
Application Issues for Multiobjective Evolutionary Algorithms

Thomas Hanne
Fraunhofer Institute for Industrial Mathematics (ITWM)

Department of Optimization
Gottlieb-Daimler-Str. 49
67633 Kaiserslautern

Germany
Email: hanne@itwm.fhg.de

Abstract: Various issues of the design and application of multiobjective evolutionary
algorithms to real-life optimization problems are discussed. In particular, questions on
problem-specific data structures and evolutionary operators and the determination of
method parameters are treated. Three application examples in the areas of
constrained global optimization (electronic circuit design), semi-infinite programming
(design centering problems), and discrete optimization (project scheduling) are
discussed.

Keywords: multiobjective optimization, Pareto set, evolutionary algorithm, discrete
optimization, continuous optimization, electronic circuit design, semi-infinite
programming, scheduling

1.Introduction

Let us start with introducing some basic terminology. Usually, we consider an
optimization problem defined by

where the objective function f is defined by

In the case q > 2, we talk about multiobjective optimization while q=1 corresponds to
a usual (scalar) optimization problem.
We assume that the set of feasible solutions A is defined by restrictions as follows:

Each restriction function g is defined as

In Evolutionary Algorithms (EAs) we are dealing with populations of “entities” which
correspond to solutions. Let us assume for simplicity that parent and offspring
solutions are given as follows:

)(min afAa ∈

.1,: ≥→ qRRf qn

{ }{ }mjagRaA j
n ,..,1,0)(: ∈≤∈=

RRg n
j →:

{ } AaaM ttt ⊆= µ,...,1

{ } AbbN ttt ⊆= λ,...,1

Dagstuhl Seminar Proceedings 04461
Practical Approaches to Multi-Objective Optimization
http://drops.dagstuhl.de/opus/volltexte/2005/344

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Mt is the parent population in generation t which is assumed to consist of � entities.

Nt is the offspring population in generation t which is assumed to consist of � entities.

In actual implementations of EAs, entities are representations of solutions but
possibly include other data additionally. With respect to the actual usage in
computers, Genetic Algorithms (GA), for instance, use fixed-size bit strings for
encoding the entities (see, e.g., Holland (1975)). In Evolution Strategies (ES) fixed
numbers of floating-point variables are used (see, e.g., Schwefel (1981), Schwefel
(1995)). In Genetic Programming (GP) the entities are programs of variable size
(typically in LISP). The term Evolutionary Algorithm (EA) is used as a general
expression for describing any kind of algorithm simulating natural evolution and using
arbitrary (problem-specific) data structures (see also Heitkötter and Beasley (2000),
Michalewicz (1998), Bäck, Fogel, and Michalewicz (1997)).

The general algorithmic framework of EAs is usually similar to the following pseudo
code:

1: Initialize starting population M0 .
2: Initialize control parameters; t:=0.
3: Copy & mutate Nt from Mt.
4: Recombine Nt.
5: Evaluate fitness of Nt and Mt .
6: Select Mt+1 from Nt U Mt .
7: If stopping criterion fulfilled then stop.
8: t:=t+1; goto 3.

Thus, an EA basically consists of a generational loop producing offspring solutions
from parent solutions using some variation principles and selecting new parent
solutions according to their fitness.

2. What’s Special in Evolutionary Multiobjective Optimization?

From the viewpoint of traditional evolutionary algorithms, the vector-valued nature of
the objective function requires some special attention. Since the objective function is
usually evaluated only for the fitness calculation in the selection step of an EA, only
this step requires some adaptation when several objectives are to be considered. We
will come back to these modifications below.

From the viewpoint of traditional Multiple Criteria Decision Making (MCDM), the
particularities of evolutionary multiobjective optimization require a more
comprehensive discussion (see, e.g., Hanne (2001a) for further references). The
main question here is not, how the algorithm works in details but what the result of
the algorithm should be. In the huge research field of MCDM, most of the considered
methods aim at selecting a “compromise solution” from the set of feasible ones.
Usually, this solution should be efficient (Pareto-optimal or nondominated) or fulfill
some other axioms of rationality.

Multiobjective Evolutionary Algorithms (MOEAs) on the other hand try to calculate a
good approximation and representation of the efficient set, typically for hard-to-solve

2

combinatorial or nonlinear optimization problems. For some multiobjective
optimization problems such as multiobjective linear optimization or some kinds of
discrete optimization problems, effective algorithms for calculation the complete and
accurate efficient set are well-known in the MCDM community.

Since usually decision makers do not care much about an approximation of the
efficient set (or other complex solution sets) but want to select a single solution at the
end, a typical scenario for applying MOEAs together with traditional approaches
would be as follows: A traditional MCDM method such as a reference point approach,
a utility function-based method, an outranking approach, etc. is applied after using
the MOEA (aposteriori approach). For a comprehensive survey on MOEAs, we refer
to the recent monographs by Coello Coello et al. (2003) and Deb (2001).

2.1 Multiobjective Selection

There are various possibilities for considering multiple objectives in the selection
step: A straightforward idea, intuitively used long before MCDM was invented, is to
aggregate the several objective values to a single one. This proceeding is also
known as scalarization and the simplest way of doing so is by building a (possibly
weighted) sum.
Frequently, the scalarization leads to problems with representing nonconvex efficient
sets (see, e.g., Fonseca, and Fleming, 1995). Therefore, the idea came up that the
Pareto order only should be used for selection.
For instance, in the dominance level or rank approach, all solutions from a population
set, which are nondominated within that set, are assigned the value 0 (and treated
equally for the selection). For the remaining solutions, the nondominated ones are
assigned the value 1 and so on. The dominance grade approach works similar. In
that approach each alternative is assigned for fitness evaluation the number of
solutions, which dominate it. Thus, also here all solution being efficient with respect
to the current population are assigned the value 0.

Fig. 1: Dominance grades of some solutions in the biobjective case.

Both approaches show a low discrimination among alternatives (i.e. many
alternatives are efficient with respect to a particular population) when the MOEA
reaches a mature state (see, e.g., Hanne (2001c)). This is, however, a problem,
which can hardly be avoided since usually in continuous multiobjective optimization
problems and also in many discrete ones, the set of Pareto-optimal solutions is large
(or even infinite).

3

3. Why Evolutionary Algorithms?

A first question before implementing or using evolutionary algorithms for a given
multiobjective optimization problem is to ask why this class of methods should be
applied and not one of the many other available or proposed methods. As mentioned
above, for some classes of problems there are efficient algorithms available which
calculate the exact solution (i.e. not just some approximation) within a usually
acceptable amount of time. On the other hand, there are many other methods
available today which may be used for calculating approximate solutions, for instance
methods from the field called metaheuristics. In general, it is not possible to say
which method may be best for given unstudied optimization problem, especially for
“non-standard” optimization problems, which are frequent in real-life applications.
Considering the fact that in daily life, there is not enough time to comprehensively
analyze the effectiveness (time consumption, exactness of solutions, etc.) of a
method, the question of method choice remains ad-hoc up to a certain degree (see
Hanne (2001a) for a deeper treatment of this issue).

Therefore let us just discuss a few characteristics of evolutionary algorithms, which
let them appear to be attractive for being used for multiobjective optimization
problems. Of course, these features may not be valid for any kind of optimization
problem while, on the other hand, also other methods remain competitive.

3.1 Robustness

Robustness is usually considered as the most important reason for using
evolutionary algorithms. There are two interpretations of robustness: On the one
hand, it means that for a large class of problems rather good solutions are calculated.
On the other hand, it is assumed that the obtained solutions are rather stable with
respect to minor modifications (or perturbations) of the problem. This aspect
concerns also the sensitivity of the problem, i.e. the question which kind of
perturbations of the problem lead to what changes of the solution set.

One of the reference studies with respect to the robustness of evolutionary
algorithms (evolution strategies in that case) is the computational comparison by
Schwefel (1981), which showed that Evolution Strategies performed best from a set
of nonlinear optimization methods using a diverse sample of test problems.

3.2 Speed

Usually, evolutionary algorithms are not considered to be particularly fast. For some
classes of problems with established specific optimization procedures, this is
certainly true. On the other hand, evolution strategies showed an average
performance with respect to quadratic optimization problems (see Schwefel (1981))
in a comparison with more specialized methods, in particular nonlinear optimization
methods which take advantage of using first and/or second derivatives of the
objective function. This result should put into perspective the opinion that

4

evolutionary algorithms should only be used where information on derivatives etc. is
not available.

3.3. Ease of use

Compared with many other optimization methods, EAs are rather easy to implement
and to use. There is not much knowledge required about the handling of derivative
information, optimality conditions, or numerical issues. It is possible to start
implementation with a rough prototype (see below) that does not apply sophisticated
mutation, recombination, or selection routines. On the other hand, refinement of the
algorithm may be challenging and time consuming. The degree of re-use may be
smaller than in the case of some traditional optimization methods.

4. How to Start?

4.1. The Application-Specific Development Process for EAs

The implementation and application of evolutionary algorithms to a given optimization
problem can be considered as a regular software development process. This type of
process can be described by the so-called waterfall model. This model assumes
various stages of the process through which the product, the algorithm, streams
towards its application. Usually these stages are as follows: requirements analysis,
design, implementation, validation & verification, operation & maintenance (see Fig.
2).

Fig. 2: Waterfall model of a software development process.

Applied to evolutionary algorithms, the development process is typically similar to the
following:

Phase I (Prototype)

• Find an appropriate representation (data structures) of solutions
• Implement objective function(s) and deal with infeasibility (see below)
• Implement the handling of a population
• Implement simple variation operator(s)
• Implement selection

5

Phase II (Refinement)

• Refine evolutionary operators
• Implement problem-specific adaptations
• Experiment with parameter(s)
• Use specialized subroutines

In the following, three specific questions on the application-specific development and
operation of EAs are discussed, the choice of parameter values, the refinement of
evolutionary operators, and the handling of infeasible solutions.

4.2. How to Set the Parameters?

One of the most prominent questions in using EAs for a specific problem is the
following one: How should the parameter values of the algorithm as, for instance, the
population size, the mutation rates, or the recombination probability be set? If nothing
is known about good parameter values (i.e. values leading better solutions or
reaching them in less time), one may start using typical values for parameters.
Suggestions for parameter values can be found in the literature, for instance:

• Mutation probability (GA): 0.001 - 0.01
• Mutation step sizes initialized with step sizes (sigma values) being 10% of the

starting point
• Mutation step sizes vary by 10% on average per generation (see, e.g., Hanne

(2001b))
• Probability of recombination: 0.25 - 0.9
• Number of parents: 10-200
• Number of offspring: 10-200

Frequently, such default parameters do not lead to the desired success: Either the
obtained solutions are not good enough or the algorithms take too much time. In that
case, experimenting with the parameter values in a trial and error fashion might be a
simple but effective way for improving the performance. Systematic experiments may
be another way for finding better parameter values. Last but not least let us mention
that the problem of determining parameter values may be defined as an optimization
problem itself (meta optimization problem) that may be solved, for instance, by
another evolutionary algorithm (meta EA). This idea is explained in more details in
Hanne (2001a).

4.3. Advanced Evolutionary Operators

There are various reasons why more advanced evolutionary operators should be
used. On the one hand, such operators may make the evolution process more
realistic, more similar to the natural evolution. On the other hand, and this aspect is
more relevant for optimization application, the solution process may be improved.
In particular, the process may be sped up and/or the quality of solutions (e.g.
diversity) may be improved. A frequent goal is to allow for a better adaptation to
particularities of a problem. In the next subsection, we discuss a specific reason for
problem-specific adaptations of evolutionary operators. Further below, in Section 5,
some examples of adaptations are discussed.

6

4.4 The Problem of Infeasibility

During the “data variation steps”, mutation and recombination, it may occur that
generated offspring solutions are not feasible, i.e. either the data does not
correspond to variable values with respect to a given encoding or the variable values
do not belong to the feasible set A.

In that case, there are various possibilities to react. A very simple one is to redo the
variation step, i.e. to generate new solutions until enough feasible ones are obtained.
Since the probability of obtaining infeasible solutions may be high, in particular when
A is defined by many restrictions, this strategy may be costly with respect to time
consumption.

Another frequent approach is that of using a repair operator. Here, the idea is to
continue with the generated infeasible solution and to map it to a feasible one.
Sometimes, there is no canonical way for doing so. In such cases, one may think
about using a punishment function. That function punishes the generation of
infeasible (or almost infeasible) solutions by deteriorating their fitness values. The
stronger the restrictions are violated by a solution, the more the objective values are
to be deteriorated. In that case, it may be possible to force subsequently generated
offspring (offspring of the infeasible offspring) back to the feasible domain.

However, the best general advice with respect to infeasibility might be, that one
should avoid it by using an appropriate encoding. Occasionally, more intelligent data
structures may avoid the infeasibility of solutions at all.

5.Three Examples from Recent Projects

In the following, we would like to discuss concisely three real-life application
examples of multiobjective evolutionary algorithms. These application examples are
conducted in the context of real-life problems studied during the past two years. Each
example shows different particularities of the MOEA design, implementation, and
usage.

5.1 Design of Electronic Circuits

During a recent project we studied the problem of determining parameters for an
electronic circuit model (as given by a circuit simulation software such as Cadence)
for approximating the behavior of a real-life circuit. Depending on the frequency of
input, a real-life circuit deviated more or less from its idealistic model described by a
small number of elements. The behavior of the circuit can be described by a
complex-valued matrix y. For analyzed problems the dimension of y was 2x2. For
comparing the result values for the real circuit (given as data file) and the circuit
model the deviations of the y-values were considered separately for the real and the
imaginary part of the matrix coefficients. The deviations were summed up over a
range of frequency values. In this way, 8 or 6 (using some symmetry in y) objective
values were calculated for a given setting of parameters.

7

For the considered problem it was assumed that there were feasible intervals for
each of the parameters while no other restrictions were to be observed. This made
the feasibility check for new solutions (obtained by mutations) rather simple. For each
new component, a comparison with the lower and upper bounds had to be
performed. In case of violation, using the bounds as truncation values repaired the
values. Recombination among the offspring entities could not lead to infeasible
solutions.

Another main advantage of knowing the bounds was that they could be used for
scaling parameter-specific mutation rates. If not knowing such intervals it would be
hard to find mutation rates, which for instance work for intervals between 10-3 and
10-2 on the one hand, and 10-11 and 10-12 on the other hand.

Another major advantage of the bounds was that they could be used for scaling the
parameter components. Random starting solutions could easily be generated by
using parameter values uniformly distributed between the lower and upper bounds.
The knowledge of the feasible parameter ranges could additionally be used for an
enforced convergence towards the efficient frontier. For that reason, a modified 1/5
rule (see Schwefel, 1981) was implemented which adapted the mutation rates
periodically during the run of the EA. Usually, these modifications led to decreases of
the parameter-specific mutation rates such that a rapid convergence towards locally
efficient solutions was supported.

5.2. Design centering problems

Another continuous multiobjective optimization problem analyzed by evolutionary
algorithms belongs to the class of design centering problems. The considered
problems are special generalized semi-infinite optimization problems. In contrast to
“usual” nonlinear optimization problem, there is an infinite set of restrictions, which
can be described by a finite set of restrictions on the restrictions:

In our case we considered the problem of volume maximization of a gemstone cut for
a given raw stone. Alternative objective functions on M result from various measures
considering other criteria than the volume (e.g. shape of the design, deviation from
ideal proportions) relating to the expected price of the gemstone. The restrictions can
be interpreted as follows: A body (cut gemstone) described by some interdependent
restrictions Y should be embedded in another body (the raw stone) described by
measurement date, e.g. in the form of an STL file.

For treating the problem by an EA we can distinguish two types of restrictions:
Design restriction, which can be treated by a repair mechanism and container
restrictions, which are considered by a punishment approach. Design restrictions are
usually in the form of lower and upper bounds for specific proportions (e.g. the
proportion between pavilion height and girdle diameter) of the cut gemstone.
Mutations violating these proportions can be repaired by using the bounds as cut-off

},..,1,0),(|{)(slyxvRyxY l
m =≤∈=

},..,1),(0),(|{ qixYyyxgRxM i
n =∈∀≤∈=

8

values. For the container restriction there is no simple repair mechanism available. A
punishment function approach showed good performance in the given problem and
allowed the handling of a large number of these restrictions (depending on the
resolution of measurement data, there may be some 100000 of these restrictions).

Fig. 3: Gemstone design embedded in a container.

5.3. Project Scheduling

In contrast to the two application examples discussed above, scheduling problems
belong to the class of combinatorial optimization problems, i.e. significant decision
variables a � A are discrete instead of continuous. Evolutionary algorithms have been
originally developed according to a strict typing of the supported decision variables,
for instance genetic algorithms for bit string encoding and evolution strategies for
floating point numbers. Therefore, project scheduling is a good example to
demonstrate that such a focus on specific data structures is inappropriate for many
real-life problems.

Fig. 4: Person schedule for various interdependent activities leading to waiting times.

9

Based on our experiences with the modeling and simulation of complex projects such
as software development processes, data structures supporting both discrete and
continuous variables have been used together with subordinate procedures for
scheduling, for instance based on priorities. Some of the decision variables are
continuous by nature, for instance the durations of specific activities that influence the
quality of the outcome while other decision variables are “artificially” continuous. For
instance, real-valued priorities are used to determine the sequence of equally
possibly activities. Other decision variables of the problem (e.g. task assignments)
are discrete.

A subordinate scheduling heuristics is used to evaluate the priority values and
generates a concrete schedule. Some types of activities are scheduled without using
any information subject to the evolutionary algorithms but applying a simple first
come-first served rule. The mixture of various scheduling concepts led to a significant
improvement of the speed of the MOEA and the obtained solutions. Three
optimization criteria had been considered in these studies: the makespan, the costs,
and the quality of project results (expected no. of defects of the software artifacts).
For more details on this application see Hanne and Nickel (2004). Another
application of MOEAs to the scheduling of construction projects is discussed in
Hanne (2005a).

6. Conclusions

In this paper, we wanted to emphasize that frequently the usage of standard
multiobjective evolutionary algorithms is not possible or is insufficient for solving real-
life problems. The usage of problem-specific data structures and evolutionary
operators is a major issue when developing MOEAs for a specific application.

Additional methods are often required for improving the performance of MOEAs. In
particular, the speed of the algorithm is often a problem in practice, especially when
some on-line work with a decision support system is required. For instance,
clustering methods, hybridizations with other (meta) heuristics and optimization
techniques, or databases may be used in such cases.

A main question is however: What happens after having found an approximation of
the Pareto set? The implementation of adequate techniques for supporting a decision
maker in selecting an efficient solution is often as important as generating suitable
candidate solutions (see, e.g., Trinkaus and Hanne (2005)). A novel approach for
combining an evolutionary generation of the efficient set and interactive decision
support is discussed in Hanne (2005b).

7. References

Bäck, T., D.B. Fogel, Z. Michalewicz (Eds) (1997): Handbook of Evolutionary
Computation, Oxford University Press.

Coello Coello, C.A., Van Feldhuizen, D.A., Lamont, G.B. (2002). Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer, New York.

Deb, K. (2001): Multi-Objective Optimization Using Evolutionary Algorithms.

10

Wiley, Chichester.

Fonseca, C.M., Fleming, P.J. (1995). An overview of evolutionary algorithms in
multiobjective optimization, Evolutionary Computation 3 (1) 1-16.

Hanne, T. (2001a): Intelligent Strategies for Meta Multiple Criteria Decision Making.
Kluwer, Boston.

Hanne, T (2001b): Selection and mutation strategies in evolutionary algorithms for
global multiobjective optimization. Evolutionary Optimization 3, 1, 27-40

Hanne, T. (2001c): Global multiobjective optimization with evolutionary algorithms:
Selection mechanisms and mutation control. Zitzler, E. et al. (Eds.). Evolutionary
Multi-Criterion Optimization, First International Conference, EMO 2001, Zurich,
Switzerland, March 2001, Proceedings. Springer, Berlin, 197-212.

Hanne, T. (2005a): On the scheduling of construction sites using single- and
multiobjective evolutionary algorithms. Proceedings of MIC2005: The Sixth
Metaheuristics International Conference. Wien.

Hanne, T. (2005b): Interactive decision support based on multiobjective evolutionary
algorithms. Proceedings of Operations Research 2005, International Scientific Annual
Conference, Bremen, 7.-9. September 2005

Hanne, T., S. Nickel (2004): A multi-objective evolutionary algorithm for scheduling
and inspection planning in software development projects. Feature Issue of
European Journal of Operational Research on Scheduling with Multiple Objectives. In
Press, Corrected Proof available online 1 September 2004.

Heitkötter, J., D. Beasley (Eds.) (2000): The Hitch-Hiker's Guide to Evolutionary
Computation, Issue 8.1, 29 March 2000,
http://www.cs.bham.ac.uk/Mirrors/ftp.de.uu.net/EC/clife/www/

Holland, J.H. (1975): Adaptation in natural and artificial systems. University of
Michigan Press 1975

Michalewicz, Z. (1998): Genetic Algorithms + Data Structures = Evolution Programs,
Third revised and extended edition. Springer

Schwefel, H.-P. (1981): Numerical Optimization of Computer Models, Wiley

Schwefel, H.-P. (1995): Evolution and Optimum Seeking. Wiley,

Trinkaus, H. L., T. Hanne (2005): knowCube: a Visual and Interactive Support for
Multicriteria Decision Making. Computers & Operations Research 32, 1289-1309.

11

