
From TimeML to T PL∗

Ian Pratt-Hartmann1

School of Computer Science,
Manchester University,

Manchester, UK
ipratt@cs.man.ac.uk

Abstract. This paper describes a subset of the temporal mark-up lan-
guage TimeML, and explains its relation to various formalisms found
in the literature on interval temporal logic. The subset of TimeML we
describe can be viewed as an interval temporal logic with a tractable
satisfiability problem, but very limited expressive power. Most crucially,
that logic does not permit quantification over events. The contribution of
this paper is to point out that, by choosing an appropriate interval tem-
poral logic, it is possible to introduce quantification into representations
of event-structure without sacrificing decidability.

Keywords. Information Extraction, Interval temporal logic

1 Background

The temporal mark-up language TimeML (Pustejovsky et al. [1]) is a formal-
ism developed for the purpose of automatically extracting information about
the event-structure of narrative texts. The language consists of a collection of
tags inserted into a text, intended to make explicit information about the events
reported in the text and their temporal relations. Like all mark-up languages
developed for information extraction, TimeML aims to steer a middle course
between expressive complexity and computational simplicity: too much expres-
siveness, and the language is impossible to process; too little, and it cannot
represent the information we hope to extract.

Because it concerns events and their temporal relations, TimeML strays into
territory traditionally occupied by interval temporal logic—that branch of math-
ematical logic concerned with structures interpreted over collections of intervals
on ordered sets. The purpose of this paper is to explain the relationship between
TimeML and various systems of interval temporal logic that have been proposed
in the literature. The main contention is that developments in interval temporal
logic—some recent, others well-established—require a re-evaluation of the bal-
ance which the designers of TimeML have struck between expressive complexity
and computational simplicity. Viewed from the vantage point of these develop-
ments, the expressive limitations on TimeML appear unnecessarily stringent.

Dagstuhl Seminar Proceedings 05151
Annotating, Extracting and Reasoning about Time and Events
http://drops.dagstuhl.de/opus/volltexte/2005/312

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 I. Pratt-Hartmann

2 TimeML

The purpose of this section is to introduce the language TimeML. We present
only that subset of the language which is purely temporal in character; in addi-
tion, we take the liberty of simplifying the syntax at various points. We focus on
the purely temporal subset of TimeML because that is the part of the language
for which formal semantics can be unproblematically given; and we simplify
its syntax occasionally because doing so will help to clarify its relationship to
existing systems of interval temporal logic.

With these caveats behind us, the principal features of TimeML can be
quickly introduced by example. Consider the following ‘text’:

(1) After his talk with Mary, John drove to Boston. During the drive he ate a
donut.

The first sentence in (1) identifies two events—John’s talk with Mary, and his
drive to Boston—and asserts that the former preceded the latter. The TimeML
mark-up of that sentence makes this event-structure explicit as follows:

(2)

After <EVENT eid= talkJM> his talk with Mary </EVENT>
<EVENT eid= driveJB> John drove to Boston </EVENT>
<MAKEINST eid= talkJM eiid= I1/>
<MAKEINST eid= driveJB eiid= I2/>
<TLINK eventInst= I1 relatedToEventInst= I2 relType= BEFORE/>.

Here, each of the two events in the text is marked with a pair of TimeML tags:
an <EVENT>-tag and a <MAKEINST>-tag. The <EVENT>-tag declares the type of
event involved and assigns it a label called an event-id; the <MAKEINST>-tag then
declares an instance of that event type and assigns it a label called an event-
instance-id. Thus, in (2), John’s talk with Mary is given the event-id talkJM and
the event-instance-id I1; likewise, John’s drive to Boston is given the event-id
driveJB and the event-instance-id I2. The temporal relationship between these
events is then recorded by means of a <TLINK>-tag. The <TLINK>-tag features
a pair of event-instance-ids, corresponding to the events related, together with
a mnemonic, called a relation-type, indicating the relation between them, with
the triple interpreted as a predication in the obvious way. Thus, the TLINK-tag
in (2) makes explicit the information that John’s talk with Mary finished before
his drive to Boston started.

The second sentence in (1) identifies the additional event of John’s eating
a donut, and asserts that it occurs during John’s drive to Boston. Again, its
TimeML mark-up makes this event-structure explicit as follows:

(3)
During the drive <EVENT eid= eatJd> he ate a donut </EVENT>
<MAKEINST eid= eatJd eiid= I3/>
<TLINK eventInst= I3 relatedToEventInst= I2 relType= DURING/>.

From TimeML to T PL∗ 3

The interpretation of these TimeML tags is completely analogous to (2). The
donut-eating event is given the event-id eatJd and the event-instance-id I3. The
TLINK, which features the relation-type DURING, makes explicit the information
that this donut-eating begins after John’s drive to Boston begins, and ends before
that drive ends. Note that TimeML recognizes a fixed collection of relation-types,
each of which has a fixed interpretation, in a sense which we shall make precise
below.

It is important to realise that we can make logical inferences in TimeML so
as to recover information not explicit in the original text. To take a somewhat
trivial example, the two sentences in (1) together entail that John’s talk with
Mary preceded the eating of the donut, an entailment which we can record by
adding the further TLINK:

(4) <TLINK eventInst= I1 relatedToEventInst= I3 relType=BEFORE/>.

Detecting such implied TLINKs plays an important role both in improving the
effectiveness of automatic annotation procedures and also in developing tools
to ease the onerous task of hand-annotation. Current tools to carry out this
task take the form of simple rule-chaining systems which are run to exhaustion
on a given set of TLINK tags (e.g. Setzer et al. [2]). This simple approach is
adequate because of the restricted set of relation-types which TimeML features.
Indeed, as we remarked above, the need to keep such processing computationally
manageable is one of the motivations for the limited expressive power of the
language. In this respect, we can think of TimeML as a very inexpressive interval
temporal logic: we develop this view of the language in detail below.

Perhaps the most striking manifestation of the limited expressive power of
TimeML is its lack of quantifiers. Consider, for example:

(5) During each of John’s drives to Boston he ate a donut.

Sentence (5) imparts information about the temporal relations between various
drivings and eatings, while leaving open how many instances of each event-type
occurred. But the system of tags introduced above cannot be indeterminate
about the number of event-instances it recognizes; therefore it cannot adequately
capture the content of Sentence (5). A more subtle—but also more commonly
encountered—manifestation of the same problem concerns negative sentences.
Consider, for example:

(6) John drove to Boston. During his drive he did not eat a donut.

The second sentence in (6) does not identify an event of donut-eating—rather,
it denies that any such event occurred over a certain period. That is: it is quan-
tificational in character. Again, the system of tags introduced above can only
assert the existence of events; and no collection of such assertions can ever have
the force of a denial.

4 I. Pratt-Hartmann

Actually, the above characterization of TimeML is a little unfair. TimeML
does in fact include tags purporting to represent the kind of information conveyed
in (5) and (6). In particular, MAKEINST-tags have an optional ‘polarity’ argument
to express negation; in addition, TimeML even features tags purporting to cap-
ture the meaning of quantifying adverbials such as every Monday. Unfortunately,
these parts of the formalism lack properly-defined semantics, and are not incor-
porated into existing inferential mechanisms. As things stand, these aspects of
TimeML are not susceptible to serious logical analysis.

3 From TimeML to interval constraint expressions

In the foregoing exposition of TimeML, we encountered event-ids, relation-types
and event-instance-ids. Logically, event-ids function as unary predicates, since
they denote types of events; relation-types function as binary predicates, since
they denote relations between pairs of events; and event-instance ids function
as variables ranging over events, since they form the arguments of event-ids and
relation-types. Stripping away some notational clutter, then, we can transcribe
the contents of the TimeML tags in (2)–(3) as a conjunctive formula of first-order
logic thus:

(7) talkJM(I1)∧driveJB(I2)∧eatJd(I3)∧BEFORE(I1, I2)∧DURING(I3, I2).

Furthermore, since the only aspects of events we are concerned with here are
entirely dependent on the time-intervals over which they occur, we may as well
assume the event-instance variables in such a formula to range directly over
time-intervals, re-interpreting the predicates accordingly. Thus, readers are en-
couraged to think of I as standing for ‘time interval’ rather than ‘event-instance’.
The logical sleight-of-hand involved here is, in fact, innocuous, and helps to clar-
ify the connection to interval temporal logic explained below.

Following common practice, we identify time-intervals with convex, bounded,
closed subsets of the real line having non-empty interiors. Any time-interval can
thus be written in the standard way as [a, b], where a, b are real numbers such
that a < b. Denote the set of all time-intervals, under this identification, by I.
We can then give formal interpretations of the predicates mentioned in (7) as
relations over I corresponding to the informal glosses given above. For example,
we take the unary predicate talkJM to be satisfied by an interval I just in case
there was an event of John’s talking to Mary occurring exactly over I; similarly
for the predicates driveJB and eatJd. Likewise, we take the binary predicate
BEFORE to be satisfied by a pair of intervals I = [a, b] and J = [c, d] just in
case b < c; and similarly the pair I, J satisfies DURING just in case c < a and
b < d.

Note the difference in logical status between the treatment of event-ids on
the one hand and relation-types on the other. The collection of predicates cor-
responding to event-ids is open-ended, and their interpretations represent con-
tingent facts about the distribution of events in the world; by contrast, the

From TimeML to T PL∗ 5

collection of predicates corresponding to relation-types is fixed, and their inter-
pretations represent non-contingent facts about our underlying model of time.
We shall recognize this difference by saying that the predicates corresponding
to event-ids are non-logical primitives, whereas the predicates corresponding to
relation-types are logical primitives. This distinction between logical and non-
logical primitives is central to any logic, and will feature prominently in the
sequel. We remark that the fact that the non-logical primitives here are binary
predicates while the logical primitives are unary predicates is just a coincidence.

Let us re-examine the inference from the TLINKs in (2) and (3) to the TLINK
in (4) in the light of this re-formulation. Suppose that the event-instance-ids in
some marked-up text are I1, . . . , In. Evidently, the collection of TLINK tags in
that text corresponds to a formula of the form

(8) R1(J1,K1) ∧ · · · ∧Rn(Jm,Km),

where, for each i (1 ≤ i ≤ m), Ji and Ki are chosen from among the I1, . . . , In,
and Ri is chosen from among the relation-types recognized by TimeML. Expres-
sions of the form (8) are familiar to temporal logicians as interval constraint
expressions; and a set of such expressions forms an interval constraint language.
An interval constraint expression of the form (8) is said to be satisfiable if there
exists an assignment of elements of I to the variables I1, . . . , In for which the
conjuncts Ri(Ji,Ki) all hold. The same expression is said to entail the con-
straint R(J,K) if every assignment of elements of I to the variables I1, . . . , In
for which the conjuncts Ri(Ji,Ki) all hold also makes R(J,K) hold. For most
interval constraint languages, the problem of determining entailments can be
reduced in polynomial time to the problem of determining satisfiability. Hence,
the fundamental question when dealing with such constraint languages is the
computational complexity of the satisfiability problem.

The answer to this question depends, of course, on the set of interval relations
which the Rh can be interpreted as. Call a binary relation on I ordinal if it
is definable in terms of the relative temporal orders of the endpoints of the
intervals in question. For example, it is obvious that the intended interpretations
of BEFORE and DURING are ordinal relations. The set of all ordinal relations
on I form a relation-algebra (see, e.g. Ladkin and Maddux [3], pp. 446 ff.), which
has been intensively investigated. This relation-algebra has 213 = 8192 elements,
and is generated by a set of 13 atoms. We call these 13 atoms the simple interval
relations; they form the basis of the system described in Allen [4]. The relation-
types in TimeML are (ignoring some needless clutter) exactly these 13 simple
interval relations.

The satisfiability problem for constraint expressions featuring only the 13
simple interval relations can be determined in polynomial time (Vilain, Kautz
and van Beek [5]). By contrast, the satisfiability problem for constraint expres-
sions featuring all 8192 ordinal relations is NP-complete. This fact appears to
vindicate the expressive limitations imposed by TimeML, because the set of sim-
ple interval relations recognized in TLINK-tags form a tractable subset of the full
relation algebra. However, they are not the only such set. Nebel and Bürkert [6]

6 I. Pratt-Hartmann

describe a (maximal) set of 868 ordinal interval relations whose satisfiability
problem is tractable (actually: cubic); and Drakengren and Jonsson [7] charac-
terize all maximal tractable sets of ordinal interval relations (subject to some
technical conditions). Viewed in this light, the computational motivation behind
the expressive limitations of TimeML are less convincing than they might at
first have appeared.

Moreover, ordinal relations are not the only relations over I of relevance to
the event-structure of texts. Particularly salient are metric interval relations.
Consider for example:

(9) John ate the donut at least five hours before he drove to Boston.

For definiteness, let us suppose that (9) constrains the donut-eating to end at
least five hours before the driving begins. That is, taking the basic unit of time
to be 1 hour, the operative interval relation is given by {〈[a, b], [c, d]〉 | b < c−5}.
Interval constraint expressions of the form (8) can of course feature binary pred-
icates interpreted as metrical interval relations; and again, the crucial question is
the computational complexity of the satisfiability problem. Such questions have
in fact been addressed in the literature. For example, Dechter, Meiri and Pearl [8]
define (in effect) just such a metrical constraint language, and show that it has
a tractable satisfiability problem. Hence, from the point of view of tractability,
there is no need to restrict the interpretation of the predicates in (8) to ordinal
relations.

Again, the analysis of TimeML is complicated at this point by the fact that
the language does in fact incorporate tags marking duration-denoting phrases,
for example:

(10)
<TIMEX3 tid= t1 type= DURATION value= P5H mod= GREATER>
5 hours </TIMEX3>.

The meaning of (10) is probably best given by regarding t1 as a variable ranging
over elements of I, and the rest of the tag as a unary predicate interpreted as the
set of intervals: {[a, b] ∈ I | b−a > 5}. Such tags can then be used, together with
ordinary TLINKs, to express various metrical temporal relations. It is difficult to
give a precise account of the underlying logic here, since the semantics of the
relevant TimeML constructs is not completely specified. However, it is clear
that this mechanism covers the relations definable in the system of Dechter et
al. in a rather awkward way, incorporating considerable logical redundancy; in
addition, there is again no standard régime within the TimeML framework for
making logical inferences with temporal relations of this kind.

Summarizing, we have established that the collection of TLINKs in a TimeML-
marked-up document can be regarded as as an interval constraint expression of
the form (8), with binary predicates limited to the 13 simple interval relations.
(If tags such as (10) are also included, metrical interval constraints can also
be expressed.) All interesting logical questions concerning such constraints can
be reduced to questions of satisfiability; and the computational complexity of

From TimeML to T PL∗ 7

interval constraint satisfiability problems has been thoroughly investigated in
the literature. The constraints expressed by TLINKs belong to a set for which the
corresponding satisfiability problem is tractable; however, it is by no means the
only such set.

4 From interval constraint expressions to first-order
interval logic

We referred to Formula (8) above as an interval constraint expression; but of
course, that is just another name for a formula of first-order logic over a certain
signature of binary predicates in which the only logical connective is ∧. The
question naturally arises: what happens if we liberalize the syntax to allow ar-
bitrary first-order formulas, and include the unary predicates corresponding to
event-ids in our signature?

Consider again Sentence (5). This sentence asserts that, within some given
temporal context, every interval over which John drove to Boston includes some
interval over which he ate a donut. Interpreting the predicates driveJB, eatJd
and DURING as above, the meaning of (5) can be represented by the first-order
formula

(11) ∀I1(driveJB(I1)∧DURING(I1, I) → ∃I2(eatJd(I2)∧DURING(I2, I1))).

Here, the temporal context to which the quantification in (5) is implicitly limited
is represented by the free variable I. Of course, there is no reason why first-
order formulas need have any free variables at all: however, for reasons which
will emerge later, we shall be particularly interested in formulas having exactly
one free variable.

Likewise, consider again the pair of sentences in (6). These assert that there
is an interval over which John drove to Boston, and that this interval includes
no interval over which he ate a donut. Actually, they arguably assert something
more: the phrase his drive in the second sentence suggests that, within the given
temporal context, the event of John’s driving to Boston is realized uniquely. Let
us suppose that we want to record that information. Helping ourselves to the
definite quantifier ιx(φ, ψ) with the standard (Russellian) semantics, then, we
may do so using the first-order formula

(12) ιI1(driveJB(I1)∧DURING(I1, I),¬∃I2(eatJd(I2)∧DURING(I2, I1))).

Note incidentally that we can now improve on our earlier formulation of the
first sentence (1) so as to take account—if we like—of the implicated uniqueness
of John’s talk with Mary within the relevant temporal context. Again using the
free variable I to represent that temporal context, we can replace the formaliza-
tion (7) with

(13)
ιI1(talkJM(I1) ∧DURING(I1, I),

∃I2(driveJB(I2) ∧DURING(I2, I) ∧ BEFORE(I1, I2))).

8 I. Pratt-Hartmann

The above formulas feature unary predicates corresponding to event-types,
binary predicates corresponding to the 13 simple interval relations, and the full
syntax of first-order logic, with variables assumed to range over the set I. Let
us call the logic comprising these resources first-order interval logic.

Recall our earlier distinction between logical and non-logical primitives: the
binary predicates corresponding to relation-types, such as BEFORE and
DURING were designated as logical primitives, whereas the unary predicates
corresponding to event-ids, such as talkJM, driveJB and eatJd etc. were desig-
nated as non-logical primitives. Following standard logical practice, we take a
structure A to be an assignment of interpretations to the non-logical primitives.
Thus, in the present case, a structure amounts to a specification, for each event-
id, of precisely which time-intervals an event of the corresponding type occurred
over.

Let A be a structure and φ(I1, . . . , In) a first-order formula (over the above
signature) with I1, . . . , In as its only free variables. Together, the interpretations
of the non-logical primitives provided by A and the fixed interpretations of the
logical primitives determine, via the usual semantics of first-order logic, precisely
which n-tuples from I satisfy φ(I1, . . . , In). The formula φ(I1, . . . , In) is said to
be satisfiable if there exists a structure A in which it is satisfied by some n-tuple
from I. It is easy to see that satisfiability of interval constraint expressions, as
defined in Section 3, is a special case of satisfiability of formulas in first-order
interval logic, as defined here. Thus, the logical analysis of interval constraint
expressions fits smoothly into the standard logical account of first-order inter-
val logic. As with interval constraint expressions, so too with first-order interval
logic, most interesting logical questions can be reduced to the problem of deter-
mining satisfiability.

Unfortunately, the satisfiability problem for first-order interval logic is unde-
cidable. (This actually follows from stronger results reported in the next section.)
But in choosing a mark-up language to record event-structure in texts, a logic
in which the satisfiability problem is at least decidable seems the very minimum
we should require. It follows that, in seeking to extend the expressive power of
TimeML, we need to examine formalisms of lower expressive power. To this end,
we employ the syntactic apparatus of modal logic.

5 From first-order interval logic to modal interval logic

Consider a unary predicate corresponding to an event-id—for example, driveJB—
and a structure A which interprets it. This predicate can be equivalently re-
garded as a proposition-letter to which A assigns a truth-value relative to any
given interval I: true if I satisfies driveJB in A; false otherwise. By combining
proposition-letters using Boolean connectives in the usual way, we can build for-
mulas to which A assigns a truth value with respect to any given interval I. We
write A |=I φ if the (propositional) formula φ is true at I in A. Now consider a
binary predicate corresponding to some relation-type—for example, DURING—
and let us add the modal operators [DURING] and 〈DURING〉 to our proposi-

From TimeML to T PL∗ 9

tional language. We can give the semantics of these operators by declaring that,
for any structure A, any interval I and any formula φ: (i) A |=I [DURING]φ
just in case, for all J such that the pair 〈J, I〉 satisfies the predicate DURING,
A |=J φ; and (ii) A |=I 〈DURING〉φ just in case, for some J such that the pair
〈J, I〉 satisfies the predicate DURING, A |=J φ. Applying these modal operators
freely to propositions, we obtain a propositional modal language whose formulas
have an obvious translation into formulas of first-order interval logic with exactly
one free variable. In particular, the modal formula

(14) [DURING](driveJB → 〈DURING〉eatJd)

is easily seen to translate (up to logical equivalence) to the first-order interval
logic formula (11).

By introducing modal operators for the other simple interval relations in the
same way, we arrive essentially at the system known as HS, after its inventors,
Halpern and Shoham [9]. A formula φ of HS is said to be satisfiable if there
exists some structure A and some interval I such that A, |=I φ. Again, most
interesting logical questions can be reduced to the problem of determining satis-
fiability. The logic HS is strictly less expressive than the full first-order language
(Venema [10]). Nevertheless, Halpern and Shoham show that the satisfiability
problem for HS is undecidable. Until recently, very little was known about de-
cidable fragments of HS; for a survey, see Goranko et al. [11].

At this point, the elimination of quantification from TimeML appears to be
vindicated. Not only is first-order interval logic undecidable; so too is the less
expressive modal interval logic HS. As we shall see in the next section, however,
closer analysis shows that such a conclusion would be hasty.

6 From modal interval logic to T PL∗

In this section, we define a formalism for recording the event-structure of texts
which combines considerable expressive power with a decidable satisfiability
problem. The following modal interval logic is a subset of the logic T PL intro-
duced in Pratt-Hartmann [12]. For want of a better name, let us call it T PL∗.
In the sequel, let E be a fixed set of event-ids.

Definition 1. Let e range over the set E. We define a T PL∗-formula ψ by the
syntax:

ψ := > | ⊥ | 〈e〉ψ | [e]ψ | {e}ψ | {e}>ψ | {e}<ψ | ¬ψ | ψ ∧ ψ′ | ψ ∨ ψ′ | ψ → ψ′.

The following notation will be used to present the semantics of T PL∗. Let
I = [a, b] and J = [c, d] be intervals. If a < c < d < b, we write DURING(J, I).
Further, if DURING(J, I), we let the terms init(J, I) and fin(J, I) denote the
intervals [a, c] and [d, b], respectively. In other words, whenever DURING(J, I)
is true, we take init(J, I) to denote the initial segment of I up to the beginning

10 I. Pratt-Hartmann

of J , and fin(J, I) to denote the final segment of I from the end of J . Again, we
take an interpretation A simply to be an assignment, to each event-id in E, of
a subset of I, except that we impose the added condition that, for each e ∈ E,
the set A(e) of intervals at which e holds in A is finite. The motivation here is
simply that we have in mind situations in which event-atoms denote everyday
event-types instantiated in finite contexts.

Definition 2. Let φ be a formula, A an interpretation, and I ∈ I. We define
A |=I φ recursively as follows:

1. A |=I 〈e〉ψ iff for some J such that DURING(J, I), J ∈ A(e) and A |=J ψ;
2. A |=I [e]ψ iff for all J such that DURING(J, I), J ∈ A(e) implies A |=J ψ;
3. A |=I {e}ψ iff there is a unique J such that DURING(J, I) and J ∈ A(e),

and for that J , A |=J ψ;
4. A |=I {e}<ψ iff there is a unique J such that DURING(J, I) and J ∈ A(e),

and for that J , A |=init(J,I) ψ;
5. A |=I {e}>ψ iff there is a unique J such that DURING(J, I) and J ∈ A(e),

and for that J , A |=fin(J,I) ψ;
6. the usual rules for >, ⊥, ¬, ∧, ∨ and →.

A formula φ is said to be satisfiable if, for some A and I, A |=I φ.

As usual, most interesting logical questions can be reduced to the problem of
determining satisfiability.

Under the above semantics, formulas of T PL∗ translate naturally into for-
mulas of first-order interval logic having one free variable, just as for the modal
interval logic HS considered in Section 5. We can get an idea of the expressive
power of T PL∗ by considering the sentences (5)–(6), whose truth-conditions
were given by the first-order interval logic formulas (11)–(12). A little checking
shows that the following T PL∗-formulas translate to (11)–(12), respectively:

(15) [driveJB]〈eatJd〉>
(16) {driveJB}[eatJd]⊥.

Moreover, consider again Sentence (1) and its ‘improved’ first-order interval logic
rendition (13). Again, it is easy to verify that the same satisfaction-conditions
are given by the T PL∗-formula

(17) {talkJM}>〈driveJB〉>.

Thus, T PL∗ is an expressive formalism. Nevertheless, its satisfiability problem
is decidable. The following fact follows easily from Pratt-Hartmann [12], Theo-
rem 1.

Fact 1 The satisfiability problem for T PL∗ is in NEXPTIME.

Moral: it is possible to have a quantified representation language for event-
structure in texts and yet retain a decidable satisfiability problem.

From TimeML to T PL∗ 11

7 Conclusion

In this paper, we have described a subset of the temporal mark-up language
TimeML and explained its relation to some other formalisms found in the lit-
erature on interval temporal logic: temporal constraint expressions, first-order
interval logic and the modal interval logics HS and T PL∗. We have seen how
the subset of TimeML we examined forms a very inexpressive interval tempo-
ral logic, with a tractable satisfiability problem. Unfortunately, that subset of
TimeML is too inexpressive for much of the information we want to record about
event-structure in texts: most crucially, it does not permit quantification over
events. The contribution of this paper is to point out that, by choosing an ap-
propriate interval temporal logic—such as T PL∗, for example—it is possible
to introduce quantification into representations of event-structure without sac-
rificing decidability. To be sure, we do not claim that T PL∗ as it stands is a
suitable formalism for marking up event-structure in texts, not least because of
its uncomfortably high complexity. Nevertheless, it does, we contend, point the
way for future research in this area.

References

1. Pustejovsky, J., Castaño, J., Ingria, R., Suŕı, R., Gaizauskas, R., Setzer, A., Katz,
G.: Timeml: Robust specification of event and temporal expressiveness in text. In:
Proceedings, IWCS-5, Tilburg (2003)

2. Setzer, A., Gaizauskas, R., Hepple, M.: Using semantic inference for temporal
annotation comparison. In: Proceedings, ICoS-4, Nancy (2003) 185–196

3. Ladkin, P.B., Maddux, R.D.: On binary constraint problems. Journal of the ACM
41 (1994) 435–469

4. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26 (1983) 832–843

5. Vilain, M., Kautz, H., van Beek, P.: Constraint propagation algorithms for tem-
poral reasoning: a revised report. In Weld, D.S., de Kleer, J., eds.: Readings in
qualitative reasoning about physical systems. The Morgan Kaufman series in rep-
resentation and reasoning. Morgan Kaufman, San Mateo, CA (1990) 373–381

6. Nebel, B., Bürckert, H.J.: Reasoning about temporal relations: a maximal tractable
subclass of Allen’s interval algebra. J. ACM 42 (1995) 43–66

7. Drakengren, T., Jonsson, P.: A complete classification of tractability in Allen’s
algebra relative to subsets of basic relations. Artificial Intelligence 106 (1998)
205–219

8. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelli-
gence 49 (1991) 61–95

9. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. Journal
of the ACM 38 (1991) 935–962

10. Venema, Y.: Expressiveness and completeness of an interval tense logic. Notre
Dame Journal of Formal Logic 31 (1990) 529–547

11. Goranko, V., Montanari, A., Sciavicco, G.: A road map of interval temporal logics
and duration calculi. Journal of Applied Non-classical Logics 14 (2004) 9–54

12. Pratt-Hartmann, I.: Temporal prepositions and their logic. Artificial Intelligence
(2005) (article in press).

	From TimeML to TPL*
	Ian Pratt-Hartmann

