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Abstract. Data Handover (DHO) is a programming paradigm and interface that aims to
handle data between parallel or distributed processes that mixes aspects of message passing
and shared memory. It is designed to overcome the potential problems in terms of efficiency
of both: (1) memory blowup and forced copies for message passing and (2) data consistency
and latency problems for shared memory. Our approach attempts to be simple and easy to
understand. It contents itself with just a handful of functions to cover the main aspects of
coarse grained inter-operation upon data.
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1 Introduction and Overview

A lot of sophisticated models, systems and programming languages and libraries are nowadays
available for parallel and distributed computing. But nonetheless of that multitude of choices,
the majority application designers and programmers choose among quite a few interfaces when
it comes to implement production systems. These interfaces fall into two major classes, those
coming from the world of parallelism (e.g shared segments, different sorts of threads or OpenMP)
or the world of distributed computing (e.g PVM, MPI, RPC, RMI or Corba). Although most of
them are also available in the other context (e.g MPI on mainframes or threads on distributed
shared memory systems) in general the performance of these tools suffer when they are applied
in framework for which they have not been designed originally. This reduced performance is not a
matter of “lack of good implementations” but is due to conceptual difficulties: (1) Message passing
applied on shared memory architectures introduces a substantial memory blowup (compared to a
direct implementation) and forces unnecessary copies of data buffers. (2) The simplified transposal
of shared memory algorithms onto distributed platforms provoke a high complexity when it comes
to guaranteeing consistency of data. Latency problems often result in disappointing performance.

So a big performance gap remains when it comes to applications that are supposed to be
executed on platforms for which we can’t know their nature beforehand. In particular, grid en-
vironments inherently will have this property that an application is launched on an unknown
environment. For various reasons, the client (buying computing power) and the provider (selling
computing power) should know as little as possible about each other. They should see each other
through a mediator that is able to provide the necessary guarantees to the satisfaction of both
sides, e.g mutual trust, performance, availability and many more. It will be almost impossible
(or at least expensive) to impose a particular flavor of platforms. Even worse, a client who is
demanding a lot of computing power will likely be served by a mixture of these concepts, namely
a conglomerate of smaller to middle-sized parallel machines tied together with a virtual network
of high bandwidth but with mediocre latency.

Valiant’s seminal paper on the BSP model, see Valiant [1990], has triggered a lot of work on
different sides (modeling, algorithms, implementations and experiments) that showed very inter-
esting results on narrowing the gap between the message passing and shared memory paradigms.
But when coming to real life code implementers tend to turn back to the “classical” interfaces,
even when they implement with a BSP-like model in mind. Thus again, even though on the mod-
eling side they have in principle overcome the separation of the two, the realization then tends to
suffer from one of the performance issues as mentioned above. In the follow up of the BSP work
it has been claimed and shown (theoretically and by large scale experiments) that applications
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that stick to certain rules concerning the granularity of the communication pattern will be able to
overrule latency problems as they will be typically imposed by grid environments, see e.g Dehne
[1999], Gebremedhin et al. [2002], Essäıdi et al. [2004].

With this paper we try for a proposal of a programming paradigm and interface (DHO) that
according to our biased experience captures the main and essential features that a library that
serves as a base for programming in grids (or perhaps once “The Grid”) should have:

Simplicity: The interface should be easy to use and not be forcing difficult changes in program-
ming habits. It should also be easy to implement on top of existing interfaces and libraries,
making it also easily portable.

Performance: The interface should allow for an easy evaluation of the performance of the code
that is using it and this performance must be competitive to the performance of other imple-
mentations that is done with other interfaces and the corresponding libraries.

Interoperability: The interface should be as close as possible to known and accepted standards
to ensure an easy interconnection of heterogeneous systems, with different material features,
different OS or within different administrative domains.

The field of applications to which DHO may be applied is probably somewhat broader than
what falls under the rules of coarse grained computing as mentioned above. Only, control must
be neglectable compared to local computation and communication, i.e programs must organize
communication in substantial large units such that the local computation together with the transfer
of the data dominates the number of control transfers by orders of magnitude. Applications for
which control dominates the resource consumption are not suited for DHO, and, as we think, for
grid computing in general.

Overview First, in the next section, we will review what we think are the principal pros and
cons of both base paradigms (message passing and shared memory) and of the extensions that
have been proposed so far. Then, in Section 3, we will propose the main features of our interface.
A short example of the central locking and mapping feature is then given in Section 4 followed by
a brief discussion of possible steps for an implementation in Section 5. In an appendix, we give a
more detailed code of a matrix multiplication example and the C and C++ interfaces.

Notation In the following we will assume that the reader is familiar with one or several of the
commonly used interfaces for message passing and programming shared memory. Since they are
the closest to the approach that we develop we will base our examples upon MPI1and POSIX
shared memory segments2. We will usually denote functions of these APIs by their C language
interfaces using a typewriter font, such as shm open, and also regular expressions like MPI *recv
to denote a group of functions. For the interface as it is proposed here, we often will tend to denote
the functions with their C++ name and simply avoiding the DHO prefix if possible.

2 The two base paradigms and actual extensions

2.1 Message Passing

The great success of the message passing paradigm in recent years is certainly due to a multitude
of factors. Here we will emphasize on the most important for us.

Simplified Data Control Data control within message passing environments is conceptually
simple. The programmer controls the buffers that hold the data and has precise synchroniza-
tion points after which he may assume that the data has been successfully transmitted. The
programmer completely controls the consistency of the data.

1 Message Passing Interface, see http://www.mpi-forum.org/
2 See “The Opengroup”, http://www.opengroup.org/. Shared memory segments are not to be con-

founded with the POSIX THREAD interface, pthread *.
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Standardization The big success of MPI in particular is also due the fact that it is standardized
with very little inherent ambiguity on the semantics. In particular this allows for several
concurrent implementations, there are high quality public domain implementations as well as
proprietary ones on all major platforms.

Efficiency in distributed environments In distributed environments the message passing para-
digm is very efficient. In particular the possibility of having non-blocking communications
optimizes existing architectures in relaxing the synchronization constraints between network
hardware and processors. Not only that this efficiently uses the inherent parallelism between
the different components of modern architectures but also it allows to overrule one of the
fundamental problems, namely that the latency of a network connection is linearly related to
its physical distance.

The message passing libraries also have improved a lot in recent years on their efficiency when
executed on parallel machines. But inherently due to the message passing paradigm itself they
must suffer from the following two closely related problems.

Memory blowup: For messages, there is always a sending side and a receiving side. So both
the sending process and the receiving process must allocate memory for a message. At least
temporarily, the consumption of memory doubles.

Extra copy operations: To realize the data transfer, the data must be copied from the sender
to the recipient, even if the sender perfectly knows where the data should end up. So for data
oriented computation, the running time increases substantially.

2.2 Shared Memory

From the point of view of a programmer, the shared memory paradigm has several advantages,
from which we emphasize on the following two:

Random Access The data of all processes is directly accessible from any other process. This
avoids implementation of supplementary control (“please send me such and such data”) and
simplifies the view of the data as a whole for the programmer.

Efficiency on parallel architectures The data transfer can be completely delegated to lower
levels of the system architectures, usually a combination of OS and hardware. This helps to
make implementations very efficient: data access is mainly bound by hardware parameters
such as the bandwidth and latency of the interconnection bus.

Especially when realizing the shared memory paradigm on distributed architectures this ap-
proach suffers from at least two problems, data consistency and latency. But they are also inher-
ently present in the design of shared memory architectures themselves. Data consistency problems
contribute much to the difficulties of the interaction between OS and hardware (cache coherence,
TLBs,...). A low latency interconnection bus contributes a lot to the cost of a high end parallel
machine.

Data consistency A major danger (and programming difficulty) of random access is concurrent
access to memory. Who wins when writing at the same moment to the same location? Is the
data that a process reads still valid?

Latency To realize shared memory and cover the consistency problems the realization of a fine
grained synchronization between the processes is important. E.g the fact that some data has
a new value must be propagated to the readers of that data. This requires at the (hardware)
latency of the interconnection. In a distributed setting, latency is a major obstacle since it is
limited by the quotient of the distance and the speed of light.

2.3 Extensions of the Base Paradigms in Related Work

Numerous proposals have been made to extend each of the two paradigms (and their most promi-
nent realizations) to the respective other setting. We only will be able to name a few of them and
will not be able to present them according to their merits.
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Distributed Shared Memory3 systems (DSM) extend the shared memory paradigm into a dis-
tributed setting in that they provide an intermediate layer to the application such that memory
access is handled transparently in one (emulated) address space. Close to our paradigm are Object-
based Software DSM, i.e DSM implementations that explicitly expose the DSM concept through
the manipulation of shared objects. Probably most of these systems (if they would be suitable
for grid computing) could be used to implement the API of this paper relatively easy. DHO uses
a data consistency strategy that is similar to lazy release consistency, see Keleher et al. [1992],
and boroughs part of its interface names from there. It uses ideas similar to Midway4 to use lock
acquisition message for the propagation of knowledge about event ordering in the system. Other
systems, a lot that are historical others under current development, can be classified as Page-based
DSM, Hardware-based DSM or as Single System Image (SSI) operating systems5

Generally, these distributed shared memory systems impose a very close cooperation between
the processes, are intrusive with respect to the hosting system and are optimized on a fine grained
level of control. These properties make them very effective in physically close, homogeneous clusters
of machines that are within the same administrative domain. We think that it is unlikely that this
will scale to the opaque, heterogeneous and bandwidth oriented world of the grid.

For the message passing paradigm, the extension from MPI v. 1.2 to MPI 26 includes so-called
one sided communication, i.e communication that may be initiated from one side only, MPI Get
and MPI Put. They allow for Remote Memory Access, RMA. This is a technique that is similar
to DSM with the difference that it doesn’t introduce a shared address space for the processes
but mutually maps parts of the process memories to each other. MPI 2 leaves the choice upon
which parts of memory should be coupled, how long such a coupling shall last and the consistency
model almost entirely to the program designer. By that it is more flexible and better adapted to
couple processes that are hosted by distant processors with potentially different operating systems.
On the other hand this flexibility and openness present a major design difficulty, as well for an
application programmer as for a designer of an MPI 2 environment. Perhaps for many of the
potential users and implementers the benefits that this paradigm offers have not outperformed
these difficulties: usage of the features of MPI 2 is minor compared to v. 1.2 and other than for
MPI v. 1.2 a complete reference implementation of MPI 2 in the follow up of MPICH 1.2 took
several years and has only been completed recently7.

3 The proposal of an interface

An interesting feature of the message passing paradigm is the way control over the data passes
from one process to the other. By issuing an MPI *send operation the sender passes control over
to the receiver. By issuing an MPI *rec operation (and an eventual MPI *wait) the receiver takes
over control. Every process knows exactly over what data it has control. This particular feature
is what we call data handover, a well defined protocol for the passage of responsibility over data
from one process to another.

But unfortunately in the message passing paradigm once the message is finally received, the
association of the receive buffer with the abstract concept “message” is lost, the data has no
approved identity anymore, the programmer has to keep track of that identity himself. So instead
of asking the programmer to temporarily associate some memory (buffer) to a message, we propose
to provide access to an abstract object, the data, and to let handle the library the allocation of
memory itself. Thereby we may ensure that the association between the data and its instance is
always maintained.

The main functionalities of the interface that we are proposing are summarized int Table 1. It
contains interfaces to access the data structure DHO t as a whole (create, duplicate and

3 see Distributed Shared Memory Home Pages, http://www.ics.uci.edu/~javid/dsm.html
4 http://www-cgi.cs.cmu.edu/afs/cs.cmu.edu/project/midway/WWW/HomePage.html
5 see e.g http://www.kerrighed.org/
6 http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html
7 http://www-unix.mcs.anl.gov/mpi/mpich2/
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Fig. 1. Essential part of the state diagram of a handle. Less common operations are dashed. Omitted are
operations that not encouraged such as direct locking or destructions from other states than “valid”.

name penalty returns description similar in MPI similar in POSIX
sender receiver

DHO t data type representing
the user data

buffers and MPI Request file descriptor

DHO create none creation of a handle buffer creation {shm }open
DHO resize none resizing buffer resizing ftruncate

DHO duplicate none duplicate a handle

DHO destroy flush destruction of a handle buffer deletion close and {shm }unlink
DHO ew request prefetch request future exclusive

write access, write-
prefetch the data

MPI Irecv

DHO ew acquire blocks, insert void* instantiate data in mem-
ory

MPI Wait fcntl for write-locking
and mmap

DHO cr request prefetch request future concurred
(shared) read access,
read-prefetch the data

MPI Irecv

DHO cr acquire blocks, insert void
const*

instantiate data in mem-
ory

MPI Wait fcntl for read-locking
and mmap

DHO release flush relinquish access MPI Isend munmap and fcntl for un-
locking

DHO test none int test for available data in
memory

MPI Test fcntl with try-locking

DHO getLength none size t check size and/or valid-
ity

fstat for field st size

DHO getName none char

const*

get URI of underlying
object

Table 1. The principal C interfaces. In the column penalty a “blocks” indicates that the calling process
might block until other processes release the data. A “prefetch” or “flush” indicates that although the
process will not be blocked that the system might be busy in doing preparative reading or clean-up writing.
Generally the run time penalty may correspond proportionally to the length of the data that is handled.
An “insert” indicates that although the process might not be blocked on locks that are placed by others,
that it might block until all its previously requested lock insertions (ew request or cr request) or link
and unlink events (create, duplicate or destroy) are known to be taken into account. The penalty of
“insert” should be bound to a factor of the communication latency.
If there is no indication of a return value, the function generally returns an error code. The C++-interface
should throw an exception instead.
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destroy), to gain Exclusive Write access to all or part of the data (ew request and ew acquire),
to gain Concurrent Read access (cr request and cr acquire) and to resign from accessing the
data (release). The interface does not describe a DSM in that it gives no false illusion of pre-
senting the data in a persistent location in address space, not even when restricted to a single
process. It is neither message passing, since it never looses track of the conceptual identity of the
data when accessed in different processes.

The entire interface as well as an analogous interface for C++ are given in the appendix. The
individual parts of the interface are discussed in the following sections.

3.1 Abstracting from memory: data handles and mappings

At first, we want to combine the simplicity of control of the message passing interface with the
random access of memory. Therefore it is important to introduce a level of abstraction between
memory and data. Whereas data is an ideal concept (e.g a Shakespeare sonnet), memory is the
(sensible, sharable) instantiation of such a concept (e.g a print of Shakespeare’s sonnets). In that
sense the message passing paradigm handles data whereas the shared memory paradigm handles
memory, a message is data with two different instantiations, one at the sender and one at the
receiver.

Both, memory and data, may change in time, e.g we may speak of a sonnet as printed in such
and such edition.

In our proposed paradigm the processes don’t share memory but data handles called DHO t.
Every data shall correspond to a common data handle that can be accessed by the processes.
The processes shall negotiate control over the data via such a handle. They shall request an
instantiation of the data in their individual memory, a mapping, via such a handle by means of the
functions cr acquire (for concurrent (or shared) read mappings) and ew acquire (for exclusive
write mappings).

Currently in several different contexts this abstraction exists and is well mastered. Examples
for interfaces that implement features similar to such handles are MPI Requests for MPI and file
descriptors for POSIX files and POSIX shared memory segments.

Figure 1 describes the essential parts of the state diagram of an individual handle. Essential here
indicates that these are the parts for which the interface is designed and which should correspond
to the most efficient usage of a DHO-library. Others are possible, see below, but should correspond
to exceptional cases in usage.

The functions * acquire shall return pointers to memory of the necessary size which will be
properly initialized with the data. In case of concurrent read mappings the pointer that is return
will bear the const attribute to hinder the application in writing into the corresponding location.
After the application has used the pointer that was returned by * acquire it may call release
to release the mapping and to free resources that such a mapping might bind.

The objects that DHO should be able to handle may be very big. In fact the totality of all
objects, might not fit into the address space of a single processor. So address space by itself
might be a scarce resource and DHO has to allow for a re-use of addresses once a mapping has
been released. Therefore the pointer that had been returned by * acquire has to be considered
invalid after a call to release and an application should never keep that pointer beyond an
* acquire/release cycle. If the application issues another call * acquire for the same data, the
pointer that is returned then may be completely different from the previous one. If released, the
data behind a handle itself becomes inaccessible through that handle but shall never be lost as
long as any handle on it is alive.

3.2 Separating access: locking

To ensure data consistency, the mappings as introduced above follow the semantics of read-write
locks, similar to POSIX’ read-write-locks (pthread rwlock *8) and to advisory file-locking with

8 http://www.opengroup.org/onlinepubs/007908799/xsh/pthread_rwlock_rdlock.html
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fcntl9. That is, as long as there is a handle that holds a shared read lock for some data (or some
range of it, see below), no other handle can acquire an exclusive write lock on it, and as long there
is a handle that holds an exclusive write lock no other handle can gain any type of lock on that
same data. The programmer may resign from the previously gained lock (and from access to the
data) by means of release. Thereafter other handles might then gain the lock and access the
data.

Calls to * acquire will always block the calling process until the lock is obtained or an un-
recoverable error occurred for the data. After a first return from such an * acquire call, as long
as there will be no other DHO * call, newly issued calls to the same * acquire function shall re-
turn immediately and provide the same return value as the original call. Thereby, handles may
effectively be shared between different threads of the same process without wasting resources for
renewed locking and mapping attempts.

Calls to release shall never block. For interfaces that conditionally lock a handle without
blocking see Section 3.4 below.

3.3 Gluing data together: ranges

Although similar at a first sight, the locking mechanisms of POSIX threads’ read-write-locks and
of advisory file-locking with fcntl have quite different semantics concerning the scope to which
they may apply. Whereas the first is a general tool to protect one unspecified resource, the second
is more specific and dedicated to ranges of memory of one well defined object. We think that in
our context the following two features of file-locking are important for cooperative computation
concerning large amounts of data, namely (1) strict association to an object, and (2) the possibility
of individually locking parts of the object by different processes. By that different processes may
safely work on different parts of the same large data object.

A call to duplicate creates a new handle for the same object as other refers to. This handle
becomes completely independent from the other, in particular the new handle stays valid when
other is destroyed. The parameters offset and length indicate the start and length (in bytes) of
the desired part of the data to which the newly created handle refers. The newly created handle
only refers to the “window” defined by offset and length and there is no possibility to access data
outside that range via this object. Any calls to * acquire will deliver pointers to memory that
contains the data from byte position offset on and is guaranteed to include the next following
length bytes.

In consistence with the fcntl interface a value of 0 for length has the special interpretation
of defining a range going from offset to the end of the effective range that is accessible through
other.

3.4 Forethought: requesting future access

Another advantage of the message passing paradigm is its asynchronicity and in particular that it
allows for so-called non-blocking receives. By that it is possible to distinguish the announcement
of a future take of control (MPI Irecv) from the effective instantiation of the data in memory
(MPI Wait)10. This distinction is useful to circumvent latency problems, and in fact it is very often
used to implement overlapping of communication and computation with MPI.

Such an announcement (and the related reservation of resources) is a very valuable informa-
tion for a run-time system. It may allocate memory, prefetch data into the location, perform
communication between distant processes, and whatever may be necessary to fulfill the request of
the program. So in essence such feature helps the programmer to thoughtfully overrule distance
and latency in a potentially unknown platform. The idea of DHO is to systematically invite the
programmer to provide such announcements and thereby to increase her or his awareness for the
non-triviality of the environment for which the program is designed.
9 http://www.opengroup.org/onlinepubs/009695399/functions/fcntl.html

10 See e.g http://www.mpi-forum.org/docs/mpi-11-html/node44.html#Node44
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The two interfaces that we propose are cr request for future cr acquire, and ew request for
future ew acquire. Combining non-corresponding calls (cr request and ew acquire, ew request
and cr acquire) will not have the desired effect and should be avoided, see below. After a
* request has successfully been placed, the presence of the requested mapping and lock can
be tested with test. Such a call will never be blocking. After an affirmative answer of test, the
pointer to the data may then be obtained by a call to the corresponding * acquire, also without
blocking the caller.

3.5 Controlling concurrency: ordering events

Since we propose a tool that should be applicable in a wide context and in particular in a dis-
tributed setting we may not assume that the processes share a global clock or other external
resource for event synchronization. On the other hand, the order in which processes treat data is
important, and so we need a minimal event model that helps the programmer to establish an order
among the data access that he designs. Again, this model intends to claim the obvious combined
with the most possible slackness for the system: (1) The ordering of events as perceived by any
individual processor is conserved by the system when handling the data. (2) The effective ordering
of the events upon the data may be any ordering that observes the constraints that are imposed
by the ordering upon the processors.

All events (concerning a handle) are produced internally by each process by exactly one of the
five functions create, destroy, cr acquire, ew acquire, and release. From the point of view of
the process they can be considered as being atomic and guarantee that the considered operations
are finalized upon return. Calls to cr request and to ew request do not constitute events for the
calling process and are never blocking.

Data in turn knows about seven types of events which are not identical to the ones perceived
by the processes. They are (1) link and unlink events, corresponding to create and destroy,
(2) concurrent read and exclusive write lock insertion events, corresponding to cr request and
ew request, (3) concurrent read and exclusive write locking events, that correspond to an effective
locking of the resource for the corresponding handle, and (4) unlocking events, corresponding to
release.

To allow for asynchronicity, locking events do not directly correspond to calls of * acquire.
In fact they are internal events that may not directly be triggered by an external source. Such a
locking event may happen any time between the lock insertion and the successful return from
the * acquire call (or a test).

Locking events are guaranteed to respect the arrival order of the corresponding lock insertion
events, the data is supposed to handle these events according to an event queue. There may be
conflicts in the set of requests that are already locked (but not yet unlocked) and those that are
in the queue. We say that a request R directly blocks another request S if (1) the ranges of the
two request intersect, (2) R was placed before S and (3) at least one of the two requests is for
exclusive write.

It is easy to see that this relation defines an acyclic graph and (by transitivity) a partial order
of events. We say that R0 is blocking Rk if there is a chain of requests R1, . . . , Rk−1 such that
Ri−1 directly blocks Ri for all i.

After the handling of a particular request R is finished, the queue of pending lock requests is
checked for requests that can be served now. This processing has to give two guarantees:

consistency: A locking requests in the queue may be served if there are no earlier requests that
block it.

progress: A request that is now first in the event queue and that is not blocked by any lock shall
always be served.

In other words, all requests that are minimal in the blocking order may be served, and the one
among them that is also minimal with respect to the arrival order must be served if possible.
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3.6 Data persistence, integrity and awareness of references

To allow for persistence and access from any unspecified environment all data shall be identified
by an URI (plus an eventual fragment identifier) as of RFC 239611, its name. This name can either
be given explicitly as an argument to create or, if left NULL, will be generated by the system.
The name that is passed to create defines the type of persistence of the object. If name refers
to some valid file or memory segment on the system the object is persistent and will survive the
destruction of the last handle to it. If the choice of name was left to the system, the object is a
temporary (initially of length 0) that ceases existence when the last handle to it is destroyed.

The use of URLs (as a subset of URIs) makes it possible to re-use pre-existing protocols to
access the data, e.g “file” for file mapping, “shm” for shared segments, “http” for read-only data,
“ftp” or “scp” for remote copies etc. and in addition allows for a future integration of new protocols.
Using URIs (and not only URLs) make it possible to refer to objects (resources) regardless of the
protocol to access them, e.g an URI like “urn:ISBN:0-300-02495-9” could refer to a resource for
some text processing program using DHO. Clearly, not all possible URIs make sense in the context
of DHO, and implementations of DHO may also differ much in what kind of URIs they accept.
The function getName shall return a string containing the URI. If the handle refers to a sub-range
of the object this name shall be followed by a fragment identifier, of the form “#offset,length”
where offset and length are the decimal values of the absolute byte position in the object. If the
object is temporary and the length has not be resized to a non-zero value (see below), getName
shall return a NULL pointer. This is because such an object can not be referenced by two different
handles and be resized simultaneously in a consistent way.

The function destroy cuts all links between the handle and the object for which it was created.
A call do destroy should succeed under all normal circumstances. If create or duplicate are
called on a valid (i.e already created) handle, the first action will be to implicitly destroy handle
and thus unmap, too, if necessary.

Whilst a handle is the unique handle that refers to the whole object (e.g because it was just
freshly created) a process may call resize to assign it a new length. The semantics of the system
interface ftruncate12 apply, i.e: (1) If the call shortens the object the data beyond the new length
is definitively lost. (2) If the call extends the object the newly created part will appear as filled
with zero’s. The system will keep track of the handles that are alive for a given object and will
be able to decide whether or not a given call to resize is valid. If the conditions for resize
(uniqueness and referring to the whole object) are not fulfilled, resize should simply do nothing.
The application may use getLength to know whether the resize succeeded.

3.7 Run time errors and robustness

In general, programs that deviate from the desired flow of control between valid states as it
is suggested by Figure 1 should not produce errors. The system should try to cope with such
deviations as long as possible, instead. E.g the wrong pairings of announcements and mappings
(i.e cr request followed by ew acquire, or ew request followed by cr acquire) could result in
some run-time penalty because of badly used resources and because of re-insertions of locking
requests but not in an error condition of the program.

A handle is erroneous iff getLength returns zero. This may e.g be the case when the object
is empty after it was created by the call to create and no resize action has yet been undertaken
or if a previously created handle had been destroyed. Observe that no valid handles that refer to
a sub-range of size zero can be created. Reclaiming a parameter length of zero is interpreted as
defining a valid range starting at offset and extending to the end of the range of the “parent”
handle.

11 http://www.ietf.org/rfc/rfc2396.txt
12 http://www.opengroup.org/onlinepubs/007908799/xsh/ftruncate.html
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4 Example

Due to space limitations we are not able to give examples for all aspects of DHO. For the effect
of the combined locking and mapping mechanism that takes an important part in DHO consider the
code in Figure 2.

for (int i = mynum; i < mynum+p; ++i) {
Bpart[(i+1)%2].ew_request();
void const* bpoint =

Bpart[i%2].ew_acquire();
DO_MULT(apoint, n, cols,

bpoint, n, cols,
cpoint, i%p);

Bpart[i%2].release();
Bpart[i%2].destroy();
Bpart[(i+2)%2].duplicate(

B,
len*((i+2)%p),
len);

}

Fig. 2. The for-loop of a matrix-multiplication

It shows the loop of a matrix multiplication rou-
tine that uses a column block “Bpart” that is
cyclically shifted around the processes.13 A more
complete version of such a function is given in the
appendix.

It uses a pair of data handles Bpart[] which
will be used alternated from iteration to iteration
depending of whether the loop index i is even or
odd. When executed in a distributed environment
this code will behave very similar as if it would be
implemented with e.g MPI in replacing request
with MPI Irecv, ew acquire with MPI Wait, and
destroy with MPI Isend. The processes receive
the blocks of B one after another and never hold
more than two blocks at a time. On the other
hand, executed on shared memory the processor
just timely receive pointers to the data, no copy operation between the processors is taking place.
So on both types of architectures such a code will execute efficiently.

5 Implementation

The proposal of DHO is based upon the experience with our prototype library for coarse grained
parallel algorithms, SSCRAP14. It already successfully implements parts of the components of
DHO. In particular the mapping/unmapping technique (called chunks in SSCRAP) has shown
to be a valuable tool for developing parallel programs that leave enough slackness to the memory
management system. By that SSCRAP programs run efficiently without modification on large
mainframes and clusters. In an out-of-core context, we are able to handle data that is larger than
the address space of the machine. The run time control of events (based on BSP-like supersteps) is
stricter than what we imaging for DHO, though. But this should not be a major issue in a future
extension, since the model that we propose here (as being a variant of lazy release consistency)
is well experimented in the DSM context and well mastered on a system level by the means of
advisory file locking.

We think that a prototype for a DHO-library could be implemented very quickly on top of
POSIX file descriptors (with open or shm open, advisory file locking and mmap) and MPI for com-
munication and handling processes themselves. Efficiency of shared memory should only depend
on the efficiency of the shm open implementation. This is already quite good e.g on Linux systems,
but not yet satisfactory on other platforms that sometimes implement POSIX norms only verbally.
For message passing, the efficiency should be easier to achieve due to the maturity of the MPI
implementations for all platforms. There are some technicalities that remain to be solved: (1) The
function mmap is page oriented and not byte oriented. (2) Advisory file locking is process-oriented
and not well suited for objects that lock. (3) The POSIX standard for advisory file locking does
not impose an order in which locks are obtained.

13 For the notation: We realize the product C = AB, where A, B and C are nn matrices. We have p

processes, mynum is the number of the actual processor and for simplicity of the example p divides n and
cols = n/p. Pointers apoint and cpoint hold addresses of the column block of A and C, DO MULT is a
sequential matrix multiplication routine.

14 http://www.loria.fr/~gustedt/sscrap/
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We think that these restrictions can be overcome relatively easy and that it might be in fact
possible to extract much of the necessary from SSCRAP. On the other hand we are hoping that the
present work will provide us with more valuable feedback and we will be able to combine energies
in a community effort to implement a prototype of a DHO or similar system.
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Appendix A Matrix Multiplication, complete example

// Supposes that each processor has inserted a cr locking request on B

// upon entry. Will focus this lock ew while processing onto ranges

// of B that will circulate between the processors. The lock on B as

// a whole will then be placed again upon return form this function.

void matrix_mult( dho& A, dho& B, dho& C ) {

off_t n = sqrt(A.getLength());

off_t plen = A.getLength()/p;

off_t cols = plen/n;

off_t blen = plen/p;

// Only input, prepare for reading

dho Apart(A, plen*mynum, plen);

Apart.cr_request();

// Output, prepare for writing.

dho Cpart(C, plen*mynum, plen);

Cpart.ew_request();

// Two column blocks, that will be circulating.

dho Bpart[2];

Bpart[mynum%2].duplicate(B, plen*mynum, plen);

Bpart[(mynum+1)%2].duplicate(B, plen*((mynum+1)%p), plen);

Bpart[mynum%2].ew_request();

// Get the lock for Apart and Cpart, and place the lock insertion

// for B[0].

void const* apoint = Apart.cr_acquire();

void* cpoint = Cpart.ew_acquire();

// We know that our lock for B[mynum%2] is inserted, now synchronize on

// the latest process that releases B.

B.release();

for (int i = mynum; i< mynum+p; ++i) {

// Everybody had been able to place their lock for Bpart[i%2].

// We now may insert the exclusive locking request for

// B[(i+1)%2] without blocking process (mynum-1)%p.

if (i < mynum+p-1) Bpart[(i+1)%2].ew_request();

else B.cr_request();

// Lock Bpart[i%2] and place the locking request for

// Bpart[(i+1)%2]

void const* bpoint = Bpart[i%2].ew_acquire();

DO_MULT(apoint, n, cols,

bpoint, n, cols,

cpoint, i%p);

if (i < mynum+p-2) Bpart[(i+2)%2].duplicate( B, len*((i+2)%p), len);

}

}

int main(int argc, char* argv) {

// Three different types of uri to refer to the data.

dho A("https://top.secret/A.dat");

dho B("ssf://toto.my.company/B.dat");

dho C("file://tutu.my.company/C.dat");

B.cr_request();

matrix_mult(A, B, C);

}
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Appendix B Proposed
C-interface

/* This may look like nonsense,

but it is really -*- c -*- */

struct DHO_t;

/** construction and destruction */

int DHO_create(DHO_t* handle,

char const name[MAXNAME]);

int DHO_resize(DHO_t* handle,

off_t length);

int DHO_duplicate(DHO_t* handle,

DHO_t const* old,

off_t offset,

off_t length);

int DHO_destroy(DHO_t* handle);

/** exclusive write access to the data **/

int DHO_ew_request(DHO_t* handle);

void* DHO_ew_acquire(DHO_t* handle);

/** concurrent read access to the data **/

int DHO_cr_request(DHO_t* handle);

void const* DHO_cr_acquire(DHO_t* handle);

/** test if data has arrived **/

int DHO_test(DHO_t const* handle);

/** release any data previously requested or

accessed **/

int DHO_release(DHO_t* handle);

/** state inquiry */

DHO_getName(DHO_t const* handle,

char const name[MAXNAME]);

off_t DHO_getLength(DHO_t const* handle);

/** system inquiry **/

off_t DHO_maxLength(void);

off_t DHO_minLength(void);

Appendix C Proposed
C++-interface

// This may look like C code,

// but it is really -*- c++ -*-

#include "DHO.h"

class dho : private DHO_t {

public:

/// construction and destruction

void dho(void);

void create(char const name[MAXNAME]);

void dho(char const name[MAXNAME]);

void resize(off_t length);

void dho(off_t length);

void duplicate(dho const& other,

off_t offset=0,

off_t length=0);

void dho(dho const& other,

off_t offset=0,

off_t length=0);

void destroy(void);

void ~dho(void);

/// exclusive write access to the data

void ew_request(void);

void* ew_acquire(void);

/// concurrent read access to the data

void cr_request(void);

void const* cr_acquire(void);

/// test if data has arrived

bool test(void)const;

/// release any data previously requested or

/// accessed.

void release(void);

/// state inquiry

void getName(char const[MAXNAME])const;

size_t getLength(void)const;

/// system inquiry

static size_t DHO_maxLength(void);

static size_t DHO_minLength(void);

};
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