
Certified mathematical hierarchies:
the FoCal system.

Virgile Prevosto1

Max-Planck Institut für Informatik
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

prevosto@mpi-sb.mpg.de

Abstract. The focal language (formerly Foc) allows a programmer to
incrementally build mathematical structures and to formally prove their
correctness. focal encourages a development process by refinement, de-
riving step-by-step implementations from specifications. This refinement
process is realized using an inheritance mechanism on structures which
can mix primitive operations, axioms, algorithms and proofs. Inheritance
from existing structures allows to reuse their components under some
conditions, which are statically checked by the compiler.
In this paper, we first present the main constructions of the language.
Then we show a shallow embedding of these constructions in the Coq
proof assistant, which is used to check the proofs made in Focal. Such a
proof can be either an hand-written Coq script, made in an environment
set up by the Focal compiler, or a Coq term given the zenon theorem
prover, which is partly developed within Focal. Last, we present a formal-
ization of focal structures and show that the Coq embedding is conform
to this model.

Keywords. specifications, proofs, inheritance, refinement, types, Focal,
Coq

1 Introduction

The main goal of the Focal language [1], formerly known as FoC, was to pro-
vide a convenient framework to develop certified computer algebra libraries. The
building blocks of a Focal program are the species, which represent mathemat-
ical structures, with their primitive operations, their axioms, and possibly some
derived functions and theorems proved from the axioms. Moreover, a species
can be built upon existing ones, inheriting their operations and properties, as in
object-oriented programming. The Focal compiler generates two outputs: the
first one, which will not be mentioned any further in this paper, is an ocaml [2]
file which reflects the computational part of the Focal source. The second one
is a Coq file which can be verified by the Coq proof-assistant [3].

In this paper, we briefly present the main constructions of Focal (section 2),
and their representations in Coq (section 3). Section 4 describes how to make a
proof within Focal, either interactively or with the help of the zenon theorem

Dagstuhl Seminar Proceedings 05021
Mathematics, Algorithms, Proofs
http://drops.dagstuhl.de/opus/volltexte/2006/274

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 V. Prevosto

prover (distributed with Focal). Last, we focus in section 5 on the mixDrecs
structures, which are direct representation of species in Coq (in contrast with
the translation of Sect. 3, which is much more operational).

2 The Focal Language

2.1 Species

As we have just said, a Focal species represents an algebraic structure, such as
groups or rings. Each species is composed of methods, identified by their names.
There are three kinds of method: the carrier type, the programming methods
and the logical methods.

Carrier: It is the type of the elements manipulated by the algebraic structure.
It is introduced by the keyword rep. Each species must have an unique
carrier.

Programming methods: They represent constants and operators.
Logical methods: Such methods represent the properties of the programming

methods. Following the Curry-Howard isomorphism [4], the type of such a
method is a statement, while its body is a proof. Statements are constructed
over boolean expressions with the usual connectors (and, or, →, not) and
universal (all) and existential (ex) quantification over a Focal type (in-
cluding the carrier type of the species). The language used for the proofs
will be presented below in section 4.1.

Moreover, each method can be either declared or defined. Declared methods
represent the primitive operations of the structure, as well as its axioms. Defined
methods represent derived operations, and (some of) the theorems that can be
proved inside the structure. The carrier itself can also be declared (in which case
it is only an abstract data-type), or defined, that is bound to a concrete type.

To clarify these different kinds of methods and give an example of Focal
syntax, we can define a species representing groups:

species additive group =
rep;
sig plus in self → self → self ;
property assoc: all x y z in self,

self !plus(x,self !plus(y,z)) = self !plus(self !plus(x,y),z);
sig opp in self → self ;
sig zero in self ;
property plus opp: all x y in self,
self !opp(self !plus(x,y)) = self !plus(self !opp(x), self !opp(y));
property opp opp: all x in self, self !opp(self !opp(x)) = x;
let minus(x,y)= self !plus(x,self !opp(y));
let id(x)=self !minus(x,self !zero);
theorem minus opp:

all x y in self, self !minus(x,y) = self !opp(self !minus(y,x))
proof : by plus opp, opp opp def minus;

. . .
end

Certified mathematical hierarchies 3

First, there is the declaration of the abstract carrier rep. Then we give the
signature of plus, a binary operation over self : self refers to the current species
being defined (hence the method calls have the form self !plus), and, as often
in mathematics, we identify the whole structure and its carrier. After that, we
state a logical property of plus (namely that it is associative). In addition,
we declare a unary operation opp together with some of its properties. We also
define (through the let keyword) new operations, minus, from plus and opp, and
id from minus and zero. In addition, we state a theorem about minus which
can be derived from the properties of plus and opp and the definition of minus.

2.2 Inheritance

In mathematics, we usually do not define an algebraic structure “from scratch”,
as we have just done for the groups. On the contrary, we build a new structure
by refining pre-existing ones with new axioms and/or operators. This is also the
case for Focal, where a species can inherit from previous ones. For instance,
given a species monoid with an associative operation mult and a neutral element
one, we can define the species ring as follows:

species ring inherits group, monoid =
property distrib: all x y z in self,

self !mult(x,self !plus(y,z)) = self !plus(self !mult(x,y), self !mult(x,z));
let zero = self !minus(self !one, self !one);
. . .

end

ring has all the methods that were present in group and monoid. In addition,
it declares a new method distrib, and provides a definition for zero, which was
only declared in group. In addition, a new species can of course directly define
a new method. It can also redefine a previously defined method. For instance, if
we want to build the ring Z with a carrier set to the native int type of Focal,
it would be far more efficient to define zero as 0 instead of the generic definition
provided in ring. On the other hand, the type of the methods must remain the
same. This constraint guarantees that the new species is a particular instance
of the species it inherits from. Similarly, in case of multiple inheritance, the
methods with a same name in the two parents must have the same type. If
several methods are defined, we select the definition coming from the rightmost
species in the inherits clause. This is also true for the carrier, whose implicit
name is rep.

2.3 Parameters

Another important feature is the parametrization of a species by another one.
For instance, we can define univariate polynomials over an arbitrary ring as

4 V. Prevosto

follows:

species univariate polynomial (a is ring) inherits ring =
rep = list(a * int);
let zero = Nil;
let plus(x,y) =

match(x,y) with
| Nil, y → y | x, Nil → x
| Cons((coeffx,degx) as monomialx,tailx),

Cons((coeffy,degy) as monomialy,taily) →
if degx = degy then

if not(a!plus(coeffx,coeffy) = a!zero) then
Cons((a!plus(coeffx,coeffy),degx),

self !plus(tailx,taily))
else self !plus(tailx, taily)

else . . . ;
end

In the body of the species polynomial, a represents a ring. In particular, we can
call any method from ring on it, such as a!plus in the definition of the addition of
two polynomials. We also define the carrier of polynomial in term of the carrier
of a (again, a!rep is identified with a itself in a type). Namely, a polynomial is
a list of pairs composed of a coefficient and a degree.

2.4 Collections and Interfaces

In the definition of polynomials above, a should represent any instance of ring in
which all the methods are defined (i.e. in which all functions have an implemen-
tation and all properties are proved). Indeed, polynomial can call any method
whose name appears in ring, and a has to provide an implementation for it. On
the other hand, since we allow redefinitions, polynomial itself can not make any
assumption on the particular form of these implementations, even for methods
that are defined in ring itself. Indeed, we can instantiate a with a structure that
redefines it. These points lead to two dual notions in Focal:

– Each species must implicitly define an interface, obtained by replacing its
defined methods by the corresponding declarations. Parameters are then seen
through the interface of the species they are required to implement.

– When a species has all its methods defined, we can choose to transform it
into a collection. Only collections can be used to instantiate parameters.
Moreover, a collection is itself seen through its interface. In particular, its
carrier is abstracted, in order to preserve possible invariants (for instance,
polynomials are not arbitrary lists: they are ordered according to the degree,
and we don’t have coefficients equal to a!zero).

2.5 Dependencies

As we can see from the examples above, the methods of a given species are not
independent from each other. Dependency analysis plays an important role in

Certified mathematical hierarchies 5

Focal compilation. It is presented in detail in [5], but we give an overview of
the issues in this paper. Intuitively, a method m of a species s depends upon a
method m’ if there is a call to self !m’ in m. Such a call can occur in the type of
m (with a reference to the carrier) as well as in its body. Of course, statements
and proofs have dependencies too. The first point of dependency analysis is
to avoid cycle of dependencies between the methods of s outside of definitions
explicitly flagged as recursive, which lead to proof obligations in order to ensure
termination.

When it comes to proofs, we have to distinguish between two kinds of de-
pendencies. There is a decl-dependency from m upon m’ if only the type -or
the statement- of m is needed to check the proof. On the other hand, there is
a def-dependency if we have to unfold the definition of m’ during the proof.
Def-dependencies might also appear in statements, as shown by the following
case:

species s =
rep = nat;
property foo: all x in self, nat plus(x,1) > 0
end

The statement of foo is correct only if we know that the carrier is bound to
nat. Otherwise, we can not give an argument of type self to nat plus (assuming
nat plus is the addition over nat). However, such def-dependencies are rejected
by Focal. Indeed, this would prevent us from deriving an interface for species
such as s, since we can not abstract their carrier.

When it comes to inheritance, def-dependencies have another drawback. In-
deed, if we want to redefine a method m’, all the proofs that def-depends upon
m’ will become invalid in the new species. Focal erases them during inheritance
resolution, but it means that we’ll have to do them later for the new version of
m’. Since doing a proof can be quite time-consuming, it is important to minimize
the number of erasure during a development. Some solutions to this issue are
proposed in [6], but this topic seems to be worth further investigations.

3 Coq Translation

Focal uses Coq as a back-end to verify the proofs made in the species. In this
section, we present briefly the compilation of Focal constructions into Coq.
A complete definition of the translation is to be found in [7], as well as proofs
that it returns well-typed Coq term (provided the Focal development is itself
well-formed of course).

3.1 Overview of Code Generation

The representation of a species is encapsulated in a Coq module. Such a module
is composed of the following parts:

6 V. Prevosto

– First, we find a record type corresponding to the interface of the species.
This type has one field for each method in the species, regardless of its
origin (inherited or not).

– Declared methods are represented by variables (also called Parameters in
Coq terminology for modules).

– If a method is (re)defined in the species body, a corresponding method gener-
ator is given on the Coq side. It is a generic definition obtained by perform-
ing some abstractions, which allows to simulate the late binding mechanisms
of Focal, that is the fact that a call to self !m must always use the latest
definition available for m. They are described more precisely in the next
section.

– All defined methods are represented by definitions that are local to the mod-
ule. Such definitions are obtained by applying the corresponding method
generator (that may come from a preceding module) to the arguments spe-
cific to the current module. This allows to let Coq verify the correction of
Focal inheritance resolution.

– When we want to define a collection from a completely defined species, we
just have to bind together these local definitions into a record of the type
given at the beginning of the module.

– Inheritance is handled by defining coercions between the record types. Since a
species can not change the types of inherited methods, this consists mainly in
forgetting the fields that are not present in the old record. Once the coercion
is defined, we can rely on the implicit coercions mechanism of Coq.

– Last, parameters are represented as abstractions in the definition of the
record type and the method generators. They also give rise to Coq param-
eters in order to be able to perform the local definitions mentioned above.

As an example, we can see how polynomial is represented in Coq:

Module Polynomial.

Record species (a: Ring.species): Type :=
{ rep:> Set; zero: rep; plus: rep → rep → rep; . . . }.

Parameter self a: Ring.species.

Definition rep gen: Set := fun (a: Ring.species) ⇒ list (a*int).

Local self rep: Set := rep gen self a.

. . .

Coercion polynomial to ring :=
fun (a: Ring.species) ⇒ fun (p:species a) ⇒

Ring.build species (rep p) (zero p) (plus p)

First, we define a new record type, parameterized by a ring. The declaration of
the rep field indicates an implicit coercion from such a record to its carrier (cor-
responding to the syntax of Focal types). Then we declare a parameter of the

Certified mathematical hierarchies 7

whole module of type Ring.species. After that, we find the method generator
of rep, abstracted with respect to a, and the local definition of the carrier, ob-
tained by applying the generator to the parameter self a. Last, after all methods
have been treated (in an order compatible with the dependencies between them),
we find a coercion from the species record to Ring.species, since polynomials
inherits from ring.

3.2 Method Generators

Let us have now a closer look to the method generators. As already said, their
main purpose is to handle late binding. Namely, take a method m is defined
in a species s, and decl-depends upon a method m’, which is also defined in s.
Then, if s’ inherits from s and redefines m’ but not m, we want that the method
m of s’ use the new definition of m’. Basically, to obtain a method generator,
we just have to abstract the body of m with respect to m’, and apply it to
the two different definitions of m’ in s and s’. However, things are a little bit
more complicated. First, we have to take into account the def-dependencies of
m. By hypothesis, we can not abstract the definition of m with respect to them.
On the contrary, if m def-depends upon d, we must provide the definition of
d in s. To achieve that, we can use the corresponding method generator (from
s or one of its ancestor), but d has itself dependencies, that must be taken
into account when computing the abstractions of the method generator of m.
Likewise, if m’ type is a statement, then it might also have dependencies, with
respect to whom the method generator of m must be abstracted. All this makes
the computation of the necessary abstraction a bit tricky, but in the end we come
up with well-typed Coq terms that can be used to generate a method m in s and
all its descendant (unless m is redefined, of course). For instance, the method
generator corresponding to the minus and minus opp methods of section 2 are
the following:

Definition minus gen:=
fun(rep: Set)⇒ fun(plus: rep → rep → rep)⇒ fun (opp: rep → rep)⇒

fun (x,y:rep) ⇒ plus(x,opp(y)).
Definition minus opp gen:=

fun(rep:Set)⇒ fun (plus:rep → rep → rep)⇒ fun (opp: rep → rep)⇒
let minus = (minus gen rep plus opp) in

fun (plus opp: . . .) ⇒ . . .

minus gen is simply an abstraction over rep, plus and opp. minus opp gen con-
tains in addition a definition of minus, obtained by applying minus gen to the
appropriate representations of rep, plus and opp in the context of the theorem
generator.

4 Making Proofs in Focal

The preceding section gives an overview of the translation of a Focal species
into Coq so that Coq can verify the proof of the theorems made in Focal. It is

8 V. Prevosto

now time to see how such a proof can be written. There are two possibilities. The
first one is to give directly a Coq script or a Coq term. The second one relies
on the zenon theorem prover, due mostly to Damien Doligez, which is developed
as part of the Focal project. We concentrate on the latter one in the remaining
of the section.

4.1 The proof language

The proof language used to communicate with zenon is quite similar to the
one proposed by Lamport in [8]. Namely it consists on a hierarchy of proof
steps, where each step represents a lemma which can be derived from the steps
of the inferior levels. We can take as an example a theorem from the Focal
standard library. This theorem is given in the meet semi lattice species. This
species has a primitive operator, inf, which is associative, commutative and
idempotent, and the theorem states that the relation order inf derived from inf
by order inf (x, y) , inf(x, y) = x is transitive (in fact it is a partial ordering).

theorem order inf is transitive : all x y z in self,
!order inf(x,y) → !order inf(y,z) → !order inf(x,z)

proof :
<1>1 assume x y z in self

H1: self !order inf (x, y)
H2: self !order inf (y, z)}

prove self !order inf (x, z)
<2>0 prove self !equal (x, !inf (x, y))

by <1>:H1 def self !order inf
<2>1 prove !equal (x, self !inf (x, !inf (y, z)))

by <2>0, <1>:H2, . . . def self !order inf
<2>2 prove !equal (x, self !inf (self !inf (x, y), z))

by <2>1, self !inf is associative, self !equal transitive . . .
<2>3 prove !equal (x, self !inf (x, z)) by <2>2, <2>0, . . .
<2>4 qed by <2>3 def self !order inf

<1>2 qed;

The first step of the proof is a transcription of the original statement: we
introduce three variables x, y and z, and two hypotheses H1 and H2, and claim
that we can prove self !order inf(x, z) from that. To proceed, we have 5 sub-steps
at level 2, <2>0 to <2>4. The first three ones state some intermediate lemmata,
while the qed in the last one says that we have enough results to achieve the
proof of the goal at level 1.

The by directives give some hints on how the intermediate lemmata can
be proved by zenon. They also allows Focal to compute the decl- and def-
dependencies of the theorem. Namely, we use here the definition of order inf (in
steps <2>0 and <2>4), as well as two axioms (in step <2>2), the associativity
of inf and the transitivity of equal, the equality of the lattice. Note that we can
also used the hypotheses made in <1>1, as it is done in step <2>0, or even

Certified mathematical hierarchies 9

steps that have already been proved in the same branch of the proof tree: step
<2>4 relies on step <2>3, which uses itself <2>2 and <2>0.

The whole proof is not given to zenon directly. Rather, every single step
results in a new formula, which takes into account the by directive, and each of
these formulæ is given separately to the prover.

4.2 The zenon theorem prover

Let us now briefly describe zenon itself. As we have already said, it is developed in
the Focal project by Damien Doligez and it comes with the Focal distribution.
It is a tableaux-based first-order theorem prover, which can deal with equality
(although this feature is not yet really used by Focal since most species rely on
an abstract equivalence relation and not on the structural equality over terms).
Moreover, zenon produces either a Coq script or a Coq term as proof, which
can easily be checked by Coq.

Some few words may be added on the relationship between zenon and the
dependency analysis of Focal. Namely, when a method m of self is given in a
by directive, Focal interprets that as a decl-dependency upon m, while strictly
speaking, this only means that zenon can use m, but there is no obligation
that m appears in the final proof. Thus, we have to add an artificial binding
to m to ensure that the dependency analysis is consistent with the method
generator. Moreover, zenon emits a warning in such a case, since unnecessary
decl-dependencies may lead to a dependency cycle between theorems. In many
cases, such situation could indeed have been prevented by a more careful analysis
of what is really needed to do a particular proof.

This led to a somehow interesting issue: there are some statements for which
zenon can find a proof only if another method is in the environment, but this
method is not used in the final proof: its only role is seems to help zenon heuristics
in making efficient choices. This point suggests that finding the appropriate
environment in which an automated theorem prover can succeed on a given goal
may be quite subtle and deserves some more investigations.

5 MixDrecs

MixDrecs have been introduced by Sylvain Boulmé in his PhD [9] in order to be
able to reason about species within Coq. Indeed, the translation presented in
section 3 destroys completely the structure of a Focal species: we have a set of
method generators and local definitions, but there is no object to represent whole
species nor the relations between species. From an operational point of view,
this is satisfactory, since the dependency analysis and inheritance resolution are
performed by the Focal compiler itself, and Coq is left with smaller terms to
type-check. On the other hand, mixDrecs can be seen as a denotational semantics
for species. Each mixDrec is a direct representation of a species in Coq, so that
the main properties of species can be established formally within Coq logic [10].
The relations between both translations have been investigated in [11,7]. We give
a brief overview of these results in the remaining of this section.

10 V. Prevosto

5.1 Definition

Intuitively, a mixDrec is a tree structure, whose nodes correspond to declared
and defined methods. Each node can depend on all of its predecessors. There are
three kinds of nodes:

– empty nodes, at the bottom of the tree.
– abstract nodes, corresponding to declared methods. They have a name and

a type, and only one successor.
– manifest nodes, corresponding to defined methods. They have in addition

a definition, and each of them has two successors. In the first branch, the
definition is hidden, while it is accessible in the second branch, so that some
nodes can be defined on the second branch, but have to kept abstract on the
first one: this correspond to the def-dependencies between methods.

For instance, we can build the mixDrec corresponding to the additive group
species seen above:

Arep

?Aplus

?Aopp

?Mminus©©©©¼
Aminus opp

HHHHjMminus opp

?
E

¡
¡ª

E

@
@R
E

Fig. 1. a mixDrec for groups

In figure 1, A represent abstract
nodes,M manifest nodes and E empty
nodes. Types and definitions in the la-
bel of the nodes have been omitted. In
this figure, the first three nodes are ab-
stract. The fourth one is defined and
has two sons. In the left-hand side, we
do not take into account the definition
of minus. Thus, minus opp must also
be abstracted, because of its def-depen-
dency. On the right-hand side, we know
the definition of minus. minus opp can
thus be defined.

A signature can be attached to each
mixDrec. It corresponds to the interface of a species, and is simply the list of
the fields appearing in the mixDrec with their types. An important notion at
this level is the notion of subsignature, s1 : Â s2. It means that s1 as at least
the same fields as s2, but not necessarily in the same order (one must respect
dependencies, though. For instance, we can not swap minus opp and minus in
the signature corresponding to additive group).

At the mixDrec level, there are two main operations. The first one is the
embedding of a mixDrec M of signature s1 in s2 when s2 : Â s1: ⇑s2 M . The
nodes of M are reordered according to s2 and the missing fields are added as
abstract nodes. The second operation is the fusion of two mixDrecs M1 and M2

sharing the signature s: M1⊕M2. In this case, if two corresponding are manifest
in both M1 and M2, the one of M2 is selected, and we continue the fusion using
the abstract branch of M1.

Certified mathematical hierarchies 11

5.2 MixDrecs and species

Briefly speaking, any well-formed Focal species s can be transformed in a mix-
Drec <<s>> of signature JsK. Indeed, since we do not allow cycle of dependencies,
once inheritance has been resolved, we can order the methods of s according to
these dependencies.

Moreover, inheritance resolution itself can be expressed through the basic
mixDrec operations presented above. More precisely, the following properties
hold:

– if s inherits from s′, JsK : Â Js′K
– Simple inheritance, s inherits from s1.

Theorem: <<s>> ⊕(⇑JsK <<s1>>) =<<s>>

– Multiple inheritance, s inherits from s1 and s2, without adding new methods

Theorem: (⇑JsK <<s2>>)⊕ (⇑JsK <<s1>>) =<<s>>

5.3 MixDrecs and Method Generators

Let us now examine the relationships between method generators and MixDrecs.
Namely, given a species s and a method x defined in the body of s, we can “ex-
tract” the method generator of x from M =<<s>> in the following sense. First,
we can define the minimal definition context for x in M , Γ̃M ` x. Intuitively,
this is the most abstract branch of M in which x is defined. Γ̃M ` x is obtained
from M by replacing any manifest node for which x appear as manifest in the
abstract branch by an abstract node. Moreover, since we are only interested in
x, we replace the successors of the x nodes by empty nodes. In other words, the
only manifest nodes in Γ̃M ` x correspond to the def-dependencies of x.

We can also define an equivalence relation between mixDrec,], which allows
us to swap two independent fields. Then it is possible to prove that the method
generator of x in s corresponds to the smallest mixDrec equivalent to Γ̃M ` x.
This shows that the construction of method generators is correct with respect
to mixDrecs’ semantics.

6 Conclusions

To sum up, we can say that Focal languages has yet all the ingredients needed to
build a hierarchy of mathematical structure and express and prove their prop-
erties as well as implement algorithms over them. The Coq translation gives
strong guarantees on the correction of the proof made by the zenon theorem
prover. Last, Focal semantics has solid grounds in the form of the mixDrec
model.

12 V. Prevosto

References

1. The Focal development team: Focal, version 0.2 Tutorial and reference manual.
LIP6 – INRIA – CNAM. (2004) Distribution available at: http://focal.inria.fr.

2. Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml
system, release 3.08. (2004)

3. The Coq Development Team: The Coq Proof Assistant Reference Manual Version
8. INRIA-Rocquencourt. (2004)

4. Howard, W.: The formulae-as-type notion of construction. In: To H.B. Curry,
Essays on combinatory logics, lambda calculus and formalism. Academic Press
(1980) 479–490

5. Prevosto, V., Doligez, D.: Inheritance of algorithms and proofs in the computer
algebra library foc. Journal of Automated Reasoning 29 (2002) 337–363 Special
Issue on Mechanising and Automating Mathematics, In Honor of N.G. de Bruijn.

6. Prevosto, V., Jaume, M.: Making proofs in a hierarchy of mathematical structures.
In: Proceedings of Calculemus. (2003)

7. Prevosto, V.: Conception et Implantation du langage FoC pour le développement
de logiciels certifiés. Thèse de doctorat, Université Paris 6 (2003)

8. Lamport, L.: How to write a proof. research report, Digital Equipments Corpora-
tion (1993)

9. Boulmé, S.: Spécification d’un environnement dédié à la programmation certifiée
de bibliothèques de Calcul Formel. Thèse de doctorat, Université Paris 6 (2000)

10. Boulmé, S.: Mixdrec definition (coq development).
http://www-lsr.imag.fr/Les.Personnes/Sylvain.Boulme/focal.html (2000)

11. Prevosto, V., Boulmé, S.: Proof contexts with late binding. In: TLCA. Volume
3461 of LNCS. (2005) To appear.

