge of the feasible parameter ranges could additionally be used for an 
enforced convergence towards the efficient frontier. For that reason, a modified 1/5 
rule (see Schwefel, 1981) was implemented which adapted the mutation rates 
periodically during the run of the EA. Usually, these modifications led to decreases of 
the parameter-specific mutation rates such that a rapid convergence towards locally 
efficient solutions was supported. 
 
 
5.2. Design centering problems 
 
Another continuous multiobjective optimization problem analyzed by evolutionary 
algorithms belongs to the class of design centering problems. The considered 
problems are special generalized semi-infinite optimization problems. In contrast to 
“usual” nonlinear optimization problem, there is an infinite set of restrictions, which 
can be described by a finite set of restrictions on the restrictions: 

 
 
 
 
In our case we considered the problem of volume maximization of a gemstone cut for 
a given raw stone. Alternative objective functions on M result from various measures 
considering other criteria than the volume (e.g. shape of the design, deviation from 
ideal proportions) relating to the expected price of the gemstone. The restrictions can 
be interpreted as follows: A body (cut gemstone) described by some interdependent 
restrictions Y should be embedded in another body (the raw stone) described by 
measurement date, e.g. in the form of an STL file.  
 
For treating the problem by an EA we can distinguish two types of restrictions: 
Design restriction, which can be treated by a repair mechanism and container 
restrictions, which are considered by a punishment approach. Design restrictions are 
usually in the form of lower and upper bounds for specific proportions (e.g. the 
proportion between pavilion height and girdle diameter) of the cut gemstone. 
Mutations violating these proportions can be repaired by using the bounds as cut-off 
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values. For the container restriction there is no simple repair mechanism available. A 
punishment function approach showed good performance in the given problem and 
allowed the handling of a large number of these restrictions (depending on the 
resolution of measurement data, there may be some 100000 of these restrictions). 
 

 
 
Fig. 3: Gemstone design embedded in a container. 
 
 
5.3. Project Scheduling 
 
In contrast to the two application examples discussed above, scheduling problems 
belong to the class of combinatorial optimization problems, i.e. significant decision 
variables a �  A are discrete instead of continuous. Evolutionary algorithms have been 
originally developed according to a strict typing of the supported decision variables, 
for instance genetic algorithms for bit string encoding and evolution strategies for 
floating point numbers. Therefore, project scheduling is a good example to 
demonstrate that such a focus on specific data structures is inappropriate for many 
real-life problems.  

 
Fig. 4: Person schedule for various interdependent activities leading to waiting times. 
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Based on our experiences with the modeling and simulation of complex projects such 
as software development processes, data structures supporting both discrete and 
continuous variables have been used together with subordinate procedures for 
scheduling, for instance based on priorities. Some of the decision variables are 
continuous by nature, for instance the durations of specific activities that influence the 
quality of the outcome while other decision variables are “artificially” continuous. For 
instance, real-valued priorities are used to determine the sequence of equally 
possibly activities. Other decision variables of the problem (e.g. task assignments) 
are discrete. 
 
A subordinate scheduling heuristics is used to evaluate the priority values and 
generates a concrete schedule. Some types of activities are scheduled without using 
any information subject to the evolutionary algorithms but applying a simple first 
come-first served rule. The mixture of various scheduling concepts led to a significant 
improvement of the speed of the MOEA and the obtained solutions. Three 
optimization criteria had been considered in these studies: the makespan, the costs, 
and the quality of project results (expected no. of defects of the software artifacts).  
For more details on this application see Hanne and Nickel (2004). Another 
application of MOEAs to the scheduling of construction projects is discussed in  
Hanne (2005a). 
 
6. Conclusions 
 
In this paper, we wanted to emphasize that frequently the usage of standard 
multiobjective evolutionary algorithms is not possible or is insufficient for solving real-
life problems. The usage of problem-specific data structures and evolutionary 
operators is a major issue when developing MOEAs for a specific application. 
 
Additional methods are often required for improving the performance of MOEAs. In 
particular, the speed of the algorithm is often a problem in practice, especially when 
some on-line work with a decision support system is required.  For instance, 
clustering methods, hybridizations with other (meta) heuristics and optimization 
techniques, or databases may be used in such cases.  
 
A main question is however: What happens after having found an approximation of 
the Pareto set? The implementation of adequate techniques for supporting a decision 
maker in selecting an efficient solution is often as important as generating suitable 
candidate solutions (see, e.g., Trinkaus and Hanne (2005)). A novel approach for 
combining an evolutionary generation of the efficient set and interactive decision 
support is discussed in Hanne (2005b). 
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