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Dpto. de Matemáticas y Computación. Univ. de La Rioja. 26004 Logroño (Spain)
julio.rubio@dmc.unirioja.es

Abstract In this work the following question is considered: is Serg-
eraert’s “Constructive Algebraic Topology” (CAT, in short) really con-
structive (in the strict logical sense of the word “constructive”)? We have
not an answer to that question, but we are interested in the following:
could have a positive (or negative) answer to the previous question an
influence in the problem of proving the correctness of CAT programs (as
Kenzo)? Studying this problem, we have observed that, in fact, many
CAT programs can be extracted from statements (that is, from the spec-
ification of certain objects and constructions), without needing an ex-
traction from proofs. This remark shows that the logic used in the proofs
could be uncoupled with respect to the correctness of programs. Thus,
the first question posed could be unimportant from the practical point
of view. These rather speculative ideas will be illustrated by means of
some elementary examples, where the Isabelle code extraction tool can
be successfully applied.

This research is part of an ongoing project devoted to use the proof assistant
Isabelle [6] to explore the correctness of programs in Sergeraert’s theory for
Constructive Algebraic Topology (CAT) [7]. The main realization of the CAT
framework is a Common Lisp program called Kenzo [5]. Due to the intrinsic
difficulty of the task we decided to simplify the problem in two ways: first,
restricting our attention to a small (but relevant) fragment of Kenzo (namely,
the BPL or Basic Perturbation Lemma [3]); second, tackling the problem of the
mechanized proof of the theorems, and not of the correctness of the programs
(our primary goal). Once the feasibility of this objective has been established (see
[1]), our next goal was to apply the Isabelle code extraction tools [2] to our proofs
in order to bridge the gap between theorems and programs. The extracted code
would produce ML programs; another gap would be then to reach the Kenzo
Common Lisp programs.

For example, we show here a Kenzo fragment from [5]: the following Lisp
function encodes essentially the BPL (more concretely, its series ; see below).
The complexity of its formal analysis should be clear.
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(DEFUN BPL-*-sigma (homotopy perturbation)
(declare (type morphism homotopy perturbation))
(the morphism

(let ((cmpr (cmpr (sorc perturbation)))
(h-delta (cmps homotopy perturbation)))

(declare
(type cmprf cmpr)
(type morphism h-delta))

(flet
((sigma-* (degr gnrt)

(declare
(fixnum degr)
(type gnrt gnrt))

(do ((rslt (zero-cmbn degr)
(2cmbn-add cmpr rslt iterated))

(iterated (term-cmbn degr 1 gnrt)
(cmbn-opps (cmbn-? h-delta

iterated))))
((cmbn-zero-p iterated) rslt)

(declare (type cmbn rslt iterated)))))
(build-mrph

:sorc (sorc homotopy) :trgt (sorc homotopy)
:degr 0 :intr #’sigma-* :strt :gnrt
:orgn ‘(bpl-*-sigma ,homotopy ,perturbation))))))

The statement of the BPL is the following (for the necessary definitions and
notations, we refer to [1]).

Theorem 1. Basic Perturbation Lemma — Let (f, g, h) : D∗ ⇒ C∗ be a
chain complex reduction and δD∗ : D∗ → D∗ a perturbation of the differential
dD∗ satisfying the nilpotency condition with respect to the reduction (f, g, h).
Then a new reduction (f ′, g′, h′) : D′∗ ⇒ C′∗ can be obtained where the underlying
graded groups of D∗ and D′∗ (resp. C∗ and C′∗) are the same, but the differentials
are perturbed: dD′∗ = dD∗ + δD∗ , dC′∗ = dC∗ + δC∗ , and δC∗ = fφδD∗g; f ′ = fφ;
g′ = (1 − hφδD∗)g; h′ = hφ, where φ =

∑∞
i=0(−1)i(δD∗h)i.

Even in more elementary examples, as:

(DEFMETHOD CMPS ((mrph1 morphism) (mrph2 morphism) &optional strt)
;;; ... lines skipped

(build-mrph :sorc sorc2 :trgt trgt1 :degr (+ degr1 degr2)
:intr #’(lambda (cmbn)

(declare (type cmbn cmbn))
(the cmbn

(cmbn-? mrph1 (cmbn-? mrph2 cmbn))))
:strt :cmbn :orgn ‘(2mrph-cmps ,mrph1 ,mrph2 ,strt))

;;; ... lines skipped



that implements the composition of two morphisms, the differences with the
formalization in Isabelle are quite big. One fragment of such a formalization can
be found here1:

constdefs
group_mrp_comp :: "[ (’b, ’c) group_mrp_type,

(’a, ’b) group_mrp_type] =>
(’a, ’c) group_mrp_type"

"group_mrp_comp g f == \<lparr> src = src f, trg = trg g,
morph = (morph g) \<circ> (morph f),

src_comm_gr = src_comm_gr f, trg_comm_gr = trg_comm_gr g
\<rparr>"

lemma group_mrp_composition:
assumes A1: "group_mrp A"
and B1: "group_mrp B"
and C1: "trg_comm_gr A = src_comm_gr B"
and D1: "trg A = src B"
shows "group_mrp (B \<circ> A)"

Thus, in order to link the formalization with a real program, more efforts are
needed. One well-known strategy is to establish the formalization in a (mech-
anized) constructive logic, and then extract a program from the proof. Never-
theless, one can observe that the previous Isabelle lemma has a constructive
statement. That is to say: a new object is defined (the composite of two mor-
phisms, in the example) and some property of this object is asserted (namely,
it is a morphism). If code can be extracted from the definition or specification
appearing in the statement, it is quite clear that the logic underlying the proof
of the statement could be unrestricted (see [4]). In the example, we can apply
in this way Berghofer’s extraction tool [2], obtaining the following ML program
(only the most relevant part is shown here):

fun comp f g = (fn x => f (g x));

fun group_mrp_comp g f =
group_mrp_type_ext (src f) (trg g) (comp (morph g) (morph f))

(src_comm_gr f) (trg_comm_gr g) Unity;

In this case, the proof of the previous Isabelle Lemma is to be considered as
a proof of correctness for the ML program (assuming, as usual, the soundness
of Berghofer’s translation). This (certified correct) ML program should be com-
pared with the real corresponding Kenzo program (partially displayed before).

The scope and practical interest of this “constructive statements” approach
need additional investigations (in particular, in order to formalize it). It is even
1 The Isabelle scripts used in this paper have been written by J. Aransay, with the

help of C. Ballarin.



unclear if each function in Kenzo has an equivalent in ML extracted from such a
constructive statement. In this vein, it is worth noting that the occurrence in the
BPL statement of the series φ =

∑∞
i=0(−1)i(δD∗h)i implies further difficulties

from a constructive point of view.
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